
Abstract

As the logic capacity of Field-Programmable Gate
Arrays (FPGAs) increases, they are being increasingly
used to implement large arithmetic-intensive applica-
tions, which often contain a large proportion of datap-
ath circuits. Since datapath circuits usually consist of
regularly structured components, called bit-slices, it is
possible to utilize datapath regularity in order to
achieve significant area savings through FPGA archi-
tectural innovations. This paper describes such an
FPGA logic block architecture, called a multi-bit logic
block, which employs configuration memory sharing to
exploit datapath regularity. It is experimentally shown
that, comparing to conventional FPGA logic blocks, the
multi-bit logic blocks can achieve 18% to 26% logic
block area reduction for implementing datapath cir-
cuits, which represents an overall FPGA area saving of
5% to 13%. A packing algorithm for the multi-bit logic
block architecture is also proposed in this paper; and it
is used to empirically find the best values for several
important architectural parameters of the new architec-
ture, including the most area efficient granularity val-
ues and the most area efficient amount of configuration
memory sharing.

1. Introduction

Field-Programmable Gate Arrays (FPGAs) that
process multiple bits of data at a time represent a new
architectural approach for implementing datapath cir-
cuits on reconfigurable hardware that can significantly
reduce the amount of programming information
required to configure an FPGA. The main benefit of this
reduction in programming information is the subse-
quent reduction of configuration memory bits, which
can lead to increases in logic density. Called multi -bit
FPGAs, the detailed implementation of these devices
often consists of multiple-bit wide logic blocks and
routing resources that take advantage of datapath regu-
larity by sharing a single set of configuration memory
across multiple sets of programmable resources. This
sharing results in a denser FPGA that is especially effi-
cient at implementing large arithmetic-intensive datap-
ath circuits including computer graphics, multimedia,
digital signal processing, and Internet routing applica-
tions.

Several multi -bit FPGA architectures have been
proposed in the past [1]–[12] with a wide range of logic
block designs. In this work, we focus on the study of
logic cluster-based multi -bit logic blocks. In particular,
we propose a specific logic block architecture along
with its packing algorithm (the step in the CAD flow
that chooses which logic elements to group together in a
cluster). The area efficiency of the proposed logic block
architecture is then empirically evaluated. The primary
reason for the choice of logic cluster-based logic blocks
is due to the fact that logic clusters are the building
blocks of many state-of-the-art commercial FPGAs
(including the Altera Flex, Stratix, and Cyclone series
[17] and Xili nx 5200, Virtex, and Spartan famili es [18]
of FPGAs), and with their ever-increasing logic capac-
ity, commercial FPGAs are being increasingly used to
implement large datapath-intensive applications.

For multi -bit FPGAs, it is essential to have a set of
automated design tools in order to make the effective
use of their multi -bit architectures. As a result, a set of
datapath-oriented CAD tools, including synthesis, pack-
ing, placement, and routing tools, have been developed
at the University of Toronto; and in this paper, we focus
on the particular problem of automated packing. Pack-
ing for multi -bit FPGAs is more diff icult than classical
packing [14] [15] [16], because, to effectively utili ze
configuration memory sharing, the packer has to pre-
serve the regularity of datapath circuits on top of the
conventional packing objectives of achieving the small -
est possible implementation area and the shortest possi-
ble criti cal path delay.

To investigate the area efficiency of the logic block
architecture, we experimentally determine the best
granularity values of and the best amount of configura-
tion memory sharing for the proposed logic blocks.
Extensive research [19] [20] [15] [21] has been con-
ducted in the past in order to determine the best sizes
and structures for conventional FPGA logic blocks.
These studies have shown the importance of logic block
architecture on the overall area-eff iciency of FPGAs.
None of the studies, however, considers the problem of
configuration memory sharing, which requires the pres-
ervation of datapath regularity (all these studies use
conventional synthesis and packing algorithms, which
destroy the regularity of datapath circuits and essen-
tially turn datapath into finite state machine-like netli sts
of “ randomly” connected logic gates). In this study, a
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datapath-oriented synthesis algorithm [22] is used,
which preserves a great amount of user-specified regu-
larity. The preserved regularity, in turn, is used by the
packing algorithm to investigate the area efficiency of
the proposed logic blocks.

The rest of this paper is organized as follows: Sec-
tion 2 presents the multi -bit logic block architecture;
Section 3 describes the packing algorithm; Section 4
presents the experimental results on the area efficiency
of the proposed logic blocks; and Section 5 gives con-
cluding remarks.

2. The Multi-Bit Logic Block Architecture

The basic building blocks of the multi -bit logic
blocks are logic clusters, which were first introduced in
[20] as a generalized form of the logic array blocks used
in the Altera FLEX8K and FLEX10K series of FPGAs.
As shown in Figure 1, each logic cluster is constructed
out of Basic Logic Elements (BLEs), which consist of a
4-input Look-Up Table (LUT), a register, and a multi -
plexer; and a total of 17 Static Random Access Memory
(SRAM) bits are required to control the configuration
of a single BLE.

 BLEs are grouped together to form a single
logic cluster; and each BLE input is connected to the 
cluster level inputs and the  BLE outputs through an

 to 1 multiplexer. Each multiplexer is, in turn, con-
trolled by  SRAM bits. Since there are a

total of  BLE inputs in a logic cluster,
 bits of SRAM are required to control all

the multiplexer configurations. Finally, assuming that
two SRAM cells are used to control the set/reset logic
of each logic cluster [23], the total number of SRAM
bits required to control a logic cluster is given by the
following equation:

(1)

Using the observation in [20] that  should be
equal to , Equation 1 becomes:

(2)

which is a monotonically increasing function of . The
SRAM count for various cluster sizes is summarized in
column 3 of Table 1.

As in previous studies [23], in this paper, the active
area (the area consumed by transistors), , is used to
estimate the overall resource consumption of various
logic cluster components. This area is measured as the
number of minimum width transistors using the follow-
ing formula:

(3)

Table 1 li sts the total active area consumed by logic
clusters of various sizes and the total area consumed by
the SRAM bits in column 4 and 5, respectively. The
SRAM area as a percentage of the total cluster area is
shown in column 6. As shown, unlike the SRAM count,
the total SRAM area as a percentage of the total cluster
area nearly monotonically decreases with increasing .
For small cluster sizes, the SRAM area consists of near
50% of the total cluster area; for extremely large cluster
sizes, on the other hand, the SRAM cells consume less
than 10% of the total cluster area. Most importantly,
however, for the cluster sizes of 4 to 10, which were
determined to be the most eff icient cluster sizes by pre-
vious studies [20], the SRAM cells consume a substan-
tial amount (between 48% to 39%) of the total cluster
area. (Note that for the active area calculations, all tran-
sistors in a logic cluster are properly sized using the
methodology outlined in [23].) 

The large amount of area consumed by the SRAM
cells motivates the multi -bit logic block design, which
shares the configuration memory across the logic clus-
ters. Figure 2 shows the structure of a multi -bit logic
block. Here, each logic block contains  logic clusters,
where  is called the granularity of the logic block.
Note that each cluster is designed to implement a single
bit-sli ce of a datapath circuit and the clusters from a sin-
gle logic block are used to implement the adjacent bit-
sli ces.

As shown in Figure 2, the configuration memory is
shared among  corresponding resources from distinct
logic clusters. It is assumed that when the configuration
memory of a BLE is shared, the configuration memory
of all of its input multiplexers must also be shared. It is
also assumed that not all BLEs in a logic cluster must
be controlled by shared configuration memory; and the
degree of configuration memory sharing, , is defined

to be the actual number of BLEs in each logic cluster
that are controlled by shared configuration.

Table 2 shows the average active area per logic
cluster for cluster size ( ) of 4 and cluster input ( ) of

10 over a wide range of values for  and . This clus-

ter area is compared against the area of a conventional
logic cluster to calculate the percentage of area reduc-
tion due to configuration memory sharing. As shown,
the sharing of SRAM cells can result in significant clus-
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ter area reduction. This is especially true for high values
of  and . For example, the maximum area reduc-

tion per logic cluster can be as much as 45% for
 and .

Although multi -bit logic blocks can consume much
less area per cluster due to configuration memory shar-
ing, they might also have lower rate of utili zation if they
are used to implement irregular circuits. The rest of this
paper proposes an automated packing algorithm that
preserves as much datapath regularity as possible; and
the algorithm is then used to investigate the appropriate
granularity values and degrees of configuration memory
sharing for multi -bit logic blocks.

3. Packing for Multi-Bit Logic Blocks

The overall flow of the packing algorithm consists
of two major steps. In step 1, initiali zation, the algo-
rithm adjusts the granularity of a graph that represents
the input datapath circuit and performs timing analysis.
In step two, packing, the algorithm groups nodes of the
graph into multi -bit logic blocks. The graph and the two
packing steps are described in turn.

3.1. Datapath Circuit Representation

Since the primary purpose of the packing algo-
rithm is to preserve datapath regularity, an appropriate
format for specifying datapath regularity must be
defined. The format used in this work consists of a
graph, , which is called the coarse-grain node

graph. The nodes, , of , represent the BLEs;

and the edges, , of  represent the two-terminal
connections that connect the BLEs together. Each node
of  can contain either one or several identical
BLEs; and the number of BLEs contained in the node is
called the granularity of the node. A node containing
one BLE is called a fine-grain node; and it represents a
BLE that does not belong to any datapath. A node con-
taining more than one BLE, on the other hand, is called
a coarse-grain node; and each BLE in the coarse-grain
node is from a unique bit-sli ce of a datapath circuit.

An example of the coarse-grain node graph is
shown in Figure 3, which represents the datapath circuit
shown in Figure 4. The graph consists of 11 intercon-
nected nodes representing the 25 BLEs in the circuit.
Nodes A through F are 3-bit wide coarse-grain nodes;
along with the 2-bit wide nodes E’ and F’ , they repre-
sent the eight bit-sli ces of the datapath. Nodes G, H, and
I, on the other hand, are fine-grain nodes, which repre-
sent BLEs with the corresponding labels in the irregular
logic part of the circuit. 

3.2. Step 1: Initialization

The initiali zation step consists of two sub-steps.
First, each coarse-grain node whose granularity value is

Table 1: SRAM Bits and Area Per Cluster

 

1 4 19 374 186 50%

2 6 60 730 360 49%

3 8 101 1205 606 50%

4 10 134 1681 804 48%

5 12 187 2324 1122 48%

6 14 224 2919 1344 46%

7 16 261 3563 1566 44%

8 18 298 4254 1788 42%

9 20 335 4994 2010 40%

10 22 372 5781 2232 39%

12 26 494 7788 2964 38%

14 30 576 9747 3456 35%
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% Reduction

2

1 1588 6%
2 1488 12%
3 1387 18%
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1 1538 8%
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greater than the granularity value of the target architec-
ture ( ) is transformed into a set of nodes. Each node
in the set has a granularity value that is smaller than or
equal to the granularity of the multi -bit logic blocks. In
particular, given a coarse-grain node that is more than

 bits wide, starting at the most significant bit of the
node, the packing algorithm continuously groups 
neighboring BLEs into new coarse-grain nodes. If there
are less than  BLEs remaining at the least significant
end, these remaining BLEs are grouped by themselves
into a node that is less than -bit wide. These newly
formed nodes are then used to substitute the original
node in the coarse-grain node graph.

Timing analysis is then performed on the input cir-
cuit. During timing analysis, the propagation delay and
the expected arrival time of each BLE input or output
pin is calculated. The slack of each net is then derived
from the delay and the expected arrival time. Finally,
the criti cality value [15] of each net is calculated using
the formula:

(4)

where  is the maximum slack of the input cir-
cuit.

3.3. Step 2: Packing

During step 2, new multi -bit logic blocks are cre-
ated one at a time and each logic block is fill ed with
nodes from the coarse-grain node graph. Nodes are
added to a logic block in a predetermined order. Assum-
ing that the ith BLE in the jth cluster is denoted by the

pair of integers , a node is added to position 
first. Then, as shown in Figure 5, nodes are sequentially
added to positions , , ..., , , ,
... , ..., , , ... , if these positions
are not already occupied by BLEs.

This order of adding nodes to the logic blocks
guarantees that if no BLEs have been added to position

, BLE positions , , ...,  will
also be unoccupied. To find the most suitable node for
BLE position , the packing algorithm first finds all
nodes whose granularity is less than . If  is

equal to , then the seed criti cality function is used
to select the most suitable node from this group of
nodes. Otherwise, the attraction criti cality function is
used. Once the most suitable node with a granularity
value of  is determined, the BLEs in this node are

added to consecutive BLE positions , , ...,
 with the least significant BLE added to

position  and the most significant BLE added to
position .

It is also assumed that each multi -bit logic block
contains a carry network as the one shown in Figure 6.
Because of the carry network, not all BLE positions in a
cluster are logically equivalent. This lack of equiva-
lency is the reason why the packing algorithm must
select nodes for each specific positions in a logic block.
An example is shown in Figure 6. Here there are three
BLEs, A, B, and C, in a logic block. These BLEs are
connected by a carry chain through the carry network.
In the figure, the BLE position  is equivalent to
the BLE position ; therefore, BLE A can be
moved to position  provided that BLEs B and C
are also moved to position  and  respectively.
However, BLE A cannot be moved to position  or

 since these two positions are not equivalent to

BLE position  due to the difference in their carry
connections.

The remainder of this section describes the two
criti cality functions, including the seed criti cality func-
tion and the attraction criti cality function, which are
used in the packing process.

3.4. Seed Criticality

The first node added to a logic block is called a
seed. It is selected using a metric called the seed criti -
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cality. Implementing a seed in a logic block by itself
does not necessarily improve the performance of a cir-
cuit; however, when a subsequent node, A, is added to
the same logic block, many two-terminal connections
that connect the seed node and node A can then be
implemented in the local routing networks or the carry
network of the logic block, which are inherently much
faster than global routing. Consequently, the perfor-
mance of the circuit is improved. The seed criti cality
measures the maximum possible performance improve-
ment; and each two-terminal connection that can be
implemented inside the logic block is called a potential
local connection.

Potential local connections can be identif ied using
a pattern matching process against one of the four
topologies shown in Figure 7. Here topology A and B
contain connections that can be implemented in the
carry network of the logic block; and topology C and D
contain connections that can be implemented in the
local routing networks of the logic clusters.

The formula for calculating seed criti cality is
shown in Equation . In the equation, the function

 returns the maximum value in a set, , of real
numbers. Function , returns the number of ele-
ments that are equal to  in the set .  is the
complete collection of all the net criti cality values from
all potential local connections of node .

(5)

The function, , corresponds to the maxi-
mum speed improvement achievable by implementing

 as a seed node.  is a tie breaker; and it
counts the number of potential local connections that
can achieve the maximum speed improvement. Note

that  and  are analogous to the base
seed criti cality and the number of path affected metrics
used in [15], respectively. These functions, however,
are more general in nature and are applicable to a wider
range of FPGA clustering architectures than the fully
connected topology assumed by [15].

The metric distance to source, , on the other
hand, is an unmodified version of the same metric
defined in [15]. Nodes with the same  values
usually are connected together by a single criti cal path.

 measures the order of these nodes along the criti -
cal path. Everything else being equal, the node that is
the furthest from the source of the criti cal path is given
the highest priority for implementation as a seed node.

3.5. Attraction Criticality

 Once a seed is added to a logic block, the logic
block is then fill ed based on the attraction criti cality
metric. Here, each node in the coarse-grain node graph
is assigned an attraction criti cality value according to
Equation 6. The metric consists of four parts: the base
seed criti cality, , accounts for the performance
improvement of implementing the node in the logic
block; shared I/O count, , accounts for the number
of additional cluster I/Os that is needed to implement
the node; and finally secondary attraction criti cality,

, and common I/O count, , account for the

closeness of the placement resulting from adding the
node to the logic block. These four parts are weighted
and summed into the attraction criti cality. Each part is
described in turn.

(6)

3.5.1. Base Seed Criticality As shown in Figure 8, for
logic blocks containing at least one node, the connec-
tions between the node and the logic block can be clas-
sified into two types. The first type consists of
connections that can be implemented in the local rout-
ing networks of the clusters or the carry network that
connects the clusters together. The second type consists
of connections that have to be routed through global
routing. The implementation of the first type of connec-
tions often results in increased performance; and this
increase is measured by the base attraction criti cality. It
is equal to the maximum criti cality among all type one
connections in addition to all the internal connections of
the node that can be implemented in the carry network.
3.5.2. Secondary Attraction Criticality Adding a
node to a logic block also makes all BLEs in the node
physically closer to the BLEs in the logic block. This
physical closeness potentially can improve the perfor-
mance of type two connections. The secondary attrac-
tion criti cality is used to measure this speed up. It is
equal to the maximum criti cality among all type two
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connections in addition to all i nternal connections of the
node that must be routed through the global routing net-
work.
3.5.3. Shared I/O Count Since cluster inputs are lim-
ited routing resources, it is important to minimize their
usage when adding nodes to logic blocks. As in [15], it
is preferable to choose BLEs with the following three
types of I/Os for a cluster:
1. a BLE input that is connected to the same net as one 

of the cluster inputs
2. a BLE input that is connected to one of the cluster 

outputs
3. a BLE output that is connected to a cluster input
The shared I/O count metric measures the I/O common-
aliti es between a node and a logic block. It is equal to
the total number of the three types of BLE I/Os in a
node when each BLE is matched with its corresponding
cluster. Note that, in Equation 6,  is defined to be

the maximum possible value of the shared I/O count
metric. It is used in the equation to normalize the shared
I/O count to a value that is between 0 and 1.
3.5.4. Common I/O Count Adding a node to a logic
block might increase the number of common I/O sig-
nals shared by various clusters in the logic block. Rout-
ing an input signal that is shared by the two clusters
usually requires fewer resources than routing two dis-
tinct inputs. Similarly, routing the output of one cluster
to another requires fewer routing resources if both clus-
ters are in the same logic block. The common I/O count
is used to account for this increase in routing efficiency.
It is analogous to the shared I/O count. However,
instead of measuring the number of I/O signals that are
in common between each BLE and its corresponding
cluster, the common I/O count is equal to the total num-
ber of BLE I/Os in a node that is in common with all the
I/Os of a logic block excluding the signals that have
already been counted by the shared I/O count.

Note that for all experiments performed in this the-
sis, , , and  are set to be 0.85, 0.75, and 0.75
respectively. These values are experimentally shown to
generate good packing results.

4. Experimental Results

The packing algorithm has been used to pack sev-
eral benchmark circuits into multi -bit logic blocks with
various granularity values and degrees of configuration
memory sharing. The packing results shown in this sec-
tion are based on the fifteen datapath circuits from the
Pico-Java Processor from Sun Microsystems [24]. Each
circuit is first synthesized into several granularity val-
ues using a datapath-oriented synthesis algorithm [22];

and Table 3 gives the name, size (number of BLEs) of
each circuit for a given synthesis granularity value (here
the synthesis granularity is defined as the maximum
datapath width that is preserved by the synthesis pro-
cess).

The synthesized circuits are then packed into a set
of multi -bit logic blocks containing a variable number,

, of clusters. Several values of  are investigated.
These values are the same as the ones shown in Table 3,
namely 1, 2, 4, 8, 12, and 16; and for each value of ,
the degree of configuration memory sharing, , is also

varied from 0 to 4. Note that each cluster is assumed to
contain 10 ( ) input pins and 4 ( ) BLEs. The experi-
mental results on regularity, cluster count, and area are
presented in turn.

4.1. Regularity Results

Two yardsticks are used to measure the amount of
regularity contained in the benchmark circuits based on
the concept of a datapath component. Here, a datapath
component is defined to be a group of identically con-
figured BLEs that is a part of a datapath circuit. The
number of BLEs in a datapath component is called the
width of the component.

The first yardstick measures the percentage of
BLEs in all datapath components of width  after
packing. The second yardstick measures the percentage
of BLEs in all datapath components, which are at least
2-bit wide. Note that for both regularity measurements,

 is assumed to be zero.

Figure 9 plots these two metrics against the logic
block granularity. As shown, over 85% of BLEs are in
at least 2-bit wide datapath components regardless of
the granularity values. The percentage of BLEs in -
bit wide datapath components drops from over 90%
when  is equal to 2 to slightly over 50% when  is
equal to 12. The high percentage of BLEs contained in

-bit wide datapath components for the granularity
value of 2 and 4 suggest that at these granularity values,
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Table 3: Experimental Circuits

Circuits
#BLEs Obtained at Each Synthesis Granularity

1 2 4 8 12 16

code_seq_dp 362 364 364 364 364 364

dcu_dpath 958 962 966 974 982 974

ex_dpath 2823 2747 2649 2719 2947 2955

exponent 467 517 517 539 567 565

icu_dpath 3254 3237 3245 3245 3273 3277

imdr_dpath 1286 1268 1255 1286 1288 1283

incmod 870 862 867 940 948 1005

mantissa_dp 912 919 942 966 971 982

multmod_dp 1602 1636 1634 1636 1636 1636

pipe_dpath 452 499 452 503 503 501

prils_dp 363 396 393 385 385 393

rsadd_dp 350 314 313 305 305 305

smu_dpath 561 557 557 560 563 561

ucode_dat 1264 1273 1304 1278 1282 1286

ucode_reg 78 80 82 86 86 94

M M
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the multi -bit logic block architecture can benefit sub-
stantially from a high degree of configuration memory
sharing.

4.2. Logic Cluster Count

As discussed in Section 2, the area savings of con-
figuration memory sharing depends on two parameters
— the cluster size and the cluster utili zation. The cluster
utili zation can be easily measured by counting the total
number of clusters required to implement the fifteen
benchmark circuits; and this cluster count is shown in
Figure 10. In the figure, the granularity value is shown
on the x-axis and the total number of clusters required
to implement the fifteen benchmark circuits is shown
on the y-axis. There are five lines in the figure, each
representing one of the five possible degrees of configu-
ration memory sharing (0, 1, 2, 3, and 4). As expected,
when there is no configuration memory sharing, the
cluster count is the lowest for a given granularity value;
and as the degree of configuration memory sharing
increases, so does the cluster count. More interestingly,
concurring with the regularity results, for the granular-
ity values of 2 and 4, the increase in the degree of con-
figuration memory sharing from 0 to 3, only results in
small i ncreases in cluster count (less than 5% for 
and 11% for ); and for the granularity value of 2,
when  is increased from 0 to 4, the cluster count is

increased by only 8%. For all other granularity values
substantial increases in cluster count is observed.

4.3. Area Results

The area consumed by the multi -bit logic blocks is
plotted in Figure 11. In the figure the x-axis represents
the granularity of the architecture, the y-axis represents
the total logic block area required to implement the fif-
teen benchmark circuits. There are six lines in the figure
representing the packing area for a conventional FPGA
whose clusters contain 4 BLEs and 10 inputs and
FPGAs containing multi -bit logic blocks with the
degree of configuration memory sharing of 0, 1, 2, 3,
and 4 respectively. As shown, for , all multi -bit

logic block architectures perform slightly worse than
the conventional FPGA mainly due to their extra carry
logic. For the granularity value of 2, 4, and 8 several
configuration memory sharing configurations perform
better than the conventional FPGA. In particular, for

, logic blocks with  perform the best; and

this configuration is 16% smaller than the conventional
FPGA. For  and , logic blocks with

 perform the best. Overall , logic blocks with a

granularity value of 4 and a degree of configuration
memory sharing of 3 give the best area, which is 18%
smaller than the conventional FPGA logic blocks.
Assuming that the total logic block area consists of 30%
to 50% of the total FPGA area, this logic block area
saving represents an overall area saving of 5% to 9%.

Finally, Figure 12 shows that the area savings also
depends on the size of the SRAM cells. In the figure, it
is assumes that each SRAM cell i s 1.5 times of the stan-
dard size (Larger SRAM cell sizes can be used to
improve fault tolerance). This increase in SRAM size
results in larger area savings. The best area is achieved
when  and ; and the area saving is 26%,

which represents a total FPGA area savings of 8%
(assuming 30% of FPGA area is logic block area) to
13% (assuming 50% of FPGA area is logic block area).

5. Conclusions

This paper has described a new multi -bit logic
block architecture for FPGAs and its associated packing
algorithm. Using the packing algorithm, it is empiri-
cally shown that, for logic clusters containing 4 BLEs
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and 10 cluster inputs, the most area efficient variant of
the multi -bit logic block architecture contains four clus-
ters per logic block and has three BLEs per logic cluster
that are controlled by shared configuration memory. In
this configuration, the multi -bit logic block area is 18%
smaller than the conventional FPGA logic block area.
This represents a 5% to 9% reduction in the total FPGA
area.
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Figure 12: Area vs. Granularity (Large SRAM)
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