
ABSTRACT

As the logic capacity of FPGA increases, there has been a cor-
responding increase in the variety of FPGA building blocks.
From a mere collection of the conventional logic blocks,
FPGAs now can include digital signal processors, multipliers,
multi-bit addressable memory cells, and even processor cores;
and one of the common characteristics of these new building
blocks is their multi-bit design, where each block is designed
specifically to process several bits of data at a time. This multi-
bit processing paradigm is significantly different from the sin-
gle-bit processing design of the conventional FPGA logic
blocks; and it creates differentiation in signals through its
bussed structures. Consequently, this paper examines the cor-
relation between the positions of the signals in buses and the
connectivity of these signals. Based on the correlation mea-
surements, a multi-bit routing architecture is then proposed
along with its routing tool. It is experimentally shown that,
comparing to the conventional routing architectures, the multi-
bit architecture requires 12% less area to implement; and in
particular, it needs 27% less routing switches to connect its
multi-bit blocks to their routing tracks, and 18% less configu-
ration memory to store the configuration information.

1. INTRODUCTION

Over the years, there has been a dramatic increase in the vari-
ety of Field-Programmable Gate Array (FPGA) building
blocks. Evolving from a mere combination of simple logic
blocks and bit-addressable memory cells, FPGAs now can
include digital signal processing blocks, multipliers, multi-bit
addressable memory, and even processor cores; and one signif-
icant difference between these new building blocks and the
classical logic block design is in the way that they process
data. On one hand, the classical logic blocks are designed to
process one bit of data at a time; on the other, the new building
blocks are designed to process multiple bits of data simulta-
neously; and the use of these multi-bit processing elements
presents new opportunities for exploiting datapath regularity.

In particular, while the conventional FPGA logic blocks
are connected to FPGA routing through individual input and

output signals, the inputs and outputs of the multi-bit building
blocks can be grouped into buses; and the positions of signals
in these buses often strongly correlate to the way that they con-
nect. This strong correlation between the connectivity and the
physical positioning of signals can create opportunities for
FPGA architects to selectively remove routing switches from
the routing fabric of an FPGA and to share configuration mem-
ory — all, at the same time, maintaining the original routabil-
ity of the architecture. Since routing switches often consume a
significant amount of FPGA area, reducing the total number of
routing switches and their configuration memory in an FPGA
can significantly increase its area efficiency, especially for
implementing large arithmetic-intensive datapath circuits,
including computer graphics, multimedia, digital signal pro-
cessing, and Internet routing applications.

Several FPGAs containing only multi-bit building blocks
have been proposed over the years [1]–[12]. While they come
in a wide variety of routing architectures, in this work, we
focus on the study of FPGAs containing segmented-style rout-
ing resources [13]. In particular, we empirically measure the
correlation between signal connectivity and the position of
these signals in buses for several datapath circuits. The corre-
lation is then used to remove routing switches and to share
configuration memory in order to increase the overall area effi-
ciency of the routing fabric. Note that the primary reason for
the choice of segmented-style routing resources is due to the
fact that these are the building blocks of many state-of-the-art
commercial FPGAs (including the Altera Flex, Stratix, and
Cyclone series [14] and Xilinx 5200, Virtex, and Spartan fami-
lies [15] of FPGAs); and with their ever-increasing logic
capacity, commercial FPGAs are being increasingly used to
implement large datapath-intensive applications.

For any new FPGA architecture, it is essential to have a set
of automated design tools that can make the effective use of its
new architectural features. In particular, the sharing of config-
uration memory place new demand on Computer Aided
Design (CAD) tools. As a result, a set of datapath-oriented
CAD tools, including synthesis [16], packing [17], placement
[18], and routing tools, have been developed at the University
of Toronto; and in this paper, we focus on the particular prob-
lem of automated routing. Routing for architectures containing
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configuration-memory sharing switches is more difficult than
classical routing [13] [19] [20] [21] [22], since the router has
to properly model the new architectural features; and, addi-
tionally, in order to effectively utilize these added features, the
router has to preserve the regularity of datapath circuits
throughout the routing process, while, at the same time,
attempting to achieve the conventional routing objectives of
minimizing congestion and critical path delay. As a result, this
paper presents a new routing algorithm that is an evolution of
the classical Negotiated-Congestion (NC) routing algorithm
[20]. The algorithm leverages many existing features of the
classical router while incorporating several new metrics,
which are designed to measure the regularity of datapath cir-
cuits, into the traditional cost functions of congestion and criti-
cal path delay.

While two previous papers [23] [24] have examined the
area efficiency of datapath-oriented FPGAs, this work
advances the research in two fundamental ways. First, it is the
first to statistically quantify the routing demand of datapath
circuits; and these statistics are valuable for both designing
specialized datapath-oriented FPGAs and for improving the
connectivity of multi-bit building blocks in conventional
FPGAs. Secondly, this paper proposes a new routing algorithm
for configuration memory sharing resources (which can be use
to take advantage of the statistics in order to improve area effi-
ciency).

The rest of this paper is organized as follows: Section 2
presents the correlation measurements; Section 3 and Section 4
describe the routing architecture and its corresponding routing
algorithm, respectively; Section 5 presents the experimental
results on the area efficiency of the proposed architecture; and
concluding remarks are presented in Section 6.  

2. SIGNAL CONNECTIVITY VS. 
SIGNAL POSITIONING

As shown in Figure 1, the input and output signals of a multi-
bit block can be grouped into buses; and each signal in a bus

can be associated with an unique integer number indicating the
bit position of the signal in the bus. Note that this bussed struc-
ture arises from the regularity of datapath circuits, where a
datapath is created by duplicating a single sub-design, called a
bit-slice, multiple times. For circuits implemented using con-
ventional logic blocks, a majority of this regularity is often
destroyed by the CAD tools during the optimization process;
for circuits implemented using the multi-bit blocks, on the
other hand, these bit-slices are routinely preserved for the pur-
pose of multi-bit processing; and since the primary purpose of
FPGA routing is to provide connectivity between the input and
output signals of various FPGA building blocks, it is important
to examine the relationship between the connectivity and the
bit positions of these signals.

Since multi-bit blocks do come in many different physical

forms, this work uses a model containing  logic clusters
[13] to capture their common characteristics of bussed inter-
face. It is assumed that each logic cluster consists of a group of
four tightly connected Look-Up Tables (LUTs) and four flip-

flops, and all buses in a block is of width , where  is
called the granularity of the block. As shown in Figure 2, the
model assumes that each cluster is responsible for generating
one bit in each bus — formed by either a group of multi-bit
block input signals or a group of multi-bit block output signals.
To map a datapath circuit onto the multi-bit blocks, logic in
each bit-slice is f irst grouped into a series of logic clusters
using the datapath-oriented packing algorithm as described in

[17]. The same algorithm is then used to group  identical
logic clusters from the neighboring bit-slices into a multi-bit
block.

Once a circuit is mapped into multi-bit blocks, the connec-
tivity between the multi-bit block input and output signals can
be measured using two-terminal connections, where each con-
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Table 1. Two-Terminal Connections for 

Circuit 
Name

Two-Terminal Connections

Src. = 1, 
Sink = 1

Src. = 1, 
Sink = 2

Src. = 2, 
Sink = 1

Src. = 2, 
Sink = 2

Per Cir. 
Total

code_seq_dp 40% 22% 12% 26% 873

dcu_dpath 39% 11% 11% 39% 2247

ex_dpath 38% 13% 12% 37% 7127

exponent_dp 30% 19% 20% 30% 1399

icu_dpath 39% 15% 11% 35% 8160

imdr_dpath 34% 14% 16% 36% 3030

incmod 31% 25% 19% 26% 2248

mantissa_dp 36% 17% 15% 33% 2554

multmod_dp 26% 25% 24% 25% 3645

pipe_dpath 40% 16% 10% 34% 1134

prils_dp 31% 23% 20% 27% 983

rsadd_dp 38% 16% 13% 34% 740

smu_dpath 35% 17% 16% 33% 1211

ucode_dat 39% 12% 11% 38% 3304

ucode_reg 47% 14% 4% 36% 191

Total 36% 16% 14% 34% 38846
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nection consists of a connected pair of a multi-bit block input
(called the sink of the connection) and a multi-bit block output
signal (called the source of the connection). We then classify
these two-terminal connections based on the bit positions of
their sources and sinks.

In particular, for the granularity value of two, all connec-
tions can be classified into four types as shown in Table 1 —
namely connections with both sources and sinks from bit posi-
tion 1, connections with both sources and sinks from bit posi-
tion 2, connections with sources from bit position 1 and sinks
from bit position 2, and connections with sources from bit
position 2 and sinks from bit position 1. The table then shows
the number of connections in each type as a percentage of the
total number of two-terminal connections for fifteen bench-
mark circuits from the Pico-Java processor [25] in column 2, 3,
4, and 5, respectively; and column 6 shows the total number of
two-terminal connections in each circuit. As shown, a majority
(70%) of the connections in these benchmark circuits have the
same source and sink bit positions. Connections with different
source and sink bit positions, on the other hand, consist of only
30% of the total number of two-terminal connections.

This strong correlation between the bit position difference
and the signal connectivity is observed across all granularity
values; and Figure 3 plots the difference against the number of
two-terminal connections (as a percentage of the total number
of two-terminal connections) for the granularity of 4, 8, 12,
and 16. As shown, connections with the same source and sink
bit positions (where the difference value is 0) consist of from

over 30% (for  and ) to over 70% (for

) of the total number of two-terminal connections; and
these percentage values are significantly greater than all other
percentage values.

The correlation exists still at the level of individual bit
positions. In particular, Figure 4 shows the connectivity of
multi-bit block output signals at bit position 1 in terms of the
number of input signals that the outputs are connected to. As

shown, for all granularity values, the output signals are con-
nected to a significantly higher amount of input signals that are
also from bit position 1 than inputs from any other bit posi-
tions; and the same trend is observed for outputs from other bit
positions (figures not shown due to space limitations).

The major architectural conclusion that can be drawn from
these observations is that, for multi-bit blocks, a significant
amount of connectivity should exist between the inputs and
outputs that are from the same bit positions, and input and out-
put signals from distinct bit positions, on the other hand, would
require much less connectivity. Note that this observation is
contrary to the connectivity requirements of the conventional
FPGA logic blocks, where architects strive to uniformly dis-
tribute the connections of each logic block output signal to all
available logic block input signals [13].

For two-terminal connections that have the same source
and sink bit positions, we can further group some of these sig-

nals into -bit wide buses where each signal in a bus has a
distinct source/sink bit position, and all the signals in the bus
originate from a common multi-bit block and terminate at
another. The number of signals that exist in these buses is
shown in Figure 5 for the benchmark circuits over a range of

granularity values ( ). Here, there are two lines in the figure,
where the top line indicates the percentage of two-terminal
connections that have the same source and sink bit positions,
and the bottom line shows the percentage of two-terminal con-

nections that can be grouped into -bit wide buses. As

shown, the number of signals that can be grouped into -bit
wide buses consists of a significant proportion (from 25% to
60%) of the total number of connections; and since all signals
in each bus share a single source and a single sink block, these
signals can be a potential source of redundant information in
FPGA routing configuration. This redundancy, in turn, can be
exploited by FPGA architects to improve the area efficiency of
FPGAs — where a single configuration memory bit can be
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used in place of multiple bits of memory to store the identical
configurations.

Having observed the correlation, one question that natu-
rally arises is how exactly this correlation can be turned into
area savings; and one of the best ways to address the question
is through a set of empirical studies, where an FPGA architec-
ture with varying switch patterns is first defined and then used
to implement a set of benchmark circuits. Such an approach is
used in this study; and the architecture used in the study is dis-
cussed next.

3. THE MULTI-BIT ROUTING ARCHITECTURE

Turning the observations above in signal connectivity into
actual area savings would require the design of a concrete rout-
ing architecture; and such an architecture (called the multi-bit
routing architecture) is used in this work. As shown in Figure
6, the architecture contains two types of routing tracks — the
single-bit tracks and the multi-bit tracks; and each track is con-
nected to several multi-bit block input and output signals
through a set of routing switches (denoted by an X in the fig-
ure).

The single-bit tracks are similar, in structure, to the con-
ventional FPGA routing tracks; and their switch patterns are
designed to uniformly distribute multi-bit block output con-
nections to all available multi-bit block inputs [13]. The multi-

bit tracks, on the other hand, are organized into -bit wide
buses; and, in a bus, each track is assigned a unique bit posi-

tion number, ranging from 1 to . These numbers are then
used to match the bit positions of the signals that the tracks are
connected to. For example, a track at bit position 1 can only be
connected to multi-bit block input and output signals that are
also from bit position 1; and in general, a track at bit position

 can only be connected to input and output signals also from

bit position . Consequently, increasing the number of multi-
bit tracks in the architecture only increases the availability of
one type of two-terminal connections, namely two-terminal
connections with the same source and sink bit positions.

Increasing the number of single-bit tracks, on the other hand,
uniformly increases the availability of all types of two-termi-
nal connections.

Furthermore, the routing switches in each routing bus

(which consists of a group of  multi-bit routing tracks) are

further grouped into -bit wide groups in order to exploit the
observed redundant configuration information; and each
group, as shown in Figure 6, shares a single set of configura-
tion memory. The sharing of configuration memory, however,
complicates the design of the routing tools; and in the next sec-
tion, a new NC-based routing algorithm is introduced. The
algorithm accommodates configuration memory sharing; and
both the architecture and the algorithm are then used to empir-
ically measure the overall effect of this correlation between
signal connectivity and signal positioning on the area effi-
ciency of FPGAs.

4. ROUTING ON THE CONFIGURATION-MEMORY 
SHARING ROUTING RESOURCES

As an NC-based routing algorithm, routing is performed in
multiple routing iterations; and each iteration is controlled by a
set of cost functions, which measure the delay and the conges-
tion of each route. These cost functions consist of a collection
of cost metrics; and each metric is updated at the end of each
routing iteration based on the current and the historical routing
results.

During a routing iteration, two-terminal connections that

can be grouped into -bit wide buses (as defined in Section
2) are first routed. In particular, all signals in the bus are routed
through the multi-bit routing tracks (which are connected by
the configuration-memory sharing switches) as a single group.
Then a bit chosen at random from the bus is routed through the
single-bit tracks as an individual signal. These two routing
solutions — one consists of a series of multi-bit routing tracks
and the other consists of a series of single-bit routing tracks —
are then compared based on their congestion and delay met-
rics. If the single-bit tracks provide a better solution (because
of much lower delay or congestion), the multi-bit track solu-
tion is abandoned in favour of routing all the signals in the bus

Fig. 5. Two-Terminal Connections in -Bit Wide 
Buses
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through the single-bit tracks. Otherwise the multi-bit track
solution is used to route the bus.

For two-terminal connections that cannot be grouped into
buses, on the other hand, they are routed as individual signals.
Here each signal is routed through both the single-bit and the
multi-bit tracks in order to obtain the best routing solutions
(which means routing solutions with the best possible combi-
nation of delay and congestion).

4.1. Expansion Topologies

In conventional FPGAs, each architecture can be represented
by a graph called the routing resource graph, where nodes rep-
resent the routing resources, and the edges represent the rout-
ing switches. To route a signal in this graph, one uses a series
of wave-front expansions, where the initial wave front consists
of only the source node of the signal; and at each stage of the
expansion, the node with the lowest possible cost is selected
from the front. The selected node is then substituted by its
neighbouring nodes to expand the current front; and the expan-
sion continues until all sinks of the signal are reached.

The multi-bit routing architecture, on the other hand, can
also be represented by a routing resource graph. Here each
node in the graph represents either a multi-bit block input pin,
a multi-bit block output pin, a continuous wire segment
between two routing switches on a single-bit routing track, or a
similar wire segment on a multi-bit routing track. Each edge of
the graph represents a routing switch that connects these nodes
together. Similarly signals can also be routed through the
graph using the technique of wave-front expansion. In particu-
lar, when routing an individual signal through the single-bit
routing tracks, the expansion appears exactly the same as the
topology of the conventional wave-front expansions; and an
example of such an expansion is shown in Figure 7(a), where

the wave front is expanded from a single node denoted by ,

to five neighbouring nodes (one of which is denoted by  in
the figure).

Routing either a bus or an individual signal through a rout-

ing bus (which consists of  multi-bit routing tracks), how-

ever, would require the simultaneous expansion of  wave
fronts, where one wave front is used to keep track of a bit in
the bus. The multiple fronts are needed in order to fully

account for the expansion costs since groups of  switches in
each routing bus are collectively controlled by a single set of
configuration memory. Consequently, no individual connec-
tions can be made in isolation. Instead, wire segments must be

connected together in -bit wide groups.

An example of such an expansion topology is shown in
Figure 7(b), where a set of wave fronts, each containing one

node, denoted by  through  in the figure, is expanded

into two sets of nodes, where one of the sets is denoted by 

through . This added expansion topology requires the

design of a set of expansion cost functions so the single-bit
expansions (such as the one shown in Figure 7(a)) can be fairly
compared to the multi-bit expansions (such as the one shown
in Figure 7(b)).

4.2. Expansion Costs

Since the single-bit expansion topology is identical to the con-
ventional expansion topology, the conventional cost function
as defined [13] is used in this study for these expansions. In
particular, the following equation is used:

. (1)

Here,  is defined to be the accumulated congestion cost
of all nodes in an expansion path that connects the source of

the signal all the way to node ; and it is calculated based on
the following formula:

, (2)

which states that the accumulated congestion cost of any node,

, is equal to the sum of the accumulated congestion cost of

 — the node immediate proceeds  on the expansion path

— and the congestion cost of . This congestion cost is a
function of the capacity (which is equal to the maximum num-

ber of times that a node can be legally used) of node  and the

number of times that  is actually being used [13].

Also in Equation 1,  is defined to be the delay cost of
the expansion path that connects the source of the signal to

node . Both  and  are scaled by the criticality of
the signal (which is a fraction between 0 and 1). A high criti-
cality value means that as compared to other signals, the signal
that is being routed has a higher delay value; therefore, a larger
proportion of the expansion cost should be equal to the delay
cost. Otherwise, the signal has a lower delay value; and accu-
mulated congestion cost should be the larger proportion of the
expansion cost. Finally, the final term in the equation repre-
sents the future expansion cost, which is an estimation on the
additional delay and accumulated congestion cost that can

incur in the path that connects node  to the sink of the signal.
When routing a bus of two-terminal connections through

the multi-bit expansion topology, on the other hand, one have

to deal with the delay and accumulated congestion of  sig-

nals and  nodes instead of one. In this case, the Equation 1 is
used to calculate the expansion cost for each signal and its cor-
responding node; and the maximum of these costs is then used

n′
n
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as the overall cost of the expansion, or more formally, the
expansion cost in this case is defined to be:

. (3)

When routing a single bit of a signal through the same
expansion topology, however, there will be only one delay
cost; and this cost reflects the delay of the signal that is being

routed. There are, however,  different accumulated conges-
tion costs — one for each node of the expansion. As a result,
Equation 3 no longer applies; and to accommodate, the accu-
mulated congestion cost is redefined to be the maximum of all
accumulated congestion costs, as follows:

. (4)

This accumulated congestion cost is then used in place of

 in Equation 1 to calculate the overall expansion cost of
the topology.

5. RESULTS

The router is then used with a set of datapath-oriented CAD
tools to map the fifteen benchmark circuits (presented in Sec-
tion 2) onto several variants of the multi-bit routing architec-
ture presented in Section 3; and these variants primarily differ
in the composition of their routing tracks where each architec-
ture contains a different amount of single-bit and multi-bit
tracks. From these architectures, the architecture with the best
area is identified for each circuit; and it is then compared with
a base architecture that contains only single-bit routing tracks
(tracks that strictly distribute the connections of each multi-bit
block output uniformly across all available multi-bit block
inputs) for the number of routing switches, the amount of con-
figuration memory (SRAM), and the area usage of routing
resources.

For the study, it is assumed that each circuit is placed onto
a square FPGA that contains just enough multi-bit building
blocks to accommodate the given circuit. It is also assumed
that each block contains just four clusters, and each cluster
contains four four-input LUTs and four DFFs. The number of
input signals per multi-bit block is assumed to be 40; and the
number of output signals per multi-bit block is assumed to be
16. These signals are then grouped into ten 4-bit wide input
buses and four 4-bit wide output buses, respectively. The rout-
ing switches that connect the wire segments together are
assumed to have a disjoint switch block topology [26] (for
both the single-bit and the multi-bit tracks). It is also assumed
that each multi-bit block input/output pin is connected to 40%/
25% of the single-bit tracks in a routing channel, and each
input bus/output bus is connected to 40%/25% of the 4-bit

wide routing buses. Finally each wire segment is assumed to
continuously expand two multi-bit building blocks for either
the single-bit or the multi-bit tracks; and all transistors are
properly sized in each architecture to ensure good performance
and efficient area usage.

Table 2 shows the number of single-bit tracks and the num-
ber of multi-bit tracks per channel that are required to imple-
ment each benchmark circuit in column 2 and column 3,
respectively. It also shows the number of tracks that is needed
to implement the same circuit using purely single-bit tracks in
column 4. (Shown in parentheses in column 2 is the value of
column 2 as a percentage of the value presented in column 4.)
As shown, the multi-bit tracks can be used to significantly
reduce the number of single-bit tracks in an architecture; and
for a vast majority (ten) of the circuits shown in Table 2, the
total number of single-bit tracks in each is reduced by over
30% when compared to the full single-bit track implementa-
tions; and the average number of single-bit tracks per channel
is reduced by over 37%.

The direct benefit of reduction in single-bit tracks is in the
reduction of routing switches that connect the multi-bit blocks
to their routing tracks; and Table 3 shows the reduction in col-
umn 2, 3, and 4. Here column 2 lists the total number of
switches (both for connecting the multi-block input and output
signals) required for architectures containing both the single-
bit and the multi-bit tracks; and column 3 lists the same num-
ber for architectures containing only single-bit tracks. The per-
centage reduction is then listed in column 4; and as shown, one
can achieve an overall routing switch reduction of over 27%
through the use of multi-bit routing tracks.

Reducing the number of single-bit tracks also reduces the
number of SRAM bits required to configure the routing
resources because of configuration memory sharing; and col-
umn 5, 6, and 7 of Table 3 show the SRAM reduction figures.
As shown, architectures containing both the single-bit and the

expansion_cost′ n1 n2 …nM, ,( )=

max expansion_cost n1( ) expansion_cost n2( ) …, ,,(

expansion_cost nM( ) )

M

C ′ n1 n2 …nM, ,( )=

max congestion_cost n1( ) congestion_cost n2( ) …, ,,(

congestion_cost nM( ) ) C ′ n′1 n′2 …n′M, ,( )+

C n( )

Table 2. Track Count Per Channel

Circuit
Single-Bit + Multi-Bit Single-Bit

Only#S.B. Tracks #M.B. Tracks

code_seq_dp 37 (90%) 8 41

dcu_dpath 27 (48%) 36 56

ex_dpath 39 (45%) 52 86

exponent_dp 41 (63%) 36 65

icu_dpath 39 (45%) 60 86

imdr_dpath 47 (66%) 32 71

incmod 37 (69%) 32 54

mantissa_dp 42 (55%) 52 77

multmod_dp 57 (92%) 8 62

pipe_dpath 32 (94%) 8 34

prils_dp 33 (85%) 20 39

rsadd_dp 22 (59%) 32 37

smu_dpath 34 (79%) 16 43

ucode_dat 29 (49%) 44 59

ucode_reg 13 (46%) 36 28

Average 35 (63%) 31 56



multi-bit tracks consume about 18% less SRAM bits than
architectures containing only single-bit routing tracks.

The area savings that can be achieved through the reduc-
tion of routing switches and SRAM bits, however, are offset by
the larger switch block size in architectures that use multi-bit
routing tracks; and this increase in switch block size is prima-
rily due to the increase in the total number of routing tracks.
As shown in Table 2, the average track count per channel,
including both the single-bit tracks and the multi-bit tracks,
actually increases from the 56 tracks of the full single-bit track
implementations to the 66 tracks of the combined single-bit
and multi-bit implementations. This increase in track count
also increases the number of routing switches required in each
switch block (which should be differentiated from the routing
switches that connect multi-bit blocks to the routing tracks),
and consequently reduces the overall area savings. 

Taking into consideration the increase in switch block size,
Table 4 summarizes the actual area savings/increases for each
benchmark circuit. Here the area is measured using the equiva-
lent minimum-width transistor area as described in [13], where
the total area required to implement an FPGA is normalized
against the area that is required to implement a minimum-
width transistor. As shown, ten of the fifteen circuits require
less area to implement when using multi-bit routing tracks; and
these circuits consist of 82% of the total area of all benchmark
circuits. Finally the overall area reduction for these benchmark
circuits is over 12%; and in particular, the two largest circuits
(ex_dpath and icu_dpath) did particularly well, and achieve an
area reduction of 22% and 18% each.

Table 5 shows that the use of multi-bit routing tracks has
little impact on the overall delay of a circuit. In particular, col-
umn 2 of the table shows the critical path delay for architec-
tures containing both single-bit and multi-bit routing tracks;
and column 3 shows the delay for architectures containing

only single-bit routing tracks. Finally, the change in critical
path delay is listed in column 4. Overall there is a slight reduc-
tion of 0.8% in critical path delay for all benchmark circuits. In
the worst case, one circuit (multmod_dp) has a 32% increase
in critical path delay; but another circuit (dcu_dpath), however,
has a 32% reduction in critical path delay.

6. CONCLUSIONS

This paper examines the correlation between signal connectiv-
ity and signal positioning for multi-bit building blocks in
FPGAs. It is shown that, for their bussed structures, multi-bit

Table 3. Switch Count and SRAM Bit Count

Circuit
Switches in Routing SRAM Bits in Routing

S.B. + 
M.B.

S.B. 
Only

% 
Red.

S.B. + 
M.B.

S.B. 
Only

% 
Red.

code_seq_dp 18768 19688 4.7% 20700 21206 2.4%

dcu_dpath 47880 72072 34% 53739 68922 22%

ex_dpath 194304 308352 37% 178464 245872 27%

exponent_dp 34048 41984 19% 32128 37312 14%

icu_dpath 239568 380184 37% 222425 303147 27%

imdr_dpath 92664 117288 21% 95013 99225 4.2%

incmod 54264 62928 14% 55062 61845 11%

mantissa_dp 74240 99840 26% 66752 81152 18%

multmod_dp 127680 131880 3.2% 116550 121065 3.7%

pipe-dpath 20416 20416 0.0% 24969 25375 1.6%

prils_dp 21216 20800 -2.0% 22802 23738 3.9%

rsadd_dp 13608 15960 15% 17031 18648 8.7%

smu_dpath 28800 32256 11% 32184 35532 9.4%

ucode_dat 71048 99600 29% 72459 93209 22%

ucode_reg 3072 3552 14% 4356 4896 11%

Total 1041576 1426800 27% 1014634 1241144 18%

Table 4. Routing Area

Circuit
Routing Area (10e5)

Single-Bit + 
Multi-Bit

Single-Bit 
Only

% Reduction

code_seq_dp 2.69 2.66 -1.1%

dcu_dpath 7.24 8.81 18%

ex_dpath 26.9 34.6 22%

exponent_dp 5.04 5.40 6.7%

icu_dpath 33.5 40.7 18%

imdr_dpath 11.7 12.9 9.3%

incmod 7.23 7.27 0.55%

mantissa_dp 10.5 11.6 9.5%

multmod_dp 14.8 14.7 -0.68%

pipe_dpath 2.82 2.71 -4.1%

prils_dp 2.80 2.54 -10%

rsadd_dp 2.14 2.09 -2.4%

smu_dpath 4.02 4.16 3.4%

ucode_dat 10.2 11.6 12%

ucode_reg 0.536 0.565 5.1%

Total 142 162 12%

Table 5. Routing Delay

Circuit
Routing Delay (ns)

Single-Bit + 
Multi-Bit

Single-Bit 
Only

Change

code_seq_dp 6.47 6.51 -0.61%

dcu_dpath 6.67 9.83 -32%

ex_dpath 20.1 20.1 0.0%

exponent_dp 8.96 9.15 -2.1%

icu_dpath 12.0 11.6 +3.5%

imdr_dpath 19.1 18.2 +4.9%

incmod 19.1 19.6 -2.6%

mantissa_dp 8.14 7.86 +3.6%

multmod_dp 15.6 11.8 +32%

pipe_dpath 6.65 7.01 -5.1%

prils_dp 15.1 13.9 +8.6%

rsadd_dp 13.3 12.8 +3.9%

smu_dpath 9.92 10.5 -5.5%

ucode_dat 7.80 8.86 -12%

ucode_reg 1.99 1.96 +1.5%

Geo. Avg. 9.92 10.0 -0.8%



block input and output signals with the same bit positions are
much more likely to connect together; and based on the obser-
vation, a routing architecture is designed to use dedicated rout-
ing tracks to enrich the connectivity between these identical bit
positions. Configuration-memory sharing is then used to
reduce the amount of memory required to configure these
tracks. 

Using the proposed architecture and a specialized routing
algorithm, it is empirically shown that the correlation can be
directly translated into a 27% reduction in the number of rout-
ing switches, which connect the multi-bit blocks to their
tracks. Furthermore, 18% less configuration memory bits are
needed to control the routing resources; and one can achieve
an overall area saving of 12%.
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