
Procedural Texture Mapping on FPGAs
Andy G. Ye and David M. Lewis

Address: Dept. Of Elect. And Comp. Engineering, 10 King’s College Road,
Toronto, Ontario, M5S 3G4

Tel: (416) 978-1652 E-mail:{yeandy, lewis}@eecg.utoronto.ca

In many computer graphic applications, polygon meshes are used to model geometrical surfaces. Procedural texture
mapping increases the level of surface detail of polygon meshes by determining their surface colouring using computer
algorithms. These procedural texture algorithms typically model the structures of materials like concrete, wood, and marble.
They can be defined in 3-D space and be parameterized using input variables defining additional attributes other than the
texture coordinates.

Procedural texture algorithms, when executed in software, often cannot achieve the real time performance demanded by
many computer animation applications. While 2-D textures can be stored in RAM, 3-D and parameterized textures require
excessive memory. In this presentation, we present a new approach to synthesizing procedural textures in hardware in which
FPGA hardware is used to provide high performance implementations of procedural texture algorithms. The primary technique
used is to compile the procedural algorithms into hardware structures that can be programmed into FPGAs. This approach
is more memory efficient than storing pre-generated textures in memory, since only the algorithms are stored. It is also more
flexible than fixed hardware, since the reconfigurability of FPGAs can be used to exploit the parallelism presented in each
individual algorithm.

A procedural texture generator was designed using the FPGA approach. It is flexible enough to synthesize a variety of
procedural textures in high speed, and is small enough to be implemented in one or two modern FPGA chips. The procedural
texture generator was implemented using the Transmogrifier-2 (TM-2) rapid prototype system [LGI 97], as a part of a 3-D+

computer graphic rendering system design. The rendering system achieved a performance of over 3 million pixels per second
(MPPS). Procedural textures can be synthesized at a rate of 7 MPPS. For textures implemented, we estimated that the FPGA
implementations require only 4% to 5% of silicon area of comparable texture memory implementations. Our FPGA
implementations also outperform comparable software implementations by 17 times.

The block diagram of the rendering system is shown in Figure 1. The system is designed to be implemented in a mixture
of software, ASICs and FPGAs. The world to screen space transformation unit operates on a per triangle basis. It transforms
objects in 3-D world space into triangles in 2-D screen space. It is implemented in software as commonly done in many
graphic accelerators. The screen to texture space transformation unit calculates the texture coordinates for each texture mapped
pixel. An independently derived screen space to texture space transformation algorithm is used. This unit and the frame buffer
are designed to be implemented in ASICs. Although in our prototype system, we emulated both in FPGAs. The procedural
texture generator synthesizes procedural textures directly in FPGAs.

Six procedural textures, wood, marble, brick, fog, cloud, and fire, were implemented on the system. Two are shown in
Figure 2 and 3. Although procedure texture mapping is typically used for complex geometrical shapes like spheres or vases,
a simpler cube is texture mapped in both figures. The correctness of a texture implementation can be verified by checking
the consistency of the texture across all six faces of the cube. To render a image, a user simply need to load a pre-designed
texture into the FPGAs and then specify the object in both world and texture spaces.

Both marble and wood textures use the fractal function , where is the
Perlin noise function [EMP 94]. We modified the basic Perlin noise algorithm to achieve a fast and efficient FPGA+

implementation. Major improvements to the algorithm include generating pseudo random numbers on the fly in XOR tables
[Rau91] and using a 3-D linear interpolation and the smooth function to replace the original wavelet interpolation.

The marble texture, , is created by indexing fractal values into, , a 128
entry colour table storing a range of marble colours. The wood texture,

, is based on the geometrical model of annular rings. The annular rings
are simulated using the function . Fractal values are used to simulate the irregularity of tree growth.

is a colour table of 128 entries storing a range of wood colours. Minimum precision fixed point arithmetics are used
for all six textures.

References
[LGI 97] David M. Lewis, David R. Galloway, Marcus van Ierssel, Jonathan Rose, and Paul Chow, “The+

Transmogrifier-2: A 1 Million Gate Rapid Prototyping System”, IEEE Trans. on VLSI Systems, pp 188-198,
June 1998.

[EMP 94] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Worley Steven, Texturing and+

Modeling: A Procedural Approach, AP Professional, Boston, 1994.
[Rau91] B. Ramakrishna Rau, “Pseudo-Randomly Interleaved Memory”, ACM, 1991.

Figure 1Figure 1 3-D Rendering System Design

Figure 2Figure 2 Marble Texture Mapped Cube

Figure 3Figure 3 Wood Texture Mapped Cube

