
Introduction

1

1 Introduction

This manual provides tutorials, experiments and documentation for the University of Toronto
Ultragizmo board and its associated hardware. This chapter gives an overall description of the
board.

The Ultragizmo board, shown in Figure 1, contains a Motorola 68306 integrated microproces-
sor containing a M68000 processor core, an Altera 10K70 field programmable gate array (FPGA)
chip and supporting hardware. Figure 2 gives a block diagram of the board, showing the set of
chips and their functions. The microprocessor and its digital memory functions as a stand-alone
microcomputer. The FPGA provides a convenient hardware platform for quick implementation of
peripheral digital circuits.

The CPU of the board is the MC68306 integrated microprocessor. It has a clock frequency of
16.67 MHz. The processor contains an M68000 processor core, which is fully functionally com-
patible with the original M68000 microprocessor. Beside the processor core, each MC68306 chip
also contains various peripherals, including an interrupt controller, and a 2-channel serial I/O sys-
tem (DUART). In addition, the board contains 10 MBytes of TMS417400 Dynamic Random
Access Memory (DRAM) for main memory, controlled through a National DP8422AV DRAM
controller.

A majority of the glue logic of the Ultragizmo board is implemented in the CFPGA, which is
an Altera 10K20 FPGA device. Through the CFPGA and on-chip peripherals of the MC68306,
the M68000 processor core has access to a variety of I/O devices including two serial I/O ports, a
high speed Centronics parallel port, and the PIT, which is a parallel I/O port. The M68000 bus is
also directly connected to a buffered 60-pin I/O connector. The FBUG monitor, a simple operat-
ing system running on the Ultragizmo board which allows communication with the PC, is stored
in 2 MB of AMD AM29F200 Flash ROM.

Figure 1 - Picture of Ultragizmo Board

Introduction

2 Lab Manual for the UofT Ultragizmo Board

Figure 2 - Functional Diagram of Ultragizmo Board

40 pin PIT connector
(SFPGA_CON40)

40 pin logic analyzer
connector (SFPGA_LOGIC)

40 pin digital board
connector (SFPGA_DIGITAL)

60 pin M68000 bus connector
(SFPGA_CON60)

High Speed
Centronics
Parallel Port

Introduction

3

Also attached to the M68000 bus is an Altera 10K70 FPGA, called the SFPGA. Complex dig-
ital systems can be implemented using the device. The 10K70 FPGA contains 3744 look-up tables
and 18432 bits of user programmable RAM. The large capacity of the 10K70 can be used to
implement systems like RISC processors and 2-D graphics accelerators. The 10K70 is attached to
several useful digital components including a CS4216-KL stereo audio CODEC chip, 1 MByte of
Static Random Access Memory (SRAM), four I/O connectors, four HEX displays and 16 LEDs.

The setup of the Ultragizmo board in the lab is shown in Figure 3. The board is connected to a
PC workstation through two serial ports and a Centronics parallel port. Through one serial port,
the PC provides simple keyboard input and screen output services for the board. The other serial
port is used for downloading microprocessor programs from the PC. The parallel port is used for
downloading FPGA chip configurations and M68000 programs from the PC. From the PC, com-
munication to the Ultragizmo board is performed through the FBUG monitor program for
M68000 programs, and through Max+PlusII for Altera 10K70 configuration.

This manual is divided into 11 chapters. Chapter 2 is a tutorial on assembly language pro-
gramming. Chapter 3 is a tutorial on FPGA programming. Laboratory experiments are given in
Chapter 4 and Chapter 5. Chapter 6 and Chapter 7 give detailed descriptions on assembly lan-
guage programming and the Ultragizmo monitor program, respectively. Chapter 8 gives the
detailed specifications of the board, including pin descriptions of all components. Chapter 9 and
Chapter 10 describe various peripheral devices. URLs for web datasheets for Ultragizmo compo-
nents are given in Chapter 12.

For More Information

For more information on the Ultragizmo board and for Ultragizmo board updates, please refer
to both the /cad2/ultragizmo/Updates directory on the ugsparc network, and to Fred Aulich’s web
page, located at http://www.eecg.toronto.edu/~aulich.

Figure 3 - Ultragizmo Board Environment

Serial 1

Serial 2

Parallel

Ultragizmo
Board

to
ugsparc
network

Assembly Language Programming Tutorial

4 Lab Manual for the UofT Ultragizmo Board

2 Assembly Language Programming Tutorial

This chapter provides an introduction and step-by-step tutorial on the use of the Ultragizmo
board for assembly language programming. It assumes that you are capable of programming in a
high level programming language, such as C, FORTRAN, or Turing. The chapter is divided into
two sections. Section 2.1 provides a brief introduction to assembly-language programming.
Section 2.2 shows how to assemble, debug, download, and execute assembly language programs
onto the Ultragizmo board.

2.1 Assembly Language and Machine Code

Before describing how the Ultragizmo board is programmed, we provide a brief discussion on
the differences between high-level language programming and the form of code the microproces-
sor actually executes. We assume that you are familiar with high-level language programming of
computers.

Consider the following typical high-level language addition statement:

A = B + C

This statement describes addition of variables B and C as well as the assignment of the result
into variable A. A microprocessor does not typically execute statements in this form. As you will
learn in your class lectures, the microprocessor contains registers, which hold data internal to the
processor. The Motorola 68000 has, among others, eight data registers named d0, d1, ... d7.
Assume, for simplicity, that the variables A, B, and C are assigned to registers d0, d1, and d2,
respectively.

A microprocessor can only execute very simple functions. Several of them must be put
together to perform the high-level function described above. For the Motorola 68000, the instruc-
tions corresponding to the above high-level language statement are:

add.w d1,d2 (1)
move.w d2,d0 (2)

The assembly language statement labelled (1) adds the numbers in registers d1 and d2, and
places the result in register d2 (which destroys the original value of B). The statement labelled (2)
copies (“moves”) the contents of register d2 into register d0, which places the result of the addi-
tion into the register assigned to variable A. This is an example of the typical instructions that a
microprocessor actually executes, one at a time. There are many other simple operations that you
will learn about, including subtraction, multiplication, division, testing (related to high-level ‘if’
statements) and branching (related to high-level ‘goto’ statements). Can you think of a sequence
of instructions which could be used instead and which would not destroy the original value of B?

There is one more thing to note: the microprocessor does not directly read the statements such
as the “add.w” statement above. This must be translated, by a program called an assembler, into
numerical codes which are called machine code. For example, the machine code for the add
assembly language statement above (1) is d441 in base sixteen, and the code for the move state-

Assembly Language Programming Tutorial

5

ment is 3002 in base 16. (The digits used in the hexadecimal base 16, which we will use in this
manual extensively, are the usual 0 through 9, and then a through f, where a16 = 1010, b16 = 1110,
..., f16 = 1610).

The machine code of any program is stored in the memory of the microprocessor system (in
our case it is the Dynamic Random Access Memory (DRAM), illustrated in Figure 2). The micro-
processor fetches these codes and executes the appropriate instruction.

In the University of Toronto Ultragizmo system as we currently have it set up, the worksta-
tions perform the translation from assembly language into machine code (that is, the assembler
program is executed on the workstations). The machine code is then copied onto the Ultragizmo
board and executed. The mechanics of this process are described in Section 2.2.1 on page 6.

A Note About Variables

In programming with high-level languages, you are no doubt accustomed to thinking of vari-
ables as existing only in the computer’s memory. When dealing at the assembly language level
there are at least two physical locations for variables that you need to understand: some variables
can reside inside registers inside the CPU, instead of in the main memory. On the Motorola
68000, these registers have separate names, such as d0, d1, a0 or a6, and are referred to directly by
these names in the M68000 assembly language. Other variables reside in main memory. At the
assembly language programming level you need to be aware that each memory location has a
numerical address numbered, in order, starting from 0. We refer, for example, to the ‘byte’ at loca-
tion 143.

A picture of the two kinds of memory inside the Ultragizmo board is illustrated in Figure 4.
Your assembly language program must distinguish between the two.

As illustrated in Figure 4, the M68000 is a byte-addressable machine, which means that each
8-bit byte has its own separate address. Note that the M68000 assembly language (and processor)
also allows you to access a word (which is two consecutive bytes beginning at an even address)
or a long word (which is four consecutive bytes, also beginning at an even address). To tell the
microprocessor what size of data you wish to access, the assembly-language instruction operation
code is appended with a size designator. An instruction is of the form op.s, where op is the opera-
tion code (such as “move” or “add”) and s is the size designator. For example, the assembly lan-
guage statement

move.b 140,d0

means to copy the byte at memory address 140 into register d0. Alternatively, the statement

move.w 140,d0

means to copy the word beginning at memory location 140 (including the bytes at 140 and 141)
into register d0. Finally the statement

move.l 140,d0

Assembly Language Programming Tutorial

6 Lab Manual for the UofT Ultragizmo Board

means to copy the long word beginning at memory location 140 (including the bytes at 140, 141,
142 and 143) into register d0.

The registers d0 to d7 and a0 to a7 are 32 bits in size. If a smaller size number is copied into
these registers, then only the low-order bits are affected (e.g. bits 0 to 7 in the case of a byte).

2.2 Tutorial

The purpose of this tutorial is to familiarize you with the University of Toronto Ultragizmo
board and its environment. The first part of the tutorial will show you how to create, download
and execute an assembly language program. The second part will illustrate several kinds of errors
that can occur in assembly language programs, and how to fix them. The third part is a tutorial on
how to use the facilities of the FBUG monitor to analyze and debug a running program. The
fourth part illustrates some basic concepts of machine code and microprocessor system memory.

More detailed information about the Ultragizmo board and M68000 assembly language can
be found in other chapters of this manual. Chapter 6 is a reference guide for writing Motorola
68000 assembly language programs. Chapter 7 is a reference guide on the debugging facilities of
the Ultragizmo board. Chapter 8 provides details on the various hardware components on the
Ultragizmo board while Chapter 9 and Chapter 10 describe other hardware that can be connected
to the Ultragizmo board.

2.2.1 Logging In, Creating and Running a Simple Motorola 68000 Program

To do this tutorial you should be sitting in front of a PC attached to an Ultragizmo board. Note
that you can save time in the lab by typing the example programs in Figure 7 and Figure 9 into a

Motorola 68000 CPU byte 1

byte 0

byte 3

byte 2

byte 5

byte 4

byte 7

byte 6

byte 9

byte 8

byte 11

byte 10

Memory

reg d0

reg d1

reg a7

.

.

.

Figure 4 - Location of Variables Inside a Microprocessor System

M68000 BUS

...

Assembly Language Programming Tutorial

7

text file in advance of your lab time, or you can copy them from
/cad2/ultragizmo/MLabs/prog1.s and /cad2/ultragizmo/MLabs/prog2.s on the ugsparc system.
Note that you can access your ugsparc account from the digital systems laboratories.

First, turn on the power to the board and the PC. This means both the power supply box con-
nected to the Ultragizmo board and the power bar that the power supply is plugged into. After the
PC has displayed its login window, enter your ugsparc login name and password.

Once you have logged onto the PC, select Start->Run to bring up the Run dialog window. In
the Run dialog window, type in the command maphome <login_name>, where the
<login_name> is your ugsparc account login name. Press Enter. A window as shown in Figure 5
will appear on your desktop. If you are a second year student, select 2. If you are a third year stu-
dent, select 3, etc. This will properly connect your PC workstation to the ugsparc system server.
You ugsparc home directory will be mapped to the W: drive on your PC. Besides the C: and the
W: drives, the PC also contains an X: drive where system programs are located.

Figure 5 - The Maphome Window

Once the maphome program is finished, double click the CONPORT icon . This will
open up a Tera Term window connected to COM1 of the PC. COM1 is connected to one of the
Ultragizmo serial ports providing keyboard input and character output services for the board.
After the CONPORT window is displayed (see Figure 6), press the reset button on the Ultra-
gizmo board. At this point the CONPORT window should display an angle bracket prompt
(Ultrag>).

Mapping drive W: to your ugsparc home directory.
For maximum speed, your home directory should be accessed

through the file server holding the relevant file system.

Are you:
2) in 2nd year (/u0T2)
3) in 3rd year (/u0T1)
4) in 4th year (/u0T0)
0) a grad student or professor (/ug0)

Please enter the appropriate “year” digit:

Assembly Language Programming Tutorial

8 Lab Manual for the UofT Ultragizmo Board

Figure 6 - The CONPORT Window

Next, you need to connect to one of the ugsparc workstations. To do this, double click the

TERA TERM SSH icon . Enter the login machine name as ugsparcX, where X is an available
ugsparc machine number. Enter your ugsparc login name and password as requested.

You should now have logged into an ugsparc machine through the TERA TERM SSH win-
dow. Now create a directory to work in, and change directory into it. Continue to work in the
TERA TERM SSH window. Using your favourite text editor (vi, jove, emacs, or pico), create a
file, named prog1.s, and enter the program shown in Figure 7 into it. (If you don’t know how to
use a text editor, you will have to learn now! The simplest editor to learn is probably pico). To
save time during the lab itself, it would be best if you created this file in advance, using the
ugsparc facilities.

A few notes on entering this assembly language program: Be sure to place the labels (such as
SRA, TBA, START, OUTCHR, etc.) in the first column of a line; the non-labelled statements
should NOT begin in the first column. Spaces can be tabs or ordinary spaces. Make sure you copy
the right number of zeroes in all of these numbers!

After creating the file prog1.s, you must convert the assembly language into machine code,
using the a68 program, as follows (“prompt%” is your workstation prompt):

prompt% a68 prog1.s

If a68 complains about an “Unknown operator” on almost every line of your file, your path is
set so that the gnu a68 assembler is being used. This assembler uses a different assembly lan-
guage syntax than the standard Motorola one. Change your path or type in the full pathname
(/local/bin/a68) to assemble your program properly.

Assembly Language Programming Tutorial

9

The a68 assembler requires instructions and register names to be written in lower-case letters.
As well, it dislikes spaces between operands. For example, the addq.b #1,d0 line would not com-
pile if it were written as ADDQ.B #1, D0.

The a68 assembler creates a file in your directory called prog1.srec. It contains the machine
code for your program, in the S-record standard format, which is a Motorola-standard file format
for numerical data. The next thing to do is to “download” this program into the memory of the
Ultragizmo board. To do that, you need to open a third window, the DEVPORT window (see

Figure 8). Double click the DEVPORT icon . This will open a new Tera Term window con-
nected to COM2 of the PC.

Figure 8 - The DEVPORT Window

COM2 is connected to the other serial port of Ultragizmo; through it program files are down-
loaded into the microprocessor’s main memory. In the DEVPORT window do the following:

• Select File->Send File.

• Select network neighborhood under Look in.

Figure 7 - M68000 Assembly Language Program prog1.s

SRB equ $fffff7f3
TBB equ $fffff7f7

org $20000

START move.b #’A’,d0 ; start with an A
OUTCHR btst.b #2,SRB ; check if display ready

beq OUTCHR
move.b d0,TBB ; send character to display
addq.b #1,d0 ; create next character
cmpi.b #’Z’,d0 ; check if done
ble OUTCHR ; if not, go back and display it
trap #15 ; exit

Assembly Language Programming Tutorial

10 Lab Manual for the UofT Ultragizmo Board

• Go to the directory where your .srec file is. Note: the W: drive is mapped to your
ugsparc home directory.

• Select (single click) the .srec file to be downloaded. Do not open it yet.

• Click on the CONPORT window.

• Type lo [return] in the CONPORT window.

• Click on the DEVPORT window.

• Click open. The file will be downloading to the Ultragizmo board and dots will
appear.

With a successful download, all that remains is to execute the program, which is done with the
monitor go command. Switch to the CONPORT window. In the CONPORT window type:

Ultrag> go 20000

This causes the monitor to begin executing the machine language code at location $20000
(note the $ sign which indicates a hexadecimal value), which is the starting address of the pro-
gram in Figure 7 (the ‘org’ statement in that program tells the system where to place the machine
code). The program should print out the letters from A to Z, and return to the monitor. If this
didn’t happen, you must look for a problem and fix it. The next section discusses various kinds of
problems and errors that can occur. The program as given should work, however.

2.2.2 Assembly Errors and Monitor Tutorial

Errors and bugs are a fact of life in any kind of computer programming. In this tutorial section
we introduce you to the types of errors you will encounter, and demonstrate the tools that you will
use to find them. You will use these tools extensively in the programs that you create in this labo-
ratory.

Again, before the lab you should create an assembly language source program text file called
prog2.s, this time copied from the program given in Figure 9. The function of this program is to
add a list of ten numbers in memory, beginning at memory location LIST, and place the result into
memory location SUM. However, there are several errors in the program, of various types, which
we will discover and correct in this tutorial.

After creating the source file, assemble the program on the ugsparc workstation in the TERA
TERM SSH window:

prompt% a68 prog2.s

Because there are errors in the program, the assembler returns with these error statements:

error undefined symbol: lop

Assembly Language Programming Tutorial

11

error undefined symbol: LIST

error (13): Non-relocatable expression

There are two assembly language errors. The “bgt lop” instruction has a typing mistake and
should read “bgt loop” to correspond with the label preceding the “add.w” instruction. The assem-
bler says that “lop” is an undefined symbol because it used but not defined anywhere in the pro-
gram.

The second error is that the statement “move.l #LIST,a0” refers to a label that doesn’t exist.
To correct this, the label “LIST” should be added to the third last line of the program, so that it
reads

LIST dc.b 1,2,3,4,5,6,7,8,9,10

Correct these two errors, and re-assemble the program, using the a68 program. Assuming
there are no further assembly errors, download the program into the Ultragizmo as before:

• In the CONPORT window, type lo [return].

• In the DEVPORT window, select transfer->send text file.

• Type prog2.srec in the File Name field.

• Click on Open.

Figure 9 - M68000 Assembly Language Program prog2.s (with Errors)

org $20000
const dc.w $c0

move.l #LIST,a0 ; a0 = addr of current list item
move.b #10,d0 ; d0 contains loop counter
clr.b d1 ; d1 contains SUM, init to 0

loop add.w (a0)+,d1 ; add next list item
subq.b #2,d0 ; subtract loop counter
bgt lop ; check if done 10

move.b d1,SUM ; put answer in location SUM
trap #15 ; exit - return to monitor

org $20101
dc.b 1,2,3,4,5,6,7,8,9,10; data input
org $20200

SUM ds.b 1 ; answer goes here

Assembly Language Programming Tutorial

12 Lab Manual for the UofT Ultragizmo Board

And then execute the program on the M68000, by typing the following in CONPORT window:

Ultrag> go 20000

You will see the monitor display the error:

Illegal Instruction at $00020000

This is a rather obscure way of telling you that the M68000 tried to execute an instruction
whose machine code it didn’t understand. Observe the second line of the program in Figure 9,
“const dc.w $c0.” This is actually a piece of data that isn’t an instruction - it shouldn’t ever be
executed. Go back to the TERA TERM SSH window, delete the “const dc.w $c0” statement, and
then re-assemble and download the program.

Now re-execute the program on the M68000:

Ultrag> go 20000

You will see the M68000 display the error:

Address Error

This is caused by the statement “loop add.w (a0)+,d1” which is trying to add a word-size operand,
but the original address being accessed through register a0 is an odd number (according the “org
$20101” statement). Words cannot begin on an odd boundary, and so the processor had to trap.
The problem is that the program was meant to operate on bytes, not words and so the “.w” exten-
sion on the add statement should be a “.b”. Change the statement to be “loop add.b (a0)+,d1” and
re-assemble and download the program.

Now re-execute the program on the M68000:

Ultrag> go 20000

The 68000 should now return immediately with a prompt, since the program only takes a few tens
of microseconds to execute. The purpose of the program is to calculate the sum of the numbers
from 1 to 10. What should the answer be? What is the answer in base 16? Can you calculate it
without a calculator?

To find out if the program worked correctly, we need to check the memory location SUM, so
we need to know where in memory the SUM variable is. If you look at the statement above the
“SUM ds.b 1” statement in Figure 9, there is an “org $20200” statement which tells the assembler
to place the next statement (or variable) at memory location $20200. (Normally you don’t have to
do this for variables, you just let the assembler assign any location. Since we need to know the
explicit location for the purposes of this tutorial, we have used the org statement.) Thus the
answer should be in memory location $20200.

To examine the contents of a memory location, use the monitor memory display command:

Assembly Language Programming Tutorial

13

Ultrag> md -b 20200:1

This statement says to display (as indicated by the ‘md’) the byte (as indicated by the ‘-b’) at
memory location $20200, and display one byte only, as indicated by the ‘:1’ (Note: :1 is a hexa-
decimal number. How many bytes would be shown if the command md -b 20200:12 were used?).
The answer is displayed in base 16. This should cause the monitor to print the result of the pro-
gram. You’ll notice the answer, in base 16, is incorrect. We have planned it that way so that you
can learn several debugging skills to determine the error, so you should follow the procedure
below to determine the cause of the error.

One way to determine what is going wrong inside a program is to execute each statement one
at a time. The monitor provides a single-step (also called trace) command which does this. Type
the following:

Ultrag> tr 20000

This command causes the instruction at location $20000 to be executed and to return control to
the monitor. The monitor then prints out the contents of all of its registers and the assembly lan-
guage statement for the next instruction to be executed. The last line of the displayed information
is a version of the second line of the program, “move.l #10,d0”.

You can continue through subsequent statements by simply typing a carriage return - the sin-
gle step command will be automatically executed. As you do so, check the contents of the regis-
ters and see if you can determine the logical error in the program.

The key is to see if the correct operation is being done by each statement, as you understand
what the program should do. After you reach the “subq.b” statement, you will notice (hopefully)
that it is subtracting 2 from the loop counter, rather than 1. This causes the program to add only
half the numbers, and hence to produce the incorrect result. Change the “subq.b” statement to sub-
tract only 1 (subq.b #1,d0), re-assemble the program and download it. Check that the number in
memory location SUM ($20200) is correct.

By the way, it is a common mistake to correct the source file (prog2.s in this case) and then
forget to re-assemble the program, and simply re-execute the old program that still resides in
memory. It is also easy to forget to re-download the program after assembling it.

2.2.3 Useful Monitor Commands

The monitor has several other commands that you should gain experience with so that you can
use them with other programs in this laboratory. A reference guide for all of the monitor com-
mands appears in Chapter 7 of this manual.

In this section, we will walk you through the use of several monitor commands. In these
descriptions, we will use the following syntax: if an argument is optional, it is enclosed in square
brackets ‘[]’. The monitor prompt is the character string “Ultrag>”. Also, the following notation
will be used:

Assembly Language Programming Tutorial

14 Lab Manual for the UofT Ultragizmo Board

<addr> : a hexadecimal integer specifying the memory address

<count> : a hexadecimal integer specifying the number of elements

<size> : size specifier -b, -w or -l (byte, word, long word)

<data> : a hexadecimal integer of size specified by <size>

Memory Display Command

The Memory Display command is used, as above, to inspect the contents of memory. It has
the following general format:

md [<size>] <addr>[:<count>]

The memory display command allows the user to view memory. The size used to display the
memory is determined by the <size> option. If no option is used the default is word. The starting
address is specified by the <addr> field. The optional <count> field determines the number of
memory elements to be displayed.

For example, type the following command which examines 16 bytes of memory beginning at
address $20000.

 Ultrag> md -b 20000:10

It should display a line that looks something like this:

020000: 20 7c 00 02 01 01 10 3c 00 0a 42 01 d2 18 53 00

Now type the next command, which examines eight words (1 word = 2 bytes) of memory begin-
ning at $20000.

 Ultrag> md -w 20000:8

It should result in something like this:

020000: 207c 0002 0101 103c 000a 4201 d218 5300

Block Fill Command

The Block Fill command places data directly into the memory. It has the following general
syntax:

bf [<size>] <addr>:<count> <data>

The block fill command fills the specified range of memory with the data listed. If the size option
is not specified the default size used is word. The fields have the same meanings as for the Mem-

Assembly Language Programming Tutorial

15

ory Display command except that the <data> argument is the data value to be written into the
memory locations. It must be supplied as an argument.

Type the following command which will deposit the data value $12 into 16 byte locations
starting at address $20000.

Ultrag> bf -b 20000:10 12

The next command will deposit the data value $0023 into 8 word locations starting at $20000.

 Ultrag> bf -w 20000:8 23

You can now use the Memory Display command to check that the specified memory loca-
tions were filled correctly.

The Disassemble Command

The Disassemble command translates machine code instructions back into the original assem-
bly language statement. It has the general form:

md -di <addr>

To illustrate the use of this command you should once more download the (corrected) program
of Figure 9 into the memory of the Ultragizmo board. That is, use the lo command to copy the
prog2.srec file back into the M68000 memory, which the above work would have overwritten.
The following command interprets the contents of the memory locations starting at $20000 until
several instructions are disassembled:

 Ultrag> md -di 20000

With the program of Figure 9 still in memory, this command will result in:

020000: movea.l #0x20100,a0

and so on.

Note that the disassembler displays hexadecimal numbers (base 16) with a 0x preface. What
happens when you use the disassemble command with an incorrect address, e.g. md -di 20002?

The Register Display Command

The Register Display command displays the contents of the M68000 internal address and
data registers. It has the following format:

Ultrag> rd

Assembly Language Programming Tutorial

16 Lab Manual for the UofT Ultragizmo Board

Try this command and see if you can figure out which registers are which. In this tutorial we
have referred to registers d0 to d7, and a0 to a7. In your class lectures you will learn about the
other registers displayed.

The Trace Command

As described earlier in the tutorial, the Trace command (also called the single-step command)
allows assembly instructions to be executed one at a time. The general form of the Trace com-
mand is as follows:

tr [<addr>]:[<count>]

The processor executes the instruction located at address <addr> and then returns control
back to the monitor. If the <count> argument is supplied, then the number of instructions indi-
cated by <count> are executed before returning control to the monitor.

Ordinarily, when control is returned to the monitor, it will print out the program counter value
(the address of the next instruction to be executed), the dis-assembly of the next instruction to be
executed, and the current value of the general purpose registers. Subsequent single step com-
mands may be issued by pressing the return key.

Breakpoint Commands

In some cases, when programs are very large and execute many instructions, it isn’t practical
to single-step through all of them. An alternative is to use the Breakpoint command, which
causes the program to temporarily halt when a particular instruction is reached, so that registers
and memory locations can be examined.

The general form of the breakpoint command is:

br [-r] <addr>[:<count>]

The breakpoint command causes a break in instruction execution at the specified instruction
address. Whenever a breakpoint is encountered during the execution of the user’s program, con-
trol is returned to the monitor before the instruction with the breakpoint is executed. If execution
is continued (using the co command, as described below) it will start with the breakpoint instruc-
tion itself. If the count argument is specified, then execution of the user’s program will be inter-
rupted only after the breakpoint address is encountered <count> times.

To set a breakpoint, you need to know the physical address of the instruction you want to stop
at. To learn the physical addresses, you need to assemble your program using the a68 -l command.

prompt% a68 -l prog2.s > prog2.out

In the prog2.out file you will find the listing as shown in Figure 10.

Assembly Language Programming Tutorial

17

The address of the “move.b d1,SUM” instruction is $20014. Return to the monitor (CONPORT
window) and set a breakpoint to halt execution when this instruction is reached by typing:

Ultrag> br 20014

Now, re-execute the program:

Ultrag> go 20000

Notice that the program halts at the required instruction. To continue on from this point type the
Continue command:

Ultrag> co

To remove the breakpoint, use the -r option of the breakpoint command:

Ultrag> br -r 20014

Note that it is not possible to single-step through or add breakpoints to any terminal input/out-
put routines because single stepping also uses the terminal I/O.

The Help Command

Figure 10 - Assembly Listing of (Correct) prog2.s

org #20000

020000: 207c00020101 move.l #LIST,a0
020006: 103c000a move.b #10,d0
02000a: 4201 clr.b d1

02000c: d218 loop add.b (a0)+,d1
02000e: 5300 subq.b #1,d0
020010: 6e00fffa bgt loop
020014: 13c100020200 move.b d1,SUM
02001a: 4e4f trap #15

 org $20101
020101: 01020304050607 LIST dc.b 1,2,3,4,5,6,7,8,9,10
020108: 08090a

 org $20200
 SUM ds.b 1

Assembly Language Programming Tutorial

18 Lab Manual for the UofT Ultragizmo Board

The Help command prints a short summary of the monitor commands and their arguments. To
get that listing, type:

Ultrag> help

2.2.4 Machine Code Tutorial

To truly understand machine code and the final form that assembly-level instructions actually
take, you must do some manual labour. As discussed in Section 2.1 on page 4, the assembler pro-
gram that you used above translates the human-understandable assembly language into the
numeric machine codes that the processor understands. These codes are put into the Ultragizmo
board memory and then fetched and directly executed by the processor. In this section you will
enter the machine code, provide its input data and “manually” inspect the output, using the moni-
tor commands.

The following program calculates the sum of the two numbers in memory locations $20100
and $20101, and places the result in memory location $20103 (note again that the $ sign means
that the number is in base 16, or hexadecimal):

move.b $20100,d0 ; copy contents of location $20100 into d0
add.b $20101,d0 ; add contents of loc $20101 to d0,
move.b d0,$20103 ; place answer in location $20103
trap #15 ; exit and return to monitor

Read through the above program and try to understand it. The listing below gives the machine
code associated with each of the four instructions.

020000: 103900020100 move.b $20100,d0

020006: d03900020101 add.b $20101,d0

02000c: 13c000020103 move.b d0,$20103

020012: 4e4f trap #15

The numbers on the left hand side give the address of the instruction (the first “move.b”
instruction is placed beginning at memory location $20000), a colon (:) and then the machine
code of the instruction. The machine code for “move.b $20100,d0” is $103900020100. Notice
that the memory address within the instruction ($20100) actually appears as part of the machine
code.

As part of the tutorial, you should now place this machine code directly into the Ultragizmo
board memory using the monitor block fill command:

Ultrag> bf -l 20000:1 10390002

Ultrag> bf -l 20004:1 0100d039

Ultrag> bf -l 20008:1 00020101

Ultrag> bf -l 2000c:1 13c00002

Ultrag> bf -l 20010:1 01034e4f

Assembly Language Programming Tutorial

19

Note that the four instructions were entered using five long words. Why is that?

Next, put the two (byte-sized) numbers to be added into memory locations $20100 and
$20101:

Ultrag> bf -b 20100:1 5

Ultrag> bf -b 20101:1 6

Now, execute the program using the monitor go statement;

Ultrag> go 20000

This will execute in less than the blink of an eye, and return to the monitor. Use the monitor
memory display command to see if the correct value is in memory location $20103:

Ultrag> md -b 20103:1

If the answer is printed in base 16, what should it be? Is it correct?

The purpose of this exercise was to illustrate two things:

• that the processor directly executes numeric codes, called machine codes, from
memory.

• that the data that a program operates on is stored in that same memory. You entered
the data in the same manner in which you entered the code!

Now that you’ve done these tutorials, you’re ready to begin creating your own programs!

FPGA Tutorial

20 Lab Manual for the UofT Ultragizmo Board

3 FPGA Tutorial

The University of Toronto Ultragizmo board contains an Altera FLEX 10K70 Field-Program-
mable Gate Array (FPGA), called the SFPGA, and is programmed using the Max+plusII CAD
software. This chapter provides an introduction and step-by-step tutorial on the use of the Altera
10K70 FPGA and Max+plusII. It assumes that you have some knowledge of a hardware descrip-
tion language (HDL) such as VHDL or Verilog.

This chapter is organized into three sections. Section 3.1 describes a CAD flow for hardware
design using FPGAs. Section 3.2 is a tutorial on Max+plusII. Section 3.3 is a guide to the bugs
encountered while using Max+plusII and describing hardware using VHDL.

3.1 Programmable Logic

A field-programmable gate array (FPGA) is an integrated circuit containing a number of pro-
grammable logic blocks, programmable interconnect, and possibly memory. FPGAs can be
reprogrammed to implement different digital circuits. The mapping of a hardware circuit onto the
FPGA is usually performed with the aid of a CAD tool.

In a typical CAD flow, a designer describes a circuit using a hardware description language
such as VHDL or Verilog. The CAD tool reads in the HDL files, and transforms the design into a
set of logic equations, which are then transformed into a netlist of logic units available on the
FPGA. This netlist is then physically placed on the FPGA. Routing is then performed, physically
connecting the netlist using the interconnect resources. The circuit can then be simulated, using
the timing information specific to the FPGA. If the simulation satisfies the design specifications,
then a configuration bit string is generated and downloaded onto the FPGA, instantiating the cir-
cuit. If design specifications are not met, then the circuit is redesigned and recompiled.

The SFPGA is an Altera FLEX 10K70 FPGA. It contains 70 000 “typical” logic gates (this
can be a misleading number - Altera claims that this represents 46 000 to 118 000 “usable” gates,
including logic and memory), and nine 2048-bit memory arrays called EABs. The 10K70 FPGA
is programmed using the Max+plusII CAD tool, described in the next section.

3.2 Max+plusII Tutorial

3.2.1 Setup

To do this tutorial you should be sitting at a PC workstation attached to an Ultragizmo board.
Log onto the workstation using your ugsparc login and password.

A typical Max+plusII CAD flow is shown in Figure 11. First, a VHDL description of your
circuit is entered. Max+plusII then compiles it onto the selected FPGA device. After that, a timing
analyzer determines the critical path through the circuit and maximum operating frequency. Upon
meeting this requirement, the circuit can be simulated by stimulating the inputs with test vectors
and observing the outputs. If design specifications are met, then the FPGA chip can be pro-

FPGA Tutorial

21

grammed. Otherwise the design can be modified and recompiled. This tutorial will show you how
to perform each of these steps.

Figure 11 - Max+plusII CAD Flow

This tutorial will use files located in the /cad2/ultragizmo/FLabs/tutorial directory on the
ugsparc network. Copy the four files (fulladder.vhd, wrapper.vhd, wrapper.acf, and wrapper.scf)
into a directory called mp2/tutorial on your ugsparc account. The fulladder.vhd file contains the
description of a full adder to be used in this tutorial. The wrapper.vhd file is a generic VHDL file
whose input and output pins correspond to the pins on the Ultragizmo board. See Section 8.5 on
page 117 for more details on the signals defined in the wrapper.vhd file. The top-level entity of
your circuit (the full adder, in our case), is instantiated in the wrapper file, mapping Ultragizmo
inputs and outputs to your circuit. The wrapper.acf file gives compiler directions; this includes
the selection of the 10K70 FPGA as target device as well as pin assignments. The wrapper.scf file
will be described later in this tutorial. For a description of VHDL please refer to your course’s
VHDL reference manual.

VHDL

Compilation

Simulation and

Meet

specs?

Programming

Yes

No

Ultragizmo

Timing Analysis

FPGA Tutorial

22 Lab Manual for the UofT Ultragizmo Board

In the wrapper.vhd file, you will notice that the three full adder inputs have been mapped onto
the SFPGA_DIGITAL connector pins 1, 3, and 5. Referring to Figure 29 on page 131, notice that
these correspond to switches SW1, SW2, and SW3 on the digital protoboard. Also, the full adder
outputs have been mapped onto led(0) (for output Cout) and led(1) (for output S). The switches
and LEDs will be used eventually for testing purposes.

3.2.2 Starting Max+plusII

In order to start Max+plusII, go in the Windows Start menu and select Run. At the prompt type

max <username>

where <username> is your ugsparc login name. You will then be prompted for your year digit.
Enter ‘2’ if you are in second year, ‘3’ if you are in third year, ‘4’ if you are in fourth year, and ‘0’
if you are a professor or a graduate student. After a few seconds the Max+plusII window will
appear on your screen, and should appear similar to Figure 12.

At the top of the window is the menu bar. The leftmost menu is the Max+plusII menu and
includes the list of tools available in Max+plusII. The following tools should be included in the
list: Hierarchy Display, Graphic Editor, Symbol Editor, Text Editor, Waveform Editor, Floorplan
Editor, Compiler, Simulator, Timing Analyzer, Programmer, and Message Processor. As you use
each of these tools, menus relevant to the tool you are using will appear in the menu bar.

Right now we will use the text editor to view and edit our VHDL file. Open the top-level
VHDL entity, wrapper.vhd:

Figure 12 - The Max+plusII Window

FPGA Tutorial

23

File -> Open...

NOTE: Max+plusII sometimes has trouble with long file names. If your file isn’t displayed in
the list, then type in the name in the space provided.

When you start Max+plusII, your ugsparc account maps onto the W: drive through the
maphome program (see Section 2.2.1 on page 6 for more details on the maphome program).
Navigate to your mp2/tutorial directory, which you created earlier, select the wrapper.vhd file and
click OK. You are now in the Max+plusII text editor.

Configuration statements, familiar to those with VHDL experience, are not required in
Max+plusII. Instead, Max+plusII associates all files relevant to a design with a project. A typical
file structure is shown in Figure 13, including a top-level entity, lower-level entities, and compiler
direction files. Instead of including all the relevant files in the project, you only need to point the
project to the top-level VHDL entity, which in our case is the currently opened file, wrapper.vhd.
Max+plusII will look for a .acf file of the same name as the top-level entity (the .acf file contains
the compiler directions), and will find all .vhd files pointed to by the top-level file, as long as they
are located in the same directory as the top-level entity. In order to let Max+plusII know which
file is the top-level entity, do the following:

wrapper.acf

(compiler

directions)

wrapper.vhd

file1.vhd

file2.vhd file3.vhd file4.vhd

Top-level entity

Figure 13 - Max+plusII VHDL File Structure

FPGA Tutorial

24 Lab Manual for the UofT Ultragizmo Board

File -> Project -> Set Project to Current File.

3.2.3 Compiling Your Design

Before compiling a project you must specify the target device, which in our case is the Altera
10K70 FPGA. First select

Assign -> Device...

In the pop-up window scroll down the list of available devices, select EPF10K70GC503-4, and
click OK. If you can’t find that device in the list, unselect the “Show Only Fastest Speed Grades”
box located under the list. A more complete list of devices will then appear. You should notice
that the 10K70 is already selected, since it was preselected in the .acf file.

Now you can compile your design. Open the Max+plusII compiler.

Max+plusII -> Compiler

A window with the Max+plusII CAD flow as well as Start and Stop buttons will appear, as
shown in Figure 14. Click on Start to start compiling. As each step in the CAD flow is com-
pleted, the colour of its box will change. As well, a window containing error and warning mes-
sages will appear. In this tutorial you should get two errors and no warning messages. The first
refers to an undeclared signal, and the second announces that the compiler can’t finish compiling
due to errors.

Select the first error message (the one pointing to line 22). There are two things you can do to
get information about the error. First, you can click on Help on Message, which will pop up a
help page with instructions on how to correct the error. Second, you can click on Locate, which
will open the relevant VHDL file and point to the source of the error. In this case, it points to line
22 of the fulladder.vhd file, where the signal Sum hasn’t been declared. In the port map you will
notice the signal named S. Change Sum to S in the fulladder.vhd file, save it, and recompile.
There should be no error messages and several warning messages. Most of these warning mes-
sages refer to pins which were mentionned in the wrapper file but weren’t actually used in the
design. You should always check the warning messages, but in this case you can ignore them.

Figure 14 - The Compiler Window

FPGA Tutorial

25

3.2.4 Timing Analysis

The Max+plusII timing analyzer can be used to determine the critical path of your circuit. To
do this, open the timing analyzer window.

Max+plusII -> Timing Analyzer

The timing anayzer window should now be open, with a grid. On the left side you will put your
circuit’s inputs, and on the top side the circuit’s outputs. Select

Node -> Timing Analysis Source...

In the window that pops up, click on List, select sfpga_digital(1), sfpga_digital(3), and
sfpga_digital(5), click on the right arrow (=>), and click OK. The inputs now appear on the left
side of the grid. Now select

Node -> Timing Analysis Destination...

Similarly, click on the List button, select led(1) and led(0), click on the right arrow, and then on
the OK button. The outputs now appear at the top of the grid.

Then click on the Start button. After a few seconds the grid will be updated with delays from
each input to each output. The maximum delay should be from sfpga_digital(3) to led(0), with a
delay of 28.3ns, as shown in Figure 15.

3.2.5 Simulating Your Design

Now you are ready to simulate your design. First open the simulation window.

Max+plusII -> Simulator

Figure 15 - The Timing

FPGA Tutorial

26 Lab Manual for the UofT Ultragizmo Board

A window with a start time box, an end time box, and a start button will pop up. However, before
simulating you must specify input waveforms. In order to do this you must go into the waveform
editor, as follows:

Max+plusII -> Waveform Editor

A waveform window will pop up. You must then select the signals relevant to your design. For
each node (sfpga_digital(1), sfpga_digital(3), sfpga_digital(5), led(0), and led(1)), select

Node -> Insert Node...

and click on List in the window that pops up. A list of nodes will then show up, from which you
can select the desired node. When you are done, the five signals should all be shown in the wave-
form window, and you are ready to specify inputs.

For each input, the value currently specified is zero. You can change this using the tool bar
located on the left hand side of the waveform editor. For example, select one time step from the
sfpga_digital(1) line. Then click on the tool bar button that contains a 1. You will notice that the
waveform changes to a 1 for that time interval. Using this method specify all 8 combinations of
the three inputs. You might need to zoom out (View -> Zoom Out) in order to see all the 8 combi-
nations at once. On the left you should notice the tools used to create other signal values, and
which you should try out (you can create a ‘0’, ‘1’, ‘X’ (undefined), or ‘Z’ (high impedance)).
The final result should look as shown in Figure 16.

Once you are done specifying an input pattern, you need to save your waveform. Click on

File -> Save

A pop-up window will ask for a file name to save to. Save it as wrapper.scf which should be the
default. A copy of the wrapper.scf file has also been created and is stored in the /cad2/ultra-
gizmo/FLabs/tutorial directory.

Figure 16 - Waveform Editor Window

FPGA Tutorial

27

You can now return to the simulator, and click on Start. When the simulation is done, return
to the waveform window to view the simulation results. They should look like those in Figure 17.

Notice the glitches and delays. When you compiled your design, you asked the compiler to
produce timing information for your circuit. This timing information was used in the simulation to
generate the delays you see on the waveforms. You can perform a purely functional (i.e. no timing
information) simulation by returning to the compiler and selecting

Processing->Functional SNF extractor

as opposed to the Timing SNF extractor, and by then recompiling and resimulating. Note that you
won’t be able to download your circuit to the Ultragizmo board if you do a functional extraction.

3.2.6 Programming the Ultragizmo Board

Once you are satisfied that your design is functional and meets your design specifications, you
can program the SFPGA chip. You should first ensure that the power to the Ultragizmo board is
on and reset the board using its RESET button. Then open the Max+plusII programmer:

Max+plusII -> Programmer.

The programming window, and menus now appear. Before programming you must select the port
through which the Ultragizmo board is programmed. Select

Options -> Hardware Setup...

A window pops up, in which you select a hardware type. From the pull-down menu select Byte-
Blaster if it is not already selected. From the other pull-down menu select LPT1. Then click OK.
If there is no check mark next to it in the menu, select

FLEX -> Multi-Device FLEX Chain.

The check mark should appear. Then select

Figure 17 - Simulation Results

FPGA Tutorial

28 Lab Manual for the UofT Ultragizmo Board

FLEX -> Multi-Device FLEX Chain Setup...

Click on wrapper.sof, click Add, and then click OK.

Now you can return to the programming window and click on Configure. You will see the
thermometer at the bottom of the programming window indicating the progress of the download.
Once completed, a ‘Configuration Complete’ window should pop up. Your design is now pro-
grammed onto the Ultragizmo board.

3.2.7 Testing Your Design

You are now ready to test your design. For this tutorial, the inputs will be provided using the
digital protoboard, and the outputs will be displayed on the Ultragizmo board’s LED display.

Use a 40-pin connector to connect the protoboard to the Ultragizmo board’s
SFPGA_DIGITAL connector (see Figure 42 on page 92 for the location of the connector). The
three inputs to the full adder correspond to protoboard switches SW1, SW2, and SW3. The out-
puts are displayed on the Ultragizmo’s LED2 (Sum) and LED1 (Cout). You can now use the pro-
toboard’s switches to test all combinations of inputs. You will notice that the LEDs give the
answers you should be expecting. Note the negations in the LED assignments in the wrapper.vhd
file. This is because the LEDs are active-low.

3.2.8 Changing Pin Assignments in the Wrapper Files

When you create your own designs you will need to change pin information in the wrapper
files. Unused pins on the SFPGA become outputs and are driven low by default. To ensure that
unused SFPGA pins do not drive the M68000 bus, all unused pins connected to the bus have to be
defined as inputs or as high impedance outputs.

Suppose you want to change the DTACK signal in the wrapper files from an input to an out-
put. You would follow these steps. First, change the DTACK declaration in the wrapper.vhd file
from an input to an output. Next, you need to change the pin information in the wrapper.acf file.
Open the pin assignment window:

Assign->Pin/Location/Chip...

From the Existing Pin/Location/Chip Assignments scroll menu, select the dtack pin, labelled as
an input on pin AG3. Then, from the Pin Type scroll menu, select output, and then click on Add.
You will notice that Max+plusII added a DTACK output pin on AG3, but also left the old input
pin. You need to delete the DTACK input pin. Select it, click on Delete, and then on OK.

You are now done the tutorial and can move on to more interesting and useful designs!

FPGA Tutorial

29

3.3 Error Messages in Max+plusII

This section is an aid in troubleshooting your design.

Error message about the design being too large
This indicates that your design is too large to fit onto the 10K70 FPGA. You need to either make
it smaller, target it to a larger FPGA, or partition it onto several 10K70 FPGAs which you can
connect together via a 40-pin connector.

“Found illegal use of a statement in a declarative part”
You have instantiated a component inside a process. Remember that statements inside a process
occur sequentially every time a process is invoked; that means that the instantiation happens
every time the process gets called, and you end up with millions, billions... of copies of your com-
ponent. That’s probably not what you want... and Max+plusII doesn’t like that either. You can fix
this by putting your component instantiation outside the process.

“Conditional statement in this region for signals not supported”
You have an IF statement dependent on a clock nested inside another IF statement. Max+plusII
(and synthesis tools in general) has trouble mapping this into hardware. You must rewrite your
code so that the outer IF statement is the one dependent on the clock.

“SRAM load unsuccessful”
This usually happens when you haven’t properly specified which parallel port to use. Go into
Options -> Hardware Setup... and RE-select the LPT1 port.

Assembly Language Laboratory Experiments

30 Lab Manual for the UofT Ultragizmo Board

4 Assembly Language Laboratory Experiments

This section of the manual contains several laboratory experiments. Each requires you to write
a Motorola 68000 assembly-language program and typically specifies an amount of preparation to
be done in advance of the lab. It is usually not possible to do the preparation during the lab period
itself, so it is strongly advised that you prepare in advance. Your TA might require you to hand in
a lab preparation in which should always include a listing file of your assembled program (see
Section 2.2.3).

It is essential that you enter your program into the ugsparc workstation computers in advance
of the lab, and that you assemble the program without assembly errors.

Chapter 6 through Chapter 12 of this manual contain information that may be necessary to
complete these experiments. The title of a lab gives in parentheses the main components of the
Ultragizmo board that you are to use for that lab.

Assembly Language Laboratory Experiments

31

 Lab M1 (M68000) Assembly Language Programming

The purpose of this lab is to familiarize you with Motorola 68000 assembly language instruc-
tions, addressing modes and debugging.

You are to write a Motorola 68000 assembly language program that takes two numbers, s and
p, as input. (These numbers will be incorporated as part of the source code of the program, but
you should treat them as variables, not constants).

The program should create a matrix of bytes, (of size s x s): M0,0 M0,1... Ms-1,s-1 in memory,
and fill all of it, except the diagonal, with zeroes. The diagonal (elements M0,0M1,1... Ms-1,s-1)
should be filled with the value p.

Hint: An s x s matrix of bytes, beginning at address A, is represented in memory by s consec-
utive sets of s bytes. The address of matrix element (i, j), where and is given
by:

Address of element Mi,j = A + i x s + j

Check that your program works by using several different values of s and p.

Preparation: Write and enter the M68000 assembly language program into the workstation
computers. Read Section 6.1 to learn the syntax rules for writing an M68000 assembly language
program. Assemble the program and eliminate any errors reported by the assembler.

0 i s<≤ 0 j s<≤

Assembly Language Laboratory Experiments

32 Lab Manual for the UofT Ultragizmo Board

 Lab M2 (M68000) A Simple Instruction Interpreter

The purpose of this lab is to familiarize you with the Motorola 68000 address modes and
assembly language programming.

You are to write a Motorola 68000 program that acts as a simple “interpreter.” Your program
will “read” the “instructions” (not M68000 instructions, but a simple set described below) from
memory and do one of a few simple calculations depending on an operation code. The instruction
in memory will also contain the data to be operated on, and the address of the next instruction to
be executed.

The calculations are stored in a word-length “accumulator” located in main memory.

The format of the instructions, which consist of three items of different size, is as follows:

Item #1 (word size):Op Code:0 = Clear accumulator

1 = Add number to accumulator

2 = Subtract number from accumulator

3 = Exit program

Item #2 (word size): Number to be operated on, if applicable

Item #3 (long word): Address of next “instruction,” if applicable

Your program should assume that the first “instruction” is always labelled START. For exam-
ple, the instruction created by the following assembly language define statements:

INSTR dc.w 1
dc.w 107
dc.l $20500

is an instruction to add the number 107 to the accumulator, and then to go find the next instruction
at address $20500. As another example, the following “program” adds the number 77, subtracts
the number 15, and then exits. Notice the use of org statements illustrates that different
instructions do not have to follow each other in consecutive memory locations.

org $20000
START dc.w 0

dc.l INSTR1
org $20100

INSTR1 dc.w 1
dc.w 77
dc.l INSTR2
org $20400

INSTR2 dc.w 2
dc.w 15
dc.l FIN
org $20500

FIN dc.w 3

Assembly Language Laboratory Experiments

33

To summarize, you are to write a program that reads these “instructions” from memory, begin-
ning with the instruction at address START, and executes the instructions as described above.

If the “program” contains an op-code other than a legal one (0, 1, 2, or 3), your program
should exit with the number $FFFF in the accumulator.

You should test your program with different “programs” that you create yourself. Use the
monitor program to check the contents of your accumulator after the “program” has executed.

Preparation: The program described above, along with a listing file of the assembled program.
Don’t forget to comment your program. Include with your preparation a sample input “program”
for your interpreter.

Assembly Language Laboratory Experiments

34 Lab Manual for the UofT Ultragizmo Board

 Lab M3 (M68000) Subroutines and Fibonacci Sequence

As your programs get larger, you will find that they become more difficult to understand.
With all the registers being used for different purposes, and branch instructions sending control
every which way, you will find that there will come a point when you can no longer understand
your own program! Subroutines provide a solution to this problem. By structuring your programs
with subroutines, you can better understand your program. Properly-written subroutines allow
you to make assumptions about parts of your program, so you can use a subroutine knowing what
result to expect but without understanding exactly how it works. This means you don’t have to
keep your entire program all in your head at the same time, which is very important for large pro-
grams.

A subroutine has the following properties:

1. It is always called with “bsr” (Branch to Subroutine) or “jsr” (Jump to Subroutine).

2. It always ends with “rts” (ReTurn from Subroutine).

3. You never branch out of the middle of one subroutine into another (although using bsr or
jsr is fine).

4. There is a convention (caller-save or callee-save) for preserving the contents of the regis-
ters across a subroutine call. You will learn more about calling conventions in lectures.
The Lab M4 handout gives a more detailed discussion on calling conventions. Using
caller-save, the program calling the subroutine pushes the registers onto the stack and
pops them when the subroutine ends. Using callee-save, the subroutine does the pushing
and popping.

The purpose of this lab is to practice writing and using subroutines. You must compute the
terms of the Fibonacci sequence, in which each term is the sum of the two previous terms. The
first two terms (terms number zero and one) are both equal to one, and the sequence progresses as
follows:

 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Your assignment is the following:

1. Write a subroutine which, given a term number (i.e. the nth Fibonacci number), computes
the value of that term. You must use recursion to perform this computation. You must
use either the caller-save or callee-save convention to save all registers needed by the sub-
routine, except the one which contains the result.

2. Write a program which calls this subroutine, passing it a value from a certain memory
location. It should then store the result in another memory location.

Preparation: Write and enter the M68000 assembly language program into the workstation.
Assemble the program and eliminate any erros reported by the assembler.

Bonus (1 mark): Write two versions of the program: one using caller-save and the other using
callee-save.

Assembly Language Laboratory Experiments

35

 Lab M4 (M68000) Recursive Binary Search

The purpose of this lab is to gain experience using subroutines and manipulating the program
stack in a consistent manner. The manner in which the program stack grows, shrinks, and is
accessed is known as a calling convention. You will learn about caller-save and callee-save call-
ing conventions in your lectures. To increase the opportunities for re-use, compiler writers and
assembly-language programmers for a particular processor such as the M68000 or the MIPS typi-
cally agree upon a common calling convention that will be followed. Thus, any compiler for the
M68000 processor would use one convention while compilers for the MIPS or Pentium proces-
sors might use a different convention. There are many advantages to using a common calling con-
vention. It makes the compiler’s job easier. It allows files to be compiled separately and later be
linked together with little difficulty. It also allows subroutines that are developed by one program-
mer to be used by any other programmer. This is how libraries of functions (e.g., the C math
library or string library) work. Finally, a common calling convention allows inter-language calls.
For example, a C subroutine can call a FORTRAN subroutine and vice-versa.

To gain experience with manipulating the program stack, you will implement the following
recursive subroutine:

/* Global Variables */
int key;
int Numbers[100] = {

28, 37, 44, 60, 85, 99, 121, 127, 129, 138,
143, 155, 162, 164, 175, 179, 205, 212, 217, 231,
235, 238, 242, 248, 250, 258, 283, 286, 305, 311,
316, 322, 326, 351, 355, 364, 366, 376, 391, 398,
408, 410, 415, 418, 425, 437, 441, 452, 474, 488,
506, 507, 526, 532, 534, 547, 548, 583, 585, 595,
603, 621, 640, 661, 666, 690, 692, 713, 719, 750,
755, 768, 775, 776, 784, 785, 791, 797, 798, 804,
828, 842, 846, 858, 884, 887, 890, 893, 908, 936,
939, 953, 960, 970, 978, 979, 981, 990, 1002, 1007,

}
int BinarySearch(startIndex, endIndex, NumCalls)
int startIndex, endIndex, NumCalls;
{
 int keyIndex,middleIndex;
 NumCalls++;
 if (startIndex > endIndex) return -1;
 middleIndex = startIndex + (endIndex-startIndex)/2;
 if (key < Numbers[middleIndex]) {
 keyIndex = BinarySearch(startIndex, middleIndex-1, NumCalls);
 } else if (key == Numbers[middleIndex]) {
 keyIndex = middleIndex;
 } else { /* key > Numbers[middleIndex] */
 startIndex = middleIndex+1;
 keyIndex = BinarySearch(middleIndex+1, endIndex, NumCalls);
 }
 Numbers[middleIndex] = -NumCalls;
 return keyIndex;
}

Assembly Language Laboratory Experiments

36 Lab Manual for the UofT Ultragizmo Board

This subroutine uses a recursive binary search to look through a sorted list of 100 positive
numbers (Numbers) for a number (key) and returns the position of that number in the sorted list
(keyIndex). Positions are numbered from 0 to 99. If the number is not in the list then -1 is
returned. Additionally, the number of times BinarySearch() is called is recorded in the local
variable NumCalls. After an element in the Numbers array is examined, it is replaced by -
NumCalls. By examining Numbers, you can see which elements have been examined and in
what order they were looked at. Negative values are stored to distinguish them from the original
numbers.

As an example, searching for key=418 returns the position 43 and changes Numbers as fol-
lows:

Although there may be simpler and more efficient ways to program a binary search, the pur-
pose of this lab is not to implement an efficient binary search. The reason for implementing binary
search in this way is to provide a short example that requires you to grow, shrink, and access the
program stack in a consistent manner. If you do not manipulate the stack in a consistent manner,
the recursive function will most likely cause the stack to grow and use up all the Ultragizmo
board’s memory.

You are to write the M68000 assembly code for the above subroutine. Store the global vari-
able key in register d0 and the address of the global array Numbers in a0. Pass the parameters
startIndex and endIndex in the registers d1 and d2, and return the value in register d3. Use
the caller-save convention for saving and restoring registers. Also write a main routine that will
make the first call to your subroutine as follows: BinarySearch(0,99,0). A copy of the list
of numbers can be found in ugsparc:/cad2/ultragizmo/MLabs/binarySearch.s.

Preparation: Write the M68000 program described above. Make sure you comment your sub-
routines well and describe how various registers are being used in your subroutine. For example,
you should state which registers store the variables middleIndex and keyIndex.

In the lab: Show that your program works correctly by searching for different numbers and after
each search, examining the contents of register d3 and the Numbers array in memory.

Bonus (1 mark): Use the callee-save convention for saving and restoring registers.

28 37 44 60 85 99 121 127 129 138

143 155 162 164 175 179 205 212 217 231

235 238 242 248 -2 258 283 286 305 311

316 322 326 351 355 364 -3 376 391 398

408 410 -4 -6 425 -5 441 452 474 -1

506 507 526 532 534 547 548 583 585 595

603 621 640 661 666 690 692 713 719 750

755 768 775 776 784 785 791 797 798 804

828 842 846 858 884 887 890 893 908 936

939 953 960 970 978 979 981 990 1002 1007

Assembly Language Laboratory Experiments

37

 Lab M5 (DUART) Program-Controlled Input and Output (Polling)

1 Introduction

The purpose of this lab is to demonstrate the method of computer Input/Output known as pro-
grammed I/O or polling I/O (see Section 8.1 for a description of polling on the DUART). Its
purpose is also to make clear the difference between the representation of data inside a computer,
and its interpretation once it is sent to an I/O device.

The I/O device that we will use in this lab is the terminal that you have already used to com-
municate with the Ultragizmo board. The board is connected to the terminal in the following way:

Communication from the processor through the DUART (Dual Universal Asynchronous
Receiver-Transmitter) to the terminal is done by accessing registers on the DUART as described
in class. Note that while these registers are accessed as ordinary memory addresses, they are
located not in the main memory DRAM chips but in the DUART itself. Section 8.1 on page 94
explains how to access the DUART registers and how to program the DUART so that you can
communicate with the terminal.

2 Program

You are to write a program that reads two 2-digit octal numbers from the terminal, adds them,
and prints out the result in octal. (To be clear: each digit of the 2-digit combination is selected
from 0s, 1s, 2s,..., and 7s). Do not assume that exactly two digits will be typed in, but that the end
of each number is indicated by a carriage return character. If only one digit is typed, followed by a
carriage return, then the number should be considered as a 2-digit number with 0 as the left digit
and the typed digit as the right digit. If several digits are typed, then the last two digits to be typed
before a carriage return should be considered to be the two valid digits. You should “echo” the
numbers on the screen as they are typed. You do not need to consider the case where the sum of
the two numbers is larger than 2 digits.

Note that when a character comes in from the terminal, it is in ASCII code. The ASCII code
for the character 0 is $30, and for the character 1 it is $31. The ASCII code for a carriage return is
$0d, and for a line feed is $0a. Other ASCII codes can be found in Table D.2 of the Computer
Organization, by Hamacher, Vranesic, and Zaky, Fourth Edition.

MC68306
Processor

DUART
Serial
Interface

PC

Processor
Bus

Serial
(1-bit)
Wires You(Parallel)

Figure 18 - Processor, DUART, and PC Interface

Assembly Language Laboratory Experiments

38 Lab Manual for the UofT Ultragizmo Board

Note also that the terminal interprets bytes sent to it to be displayed as ASCII characters. You
may also wish to use terminal control sequences as described in Table 7, “Terminal Control
Sequences,” on page 96 to clear the screen and move the cursor.

Preparation: Read Section 8.1 on page 94 which describes how to program the DUART. Write
the assembly language program as described above. Be sure to have it typed in and assembled
without errors before the lab begins. Remember to hand in the listing file.

In the Lab: You will not be able to use breakpoints or single-stepping to debug your program.
See Item 1 on page 89 for a fuller explanation.

Assembly Language Laboratory Experiments

39

 Lab M6 (DUART & Interrupts) Interrupt-Driven Output and Polling-Driven Input

The purpose of this lab is to illustrate the use of interrupt-driven Input/Output and compare it
to the polling-driven I/O used in the previous lab. It will also be an exercise in understanding the
complexity of handling “simultaneous” input and output.

You are to write a program that continuously outputs characters to the terminal display and
simultaneously reads input from the keyboard.

• The output MUST be done using Interrupt-Driven I/O, as described in class.

• The input may be either polling-driven or interrupt-driven.

The program is to work as follows: The output should continuously output the character ‘N’ to
the screen if no input has been typed. Whenever a character has been typed, then that character
should be printed 100 times (or a sufficient number of times so that you will be able to see it, since
the output will go by very quickly).

A sample output stream might look like:

NNNNNNNNNNNNNNNNNNNNNNNaaaaaaaaaaaa...aaaaaa[100 times a] NNNN
NNNNNNNNNNNNNNNNNNNNNNNNNbbbbbbbbbb...bbbbbbbbc-
ccccccccccc....ccccccccNNNNNNNNNNNNNNNNNNNNNNN....

Here the user has typed an ‘a’ then a ‘b’ then a ‘c’.

For a description of DUART interrupts, read Section 8.1.2 on page 97.

Preparation: The program.

In the Lab: You will not be able to use breakpoints or single-stepping to debug your program.
See Item 1 and Item 2 on page 89 for a fuller explanation.

Bonus (2 marks): Augment your program to allow nested interrupts.

Assembly Language Laboratory Experiments

40 Lab Manual for the UofT Ultragizmo Board

 Lab M7 (DUART & Interrupts) Input and Output Using Polling and Interrupts

The purpose of this lab is to contrast the use of polling (program)-driven Input/Output with
interrupt-driven I/O. You will implement the same program using both methods.

1 The Basic Program

The basic program reads four characters from the terminal and outputs those four characters
20 times each. That is, if the user types ABCD, then the program prints “AAAAA....” [20 times]
then “BBBB...”[20 times] and so on. In this simple version, the user then types another four char-
acters and they are then displayed 20 times each, and so on. No characters should be printed
until four characters have been typed. The program should then wait until another four
characters have been typed, and so on.

2 Simultaneous Input and Output Using Polling I/O

That’s the easy part. To get a feel for polling I/O control of simultaneous tasks, the program
should operate in the following way: it should appear to be generating output and receiving input
at the same time. The program should continuously, (and slowly), output the most recently
entered four characters in the manner described above. At the beginning, before any numbers are
entered, it should output only X’s. Put a delay loop (carefully) between each character output, so
that the output appears slowly, about one character every quarter of a second. Note that the “dbra”
instruction operates on words, not long words. While the output is going on, your program
should also be reading the keyboard to receive a new set of four characters, which, once entered,
will cause the output to change. From this discussion, it should be clear that the program operates
continuously, receiving input characters and displaying the most recent set. In this part, you
should use only the polling-driven input/output technique.

3 Interrupt-Driven Version

Implement the same program as in part 2, only this time using interrupts. That is, continuously
read in the four characters, while continuously displaying the repetitions of the most recently
entered set of four characters. The input of characters should be done using interrupts. You
should use the DUART interrupt method as described in class and in Section 8.1.2. In the
main program, the output should be done using the polling technique. If you wish, however, you
may try to do both the input and the output using interrupts. This is somewhat more challenging.
To the user, both programs should appear to operate the same way.

Preparation: The programs for parts 2 and 3. If you think it is helpful, you can write a separate
program that implements part 1, but it isn’t required. For the interrupts, read Section 8.1.2 on
page 97.

In the Lab: You will not be able to use breakpoints or single-stepping to debug your program.
See Item 1 and Item 2 on page 89 for a fuller explanation.

Assembly Language Laboratory Experiments

41

 Lab M8 (DUART & Interrupts) Counter and Interrupts

In programs dealing with many different I/O devices, it becomes cumbersome and wasteful to
poll them all. A typical system might have to check a keyboard, terminal, mouse, disk, network,
or modem, while performing other computations at the same time. With all these devices, a sys-
tem could spend all its time polling, and never get any work done!

Fortunately, polling is not the only way to interact with a device. You can cause a device to
interrupt your program when a certain event occurs. This allows your program to go about its
business, ignoring the device until something happens. This makes your program more efficient,
and in many cases it makes the program simpler as well, since most of the program does not have
to worry about that device.

In this lab, you will write two programs which will demonstrate the differences between poll-
ing and interrupts. Both programs will have the same functionality: they will simply increment a
counter, and print the counter’s value on the screen (in octal) whenever any key is pressed. You
should print each value at the beginning of a new line on the screen. You must use a counter capa-
ble of counting to at least one billion (how many bits does this require?).

Your task is the following:

• Write the program using polling to receive the keyboard input.

• Write the program again using interrupts to receive the keyboard input.

Your programs will be marked partly based on their speed of incrementing, relative to the
standard benchmark programs. You should put some effort into making your programs efficient.

Preparation: The two programs. For interrupts, read Section 8.1.2 on page 97 and Section 8.2
on page 100.

In the Lab: You will not be able to use breakpoints or single-stepping to debug your program.
See Item 1 and Item 2 on page 89 for a fuller explanation.

Assembly Language Laboratory Experiments

42 Lab Manual for the UofT Ultragizmo Board

 Lab M9 (PIT) Hex Keypad

In this lab you are to connect a hex keypad to the Ultragizmo board using the Parallel Inter-
face/Timer (PIT) port. This involves hooking up the wires and writing the software to make the
interface work. A description of the hex keypad is given in Section 9.3 on page 135.

Write a program to do the following:

• Determine when a button on the hex keypad is pressed, and which button is pressed.
When a key is pressed, because it is slow and mechanical, it will bounce open and
closed for about 10 milliseconds. Make sure that the physical connection has
stopped “bouncing” - that is, it has made a firm connection. You can do this by wait-
ing about 10 milliseconds after the first connection is detected and checking to see
that the same button has been pressed. A 10 millisecond delay can be generated by
executing any short loop roughly 600 times.

• Print out the button label on the screen.

1 Exercise 1 Memory-Mapped I/O Exercise

This exercise is described in Section 8.3.2 on page 113.

2 Exercise 2 Interface Suggestions/Partial Solution

 1. In a similar manner to Exercise 1, using the protoboard, plug the hex keypad into the PIT
connector. Make sure that the ground on the Ultragizmo board is connected to the ground on the
proto-board so that the logic probe will work correctly. If the keyed connectors are correct, then
the following connections will be made:

PA0 -> R0 PA4 -> C0

PA1 -> R1 PA5 -> C1

PA2 -> R2 PA6 -> C2

PA3 -> R3 PA7 -> C3

 2. In your program, using the Port A Data Direction Register, configure PA0, PA1, PA2, PA3
as inputs (0’s in the PADDR positions), and PA4, PA5, PA6, PA7 as outputs (1’s in the PADDR
positions).

 3. Write 0’s into wires PA4 -> PA7 (the outputs).

 4. Any input that is not connected to anything (an unconnected wire) is set up inside the PIT
to be read as a binary 1. You need this fact in the following suggested procedure.

Assembly Language Laboratory Experiments

43

 Read PA0 -> PA3. If any button is pressed, then one of these bits will be 0. Otherwise it will
be a 1. If none of the wires are 0, then no key is pressed. Keep checking the input until one of
them is 0, since this will tell you when a key is down.

 5. After a key is pressed, make PA0 -> PA3 into outputs and PA4 -> PA7 into inputs.

 6. Write 0’s into PA0 -> PA3.

 7. Read PA4 -> PA7.

 8. With the information from steps 4 and 7 (reading PA0 -> PA3 and PA4 -> PA7) you have
enough information to determine which key has been pressed. Figure it out, and print out the letter
of the key on the terminal. Remember to wait until the key stops bouncing.

Preparation: The first exercise is to be done before completing the lab. It is intended to show, in
a direct way, the link between memory locations and the physical world. The second exercise con-
sists of suggestions on how to do the lab. The techniques learned in Exercise 1 will be very help-
ful in debugging this lab.

Assembly Language Laboratory Experiments

44 Lab Manual for the UofT Ultragizmo Board

 Lab M10 (PIT) Parallel I/O and the LEGO Motors and Sensors

The purpose of this lab is to learn how to use the Parallel Interface/Timer (PIT) to drive the
LEGO motors and read the LEGO sensors.

• Do the “Getting Started Tutorial” in Section 10.3. This will save you time in learning
how the LEGO system works.

• You are to build a light-tracking device using the Ultragizmo board, the LEGO
driver board and the LEGO kit, as pictured below.

Figure 19 - LEGO Nose Diagram

• The basic idea is this: the M68000 will control a motor (via the PIT and the LEGO
driver board) that rotates a platform, as illustrated above. On that platform are two
light sensors, separated by a “nose.” You must build the platform and write an
M68000 program that will rotate the platform until the nose is pointing at a light
source. The trick is that the nose prevents the light source from shining on both sen-
sors until the light is directly in front of the nose. Your program should attempt to
line up the nose with the light source as quickly as possible. This means your pro-
gram should choose the direction of rotation of the platform intelligently – it
shouldn’t just always rotate in one direction until both sensors are illuminated.

Each LEGO kit contains several booklets of sample constructions. Booklet E describes the
building of a LEGO robot arm. Use the diagrams in this booklet to build the base of the device
described above. Steps 1 through 8 on pages 3 through 5 (and sub-steps 1-4 on page 5) show you

(this isn’t the actual gearing, just a rough picture)

“Nose”
Sensor #2

Sensor #1

Light Source (in LEGO kit)

Ultragizmo

PIT

LEGO
Driver
Board

Platform

Rotates
to search
for light

Assembly Language Laboratory Experiments

45

how to create a rotating platform. After that you have to construct the platform, nose and sensor
assembly.

The light will be a LEGO light that can be powered directly from the LEGO control board,
through the connector on the top (see Figure 55 in the LEGO Control Board section of this man-
ual).

Preparation: Read Chapter 10 of this manual, which describes how the LEGO motors and sen-
sors work, and how they are connected through the LEGO driver board to the Ultragizmo board’s
PIT. Study the LEGO pictures and try to get a sense of how to build the device described above.
Be sure to read the tutorial in Section 10.3. Write and assemble the assembly language program
described above.

Assembly Language Laboratory Experiments

46 Lab Manual for the UofT Ultragizmo Board

 Lab M11 (CODEC) Playing with Sound: A/D, D/A Conversion & Signal Processing

The purpose of this lab is to use the capabilities of the CODEC (COder-DECoder) to do some-
thing interesting with sound. Along the way, you’ll encounter some basic Digital Signal Process-
ing concepts. You may be motivated to use this hardware in your course project.

In this lab you are to use the CODEC, described in Section 8.6 on page 127, to do two things:
make a simple voice delay box, and a voice “speed changer.” In a voice delay box, when you
speak into the microphone, your voice comes out of the speaker a programmable amount of time
later. In the speed changer, you record your voice (or any sound) and play it back at different rates,
altering its pitch.

In this lab, you are to write two programs and do three parts:

1 Basic Program

A program that simply takes the input signal and outputs it is in ugsparc:/cad2/ultra-
gizmo/MLabs/codec.s. It will read in the a value from the microphone and output it to the speaker
immediately, in an infinite loop. This makes the system act just like a wire - what comes in goes
right out again. Input this program and execute it to be sure that it works.

2 Delay Loop

Write a program to delay the output of your voice for two seconds of time after you speak it.
This would be implemented by storing enough samples from the CODEC input channels in mem-
ory so you can wait for the required amount of time to output it. Be sure that your program is
always reading in the sounds as it is writing it back out (i.e. it should always be reading and play-
ing back at the same time in a continuous loop. Marks will be deducted for any program that reads
blocks of sound and plays them back later without reading at the same time).

3 Frequency Shift

Write a program to read in several seconds of sound, and then play it back at a different rate
(faster or slower, programmably). Hint: in the first two cases the CODEC status register provided
the timing between output samples. In this case, you must still output values whenever the
CODEC status register is ready, but you must be careful which values to output. Note that in this
part you should read a block a data into memory, and then output the result; you don’t need to pro-
duce sound continuously.

Preparation: The programs for parts 2 and 3. You should describe your method for altering the
pitch in part 3.

Assembly Language Laboratory Experiments

47

 Lab M12 (PIT & Interrupts) Interrupt-Driven I/O Using the LEGO Sensors

The purpose of this lab is to learn interrupt-driven synchronization of inputs. You are to build
and program a motor controller that is controlled by an interrupt-driven light sensor. Whenever
the light beam is interrupted the motor should change direction. The main program should also
read commands from the keyboard: if a ‘d’ is typed, then the interrupt should be disabled. If an ‘e’

is typed, then the interrupt should be enabled. If a ‘q’ is typed, then the program should exit, after
turning off all of the interrupt enables.

Your program should have the following parts:

• Initialization - sets up the interrupts.

• Main program - reads the keyboard input as described above.

• Interrupt Service Routine - changes direction of the motor, resets interrupts.

If you have time, build the motor into a car (you can make one using the base you made in Lab
M10, or look at the back of booklet E in the LEGO kits for some ideas), that is controlled by wav-
ing your hand! (optional).

Preparation: Read Section 10.7 of this manual, which describes how interrupts can be used with
all four sensors. Write the program described above.

In the Lab: You will not be able to use break-points or single-stepping to debug your program.
See Item 1 and Item 2 on page 89 for a fuller explanation.

Bonus (1 Mark): Attach a second light sensor to the LEGO board and rewrite your motor con-
troller so that whenever the light beam to this sensor is interrupted the motor turns on or off. You
program will therefore have to enable interrupts from both sensors, and your interrupt service rou-
tine must determine which sensor caused the interrupt and take the appropriate action (either
reversing the motor direction or turning the motor on or off).

Sensor #1Light Source

Ultragizmo

PIT

LEGO
Driver
Board

Figure 20 - LEGO Sensor and Light Source

FPGA Laboratory Experiments

48 Lab Manual for the UofT Ultragizmo Board

5 FPGA Laboratory Experiments

This section of the manual contains several laboratory experiments involving the Ultragizmo
board’s SFPGA. Each requires you to design a piece of digital hardware using VHDL, and some
require some M68000 assembly language coding. The descriptions typically specify an amount of
preparation to be done in advance of the lab. It is usually not possible to do the preparation during
the lab period itself, so it is strongly advised that you prepare in advance.

It is essential that you should have entered your VHDL code into a workstation computer in
advance of the lab, and compiled it without errors. Other chapters of this manual contain informa-
tion that may be necessary to complete these experiments.

For each lab you will require wrapper files. The files, wrapper.vhd and wrapper.acf, are
located in the /cad2/ultragizmo/FLabs directory on the ugsparc network. You should copy the rel-
evant files before each lab. As well, for some labs, you may be given some VHDL skeleton code,
to which you have to add your own code. This code is located in the same directory, under a sub-
directory with the lab name (e.g. Lab F3 is under /cad2/ultragizmo/FLabs/F3).

FPGA Laboratory Experiments

49

 Lab F1 Altera Software Introduction and Use

The purpose of this lab is to learn the basics of the Altera Max+plusII design software, includ-
ing design entry, simulation and compilation. It will also introduce a large-scale programmable
logic device, the FLEX 10K70 (SFPGA on the Ultragizmo board), and show you how to down-
load a circuit onto the device. There are two parts to the lab. The first is the design of a simple
combinational logic function, with the primary goal of learning how to use the Altera software.
The second part is the design of a more complex logic circuit that will be useful in later parts of
this course.

1 Preparation

1. Do the tutorial in Chapter 3.

2. Design, enter and simulate a circuit, using VHDL as the primary entry method, that
implements the following logic function:

You are to design a circuit which adds four 4-bit numbers, A, B, C, and D. Your
design should include register to store the sum, an active-low reset, which resets the
sum to 0, and a clock. The four numbers are to be entered one at a time on positive
clock edges. The result should be displayed on the LED display on the Ultragizmo
board. Remember that you need to store 6 output bits.

Show truth tables for for each bit position in the output, and derive the
corresponding Boolean expressions. Enter the simplified Boolean expressions into
Max+plusII as VHDL code that represents the adder.

3. You should modify the wrapper file in the /cad2/Ultragizmo/FLabs directory to
instantiate your circuit, and to connect the appropriate input and output pins. Your
inputs should come from the SFPGA_DIGITAL inputs in the wrapper.vhd file.

In the Lab:

1. Before downloading your designs into the board, connect a 40-pin cable from the
Ultragizmo board SFPGA_DIGITAL port into a digital protoboard - a TA will
demonstrate this. Notice that the cable can only plug into the header one particular
way, because the headers have “keys” which prevent incorrect insertion. The header
itself is numbered as follows, as viewed from the top:

FPGA Laboratory Experiments

50 Lab Manual for the UofT Ultragizmo Board

Be sure that the power to the Ultragizmo board is off and the power to the
protoboard is off.

2. Connect your input signals from the digital board switches to the correct input pins
for your circuit on the protoboard header - i.e to those pins that correspond to the
pins you selected in the wrapper file.

3. Turn on the power to the Ultragizmo board and protoboard.

4. Download and test your circuit, using the instructions from Chapter 3, and
demonstrate it to a TA.

2 Background

A seven-segment display is often used on computers, watches, VCRs and many electronic
devices to display numbers and some characters. It consists of seven independent lights in an “8”
configuration as shown below in Figure 22. By turning on different segments, you can display dif-
ferent numbers and some letters.

Preparation

You are to create two logic circuits to drive one of the four 7-segment displays on the Ultra-
gizmo board. Please see below for details on how to use the seven-segment displays. In particular,
note that to turn a segment on, you must drive the corresponding pin to a logical “0”.

1. Design a circuit that takes a four bit (X3, X2, X1, X0) input from the digital switch
board and drives digit #0 on the Ultragizmo board as described in the table below.
Note that for the letters, some are capitalized and some are not. (The reason is that a
capital B, for example, would come out the same as an 8 on a 7-segment display, so we
will display a lower case b instead).

1357911131539

24681012141640

Look for this
triangle - it
shows where
pin #1 is

Figure 21 - 40-Pin Header View from Top

FPGA Laboratory Experiments

51

2. Determine the equations for the 7-segment display segments, and minimize them
using the Karnaugh-map method. Write VHDL code to represent the logic function
for each segment as a Boolean equation. Simulate and test your equations using the
Max+plusII functional or timing simulation on the SFPGA.

In the Lab: Download and test your circuits from the preparation. Show each working circuit to
the TA.

Connections Between the 10K70 and the Seven-Segment Displays

The Ultragizmo board has four seven segment displays attached directly to the pins of the
chip. Figure 22 shows the naming of each segment in the wrapper file. NOTE: to turn a segment
on, you must drive the associated pin with a “0.” (not a 1). Also, note the numbering of the hex
digits.

X3 X2 X1X0 Display (note the capitalization)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 b
1100 C
1101 d
1110 E
1111 F

Table 1 - Hex Display Truth Table

FPGA Laboratory Experiments

52 Lab Manual for the UofT Ultragizmo Board

Figure 22 - 7-Segment Display Organization on the Ultragizmo Board

A0

B0

C0

D0

E0

F0

G0

A1

B1

C1

D1

E1

F1

G1

Digit #0 Digit #1

HOUTx(6) Ax

HOUTx(5) Bx

HOUTx(4) Cx

HOUTx(3) Dx

HOUTx(2) Ex

HOUTx(1) Fx

HOUTx(0) Gx

A3

B3

C3

D3

E3

F3

G3

A2

B2

C2

D2

E2

F2

G2

Digit #3 Digit #2

FPGA Laboratory Experiments

53

 Lab F2 Hierarchical Design

The purpose of this lab is to create a design using hierarchical design techniques. The use of
flip-flops in VHDL will also be explored.

Preparation

The purpose of this lab is to generate a sequence of Fibonacci numbers. Recall that the
Fibonacci numbers are defined by , with and , so that the

sequence of numbers begins 1,1,2,3,5,8,13,21,... In this lab, you are to construct a circuit that pro-
duces the Fibonacci numbers and displays them on the 7-segment displays. Note that since the
display uses hexadecimal, the sequence of values that you show should proceed as 0001, 0001,
0002, 0003, 0005, 0008, 000D, 0015,... A block diagram of one method for producing this
sequence is shown below. Each of the thick lines represents a bus of 16 wires. Two 16-bit registers
are used to store and respectively, the latter one of which is also connected to the 7-

segment displays. A 16-bit adder produces the sum of the two previous numbers, and at each
clock edge, a new number is loaded into one of the registers. The reset signal sets both of the reg-
isters to 0000000000000001 binary.

Figure 23 - Block Diagram of Fibonacci Counter

Design a single bit slice that contains a 1-bit adder, and two flip-flops. Use the Max+plusII
DFF component for the flip-flops. Ideally, we would ike to cascade 16 identical copies of this
slice to form the system, however, the reset state of the system makes this difficult. This is

xi xi 1– xi 2–+= x0 1= x1 1=

xi 1– xi 2–

16-bit Adder

16-bit register

16-bit register

Resetclk

FPGA Laboratory Experiments

54 Lab Manual for the UofT Ultragizmo Board

because the least significant bit resets to 1, and all of the other bits reset to 0. One way to get
around this difficulty is to design two slightly different versions of the 1-bit slice, one of which
resets to 0, and one of which resets to 1. Both of these should use the 1-bit adder cells. Conse-
quently, your VHDL code should have entities that correspond to the following diagram. The bit-
0 slice and bit-1 slice differ only in the way that they respond to the reset signal. The Fibonacci
generator has 1 instance of the bit-1 slice, and 15 instances of the bit-0 slice.

Figure 24 - VHDL Entity Organization for Fibonacci Counter

Preparation: Prepare and compile all of your VHDL code before the lab.

In the Lab: Implement and test the circuit that you designed above, and demonstrate it to a TA.

Fibonacci

bit-0 slice bit-1 slice 7 segment decoder

1-bit adder

FPGA Laboratory Experiments

55

 Lab F3 System Design Using State Machines and Arithmetic

The purpose of this lab is to perform a larger scale design using state machines and arithmetic
circuits. The goal is to design a watch and stopwatch combination.

Description

The purpose of this lab is to construct a watch/stopwatch combination, but for brevity we will
just call it the watch. It will have three switches to control it, and display the result, but operates as
either a watch or a stopwatch.

The control buttons are called mode, select, and start/stop.

The watch has three modes: watch mode (W), stopwatch mode (S), and set_watch mode
(SW). A 0 to 1 transition on the mode switch changes the mode of the watch from one to the next,
in the following order W -> S -> SW -> W, etc.

In any mode, the watch keeps track of time in a MM:SS.HH format, where MM is the time in
minutes, SS is the time in seconds, and HH is the time in hundredths of a second. Because we
have only four digits that can be displayed at any one time, the select button is used to toggle
between three different representations of the time. A 0 to 1 transition on select will change the
display in the following order: MM:SS -> SS.HH -> HH,MM, etc.

The watch is always running. In watch mode, the display shows the time according to the dig-
its selected.

In stopwatch mode, the display shows the amount of time that the stopwatch has run. The
start/stop button controls the stopwatch. A 0 to 1 transition on start/stop will start the watch if it is
stopped, and conversely, stop the watch if it is already started. However, a 1 on the start/stop
switch for 2 seconds or more will set the stopwatch back to 00:00.00, and set the stopwatch mode
back to stopped.

In set_watch mode, the current value of the watch will be displayed, and the watch will stop
counting. The right time display will flash on and off at 1 Hz rate (i.e., on for .5 sec, followed by
off for .5 sec.) In this mode, when the start/stop switch is 1, the value being displayed will incre-
ment at 2 counts per second. A roll-over of the display (eg. from 59 back to 0) will not affect the
digits to the left, some of which might not visible at that time.

Preparation

Design your watch in VHDL. In a large design, it is usually valuable to test pieces of the
design incrementally, as they are completed. Simulate each of the components, using several dif-
ferent designs that include progressively larger pieces of the watch.

The watch contains a large number of arithmetic components as well as state machines. You
should use VHDL that expresses arithmetic operations for the arithmetic. Use one process for
each distinct piece of combinational logic, and one process for each state register.

FPGA Laboratory Experiments

56 Lab Manual for the UofT Ultragizmo Board

Figure 25 - VHDL Entity Organization for Watch

A possible way to organize the design is shown above in Figure 25. The watch contains a con-
troller, two timers, and a display. The timer is made up of mod-10 and mod-6 counters. The con-
troller monitors the buttons, and tells the display what to show, and whether to flash or not. It also
controls the counting of each of the timers.

You may choose to use a package to define a type that represents the state of the display, and
can be shared between the watch, timer, and controller. If you decide to do so, make sure you use
the interfaces->vhdl reader menu to set the VHDL version to 1993.

Predefined Modules

The watch is a fairly complicated design. In order to simplify your work, a number of pre-
defined design entities will be made available in the /cad2/ultragizmo/FLabs/F3 directory on the
ugsparc network. These are as follows:

Modulo Counters

Modulo-6 and modulo-10 counters will be provided in count6.vhd and count10.vhd. Their
component declarations are below. The clk signal is the clock, and both an asynchronous and syn-
chronous reset are provided. Only use the asynchronous reset for master reset of the entire chip.
Each counter provides an enable signal to enable counting, and output value, and a carry_out that
is asserted when the counter is at its maximum count.

component count6 is
port (
clk: in std_logic;

watch

timer

mod-10 mod-6

display controller

FPGA Laboratory Experiments

57

sync_reset: in std_logic;
async_reset: in std_logic;
enable: in std_logic;
count: buffer std_logic_vector (3 downto 0);
carry_out: out std_logic);

end component;

component count10 is
port (

clk: in std_logic;
sync_reset: in std_logic;
async_reset: in std_logic;
enable: in std_logic;
count: buffer std_logic_vector (3 downto 0);
carry_out: out std_logic);

end component;

Timer

A skeleton of a timer will be provided. This includes the interface, and the declaration of con-
trol signals and instantiation of the 6 counters needed for a MM:SS.HH timer. You must complete
the control logic for the count enable signals and output selection. The output selection is defined
using a signal of type display_select. The interface to a timer is:

entity timer is
port (

clk: in std_logic;
sync_reset: in std_logic;
async_reset: in std_logic;
run_enable: in std_logic;
increment_display: in std_logic;
display_which: in display_select;
display_3: out std_logic_vector (3 downto 0);
display_2: out std_logic_vector (3 downto 0);
display_1: out std_logic_vector (3 downto 0);
display_0: out std_logic_vector (3 downto 0));

end timer;

Timer Output Select

A predefined type called display_select is available to communicate the desired digits
between the watch and the timers. This is defined as follows in watch_types.vhd:

package watch_types is
type display_select is (sel_seconds, sel_minutes);

end watch_types;

This is probably the cleanest way to define the structure of the information passed between the
controller and the timers. Unfortunately, there is a bug in Max+plusII which prevents it from

FPGA Laboratory Experiments

58 Lab Manual for the UofT Ultragizmo Board

working correctly in the present version. You should use watch_types_const.vhd instead, which
explicitly assigns logic values to the display_select type.

Seven-segment Decoder

A 7-segment decoder with enable is available in seg7.vhd. The enable signal must be a 1 for
the display to be enabled, otherwise all of the LEDs will be off.

Clock Generator and Watch Main Module

A skeleton of the watch is provided in /cad2/ultragizmo/FLabs/F3. This includes the defini-
tion of a 100Hz clock, a 1Hz clock, and a timing signal that is enabled for one 100Hz cycle, twice
per second.

The definition of these uses the M68000’s 16.67MHz internal clock. This clock is divided
down to a 100Hz clock. The clock divider uses the ratio 16.67MHz/100Hz/4 = 41675 as part of
the clock division chain. To make simulations run faster, the clock division ratio is initially set to
3. You should simulate your watch using the division ratio of 3, and change the number to 41675
when you are ready to compile for execution on the Ultragizmo board.

The watch main module also provides a timer for the start/stop button to detect when it has
passed 2 seconds. Initially, the timeout value is set to .5 second for faster simulation. You should
change this to 2 seconds when you want to compile for the Ultragizmo board.

In the lab:

• Week 1: Design, test, and demonstrate a single timer, capable of toggling between
the display states. Use of the Ultragizmo’s clock chip is not necessary at this point,
but would be very useful!

• Week 2: Complete the watch, and demonstrate it to a TA. For complete marks your
watch must have all the capabilities described above.

FPGA Laboratory Experiments

59

 Lab F4 System Design and Memory Arrays

The purpose of this lab is to investigate the use of memory on the SFPGA. This will be done
by modifying the design from Lab F3. As part of this, the issue of design modularity and parame-
terization of a design will be discussed. The specific goal used to illustrate these concepts is the
modification of your watch design from Lab F3 to remember up to 8 times that are timed by the
stopwatch.

Description

The goal of this lab is to allow the user to save and examine up to 8 times that have been deter-
mined by using the stopwatch. However, the watch will not require this feature.

Recall that the control buttons are called mode, select, and start/stop.The watch will be
extended to have four modes: watch mode (W), stopwatch mode (S), stopwatch memory mode
(M), and set_watch mode (SW). A 0 to 1 transition on the mode switch changes the mode of the
watch from one to the next, in the following order W -> S -> M -> SW -> W, etc. The watch has 8
memory cells that can each store a time.

As before, in all modes, the watch keeps track of time in a MM:SS.HH format, where MM is
the time in minutes, SS is the time in seconds, and HH is the time in hundredths of a second, and
the select button is used to toggle between three different representations of the time.The opera-
tion of the W, S, and SW modes is the same as in Lab F3.

The watch is augmented to have 8 memory cells, and a memory cell stores a time in the
MM:SS.HH format. In M mode, the display shows the value recorded by the current memory cell
address. The current memory cell address is a number from 0 to 7, and is adjusted by use of the
buttons, as described as below. A 0 to 1 transition on the start/stop button increments the memory
cell address that is being displayed by 1. The memory cell address will roll over from 7 to 0. If the
start/stop button is held down for 2 seconds, then the value currently recorded in the stopwatch is
stored in the current memory cell. The select button works as usual in M mode.

Use the Altera EABs to implement the memory cells. Each EAB can store up to 256 words of
8 bits, so the simplest method is to use 3 EABs, each storing 8 bits of the time. You will only need
to use 8 words of each EAB. Be careful in your VHDL code in configuring the input and output
registers and clocking of the EAB.

The design issue of interest here is how to perform a modular design, while specializing it to
include the memory feature only for the stopwatch and not the watch. The advantage of a modular
design is that you can define a module once, then create multiple identical copies of it. Since it is
necessary to have several slightly different versions of the module, the design needs to be struc-
tured carefully to maximize modularity. For this problem, there are two approaches that can be
taken.

FPGA Laboratory Experiments

60 Lab Manual for the UofT Ultragizmo Board

Parameterization of a Module

One approach is to define a general module that includes all of the features that you could
want, but by including certain parameters, can be specialized to only contain a subset of the par-
ticular features in each distinct copy. To do this, you would redefine the timer module to contain a
memory controller, which contains the memory array and control circuit. Since the watch does not
require the memory controller, an additional parameter would be required to specify whether or
not to include the memory controller. VHDL includes the generic feature and generate state-
ments to let you control whether or not the memory controller is instantiated. Unfortunately,
Max+plusII does not support the necessary features in VHDL, so you can’t do this!

An alternative which is acceptable in this lab, because we have the extra hardware, is to
implement the memory controller for both the watch and the stopwatch, by including it in the
timer module unconditionally. This is a waste of hardware, but we have some extra EABs so this
is reasonable for this lab. However, you should be able to show which parts of VHDL code for the
timer should only be instantiated for the stopwatch timer.

Finer Grained Modularity

Another approach is to break up the design into smaller modules. You can expand the inter-
face of the timer so that the time in MM:SS.HH is also output, and define a memory entity that
has an input and output in MM:SS.HH format. You can then connect the memory entity up to the
stopwatch instance of the timer. Because both the timer and the memory need to select between
MM, SS, and HH, you should also split off the output selection logic into a separate entity.
Finally, you will need to include more complex display selection logic in the watch. This
approach requires a finer degree of control over the design entities.

Either of these two approaches is acceptable, but the parameterized modules are somewhat
more modular and clean. This approach makes it possible to create any number of timers, with or
without associated memory.

Preparation: Prepare your VHDL, compile and simulate it before the lab.

In the Lab: Test your design and demonstrate it to a TA.

FPGA Laboratory Experiments

61

 Lab F5 Data Transfer on the M68000

The objective of this lab is to study data transfer on the bus of the M68000 microprocessor,
and to become familiar with design of memory interfaces. In the first part of the lab you will use
the SFPGA to implement a simple register that can be accessed via M68000 assembly instruc-
tions. In the second part of the lab, you will implement an SRAM controller using the SFPGA and
the Ultragizmo’s SRAM memory. In the third part of the lab, you will implement a DRAM con-
troller using the SFPGA and a standard DRAM chip. You will test your design using M68000
assembly language. This lab will likely take two weeks to complete.

Data Transfers on the M68000

The M68000 bus is asynchronous and uses a handshake to transfer data. The following
description refers to the processor as the device issuing read and write data transfer requests. The
signals involved in data transfer are:

A23-1 Address lines. The processor transmits the word address of the data to be transferred on
these lines. When only one byte of that word is to be transferred, the processor uses the
Data Strobe signals (see below) to indicate whether the low or high order byte is
involved. There is no bus line for the least-significant address bit A0.

AS Address Strobe. Asserted by the processor to indicate that the address lines carry a
valid address.

D15-0 Data lines. These carry the data being transferred. Driven by the addressed device dur-
ing read operations and by the processor during write operations.

LDS Lower data strobe. Asserted by the processor when the low-order byte of a word is to
be transferred.

UDS Upper data strobe. Asserted by the processor when the high-order byte of a word is
being transferred. During a word transfer, the processor asserts both LDS and UDS.

DTACK Data acknowledge. Asserted by the device being addressed after it has completed the
requested operation.

R/W Used by the processor to indicate whether it is requesting a read or a write operation.

The address strobe is the timing signal used in conjunction with the address lines. The LDS
and UDS signals perform the function of the request signal in the handshaking protocol.

A read operation proceeds as shown in Figure 26. The processor transmits the address and
then asserts AS, after an address setup time tas of at least 20 ns. It asserts LDS and UDS at the
same time to request data from the addressed device. The device responds by placing the data on
the bus and asserting DTACK. In doing so, it must guarantee that the data is valid on the data lines
no later than 65 ns after DTACK is asserted.

It may appear odd that the device may send the data after it asserts DTACK. The reason this is
allowed is that the processor waits for one clock cycle (100 ns) after receiving DTACK before it
strobes the data into its input buffer. Remember that while the bus signals are asynchronous, the

FPGA Laboratory Experiments

62 Lab Manual for the UofT Ultragizmo Board

processor itself is a synchronous machine. It will detect the asserted state on DTACK at one clock
edge, then strobe the data at the next clock edge. Thus, the condition tdd≤65 ns means that the
actual setup time for the input buffer of the processor, tds, is greater than 35 ns.

After strobing the data, the processor negates AS, LDS, and UDS to end the transfer cycle.
The device responds by removing the data and negating DTACK.

1 Implementing a Register

The Ultragizmo board’s address space from $a00000 to $bfffff is not used. In this lab, you are
required to add a 16-bit register in this available range. To reduce the amount of wiring, you are
allowed to use aliasing. That is, instead of locating your register at a specific location, you can
allow any address in the range $a00000 to $bfffff to access your register. This means you only
need to decode the upper address bits and can leave the lower bits unconnected.

The register should reset to 0, and the current contents of the register should always be shown
on the 7-segment displays.

• Design the circuitry needed to interface the SFPGA to the M68000 bus with timing
as shown in Figure 26. Make sure that your design handles both byte and word oper-
ations correctly. Pay special attention to the timing of DTACK, and remember that it
is an open-collector signal.

tas≥20ns

tdd≤65ns tds≥35ns

≥100ns tackh≤190ns

tah≥20ns

tdh≥0ns

A23-1

UDS

DTACK

D15-0

LDS

AS

CLK
(Clock edge at which
data is sampled)

Figure 26 - Timing Diagram for a Read Operation on the M68000 Bus

FPGA Laboratory Experiments

63

• Write an assembly language program to test your circuit. The program should read
the register, add 1 to the value, and then write the sum back to the register. You will
need to add a lot of NOPs to your code to make the result visible on the 7-segment
display.

2 SRAM Controller

The objective of this section is to design an SRAM controller using the SFPGA on the
M68000 bus. In the lab a controller and datapath are created to provide the address and control
signals required by the SRAM memory located on the Ultragizmo board.

The purpose of this lab is to implement a 1M byte memory using two 256K * 16 SRAMs. An
overview of the system is shown below.

Figure 27 - Diagram of SRAM and Controller Interconnections

For the purposes of this lab we will ignore SRAM timing issues by assuming that each timing
interval is implemented within a clock cycle.

An SRAM has 6 control signals, four of which control the addressing of the RAM, and two of
which control the reading and writing of data. The SRAMs you will be using are 256K * 16,
which means that 18 address bits are required to address a particular 16 bit word in the RAM. The
SRAM is enabled when EN is asserted; when LD is asserted, the lower 8 data bits are enabled;
similarly when UD is asserted, the upper 8 data bits are asserted.

The signals OE and WE control whether the cycle is a read or a write cycle. If OE is asserted,
the cycle is a read and the data appears on the I/O pins shortly after the address pins become sta-
ble. If the cycle is a write, then WE should be asserted and the data is driven on the I/O pins for at
least 8ns before the end of the WE assertion. Details of the two types of cycle appear in Figure 28.

Figure 28 - SRAM Read and Write Timing Diagrams

sram data0-15

sramdl0-15

sramdh0-15

sram1en
sram1oe

sram1we

sram1ud

sram1ld

sram2en

sram2oe

sram2we

sram2ud

sram2ld

address1-23

AS

LDS

UDS

RW
DTACK

SRAM
Controller

SRAM
Low

SRAM
High

srama0-17

srama0-17

FPGA Laboratory Experiments

64 Lab Manual for the UofT Ultragizmo Board

3 DRAM Controller

The objective of this lab is to investigate the design of a DRAM controller using the M68000
bus. This exercise represents the design of a complex controller and datapath needed to provide
the address and control signals required by a DRAM memory.

The purpose of this lab is to implement a 256K byte memory using 256K * 4 DRAMs.
Because a large number of data wires would be required to implement a word-wide memory, your
memory only needs to implement the lower byte of 256K consecutive words. That is, for any
word in the 256K word (512KB) region that your memory implements, a read or write to that
word should access a word with the lower byte correct, but the upper byte may contain garbage.
For example, if the CPU writes the value $1234 into location $a00000, and later reads $a00000,
then the lower byte should contain $34, but the upper byte may contain any value. To implement

ADDR

EN

UD, LD

OE

Data Out Data Valid

SRAM Read Operation

ADDR

OE

EN

UD, LD

WE

SRAM Write Operation

Data Out

Data In Data Valid
High Z

High Z

FPGA Laboratory Experiments

65

this you can use two 256K*4 DRAMs with their data lines connected to the lower 8 bits of the
data bus D0-7. An overview of the system is shown below. A more detailed diagram is shown at
the end of the lab handout.

The system contains an address decoder and DRAM controller which generates the timing
signals RAS, CAS, OE, and WE for the DRAMs. Because the DRAMs implement a 256K word
memory, (although only the lower byte of each word) address lines A1-18 are used to address the
memory. Other address lines may be used to decode the address. You should choose a 256K word
region in the range $a00000 to $bfffff for your memory. You may have the memory appear at mul-
tiple locations if this simplifies your hardware.

Figure 29 - Diagram of DRAM and Controller Interconnections

The detailed timing of a DRAM is a complex specification with many subtle issues. For the
purposes of this lab we will ignore all of them by assuming that each timing interval is imple-
mented with two clock cycle. This is much slower than is actually required, since DRAMs we use
are capable of accessing in 80ns. However, this assumption greatly simplifies the design of the
hardware.

A DRAM has 4 major control signals, two of which control the addressing of the RAM, and
two of which control the reading and writing of data. The first two signals are RAS and CAS,
which stand for Row Address Strobe and Column Address Strobe respectively. The DRAMs you
will be using are 256K * 4, which means that 18 address bits are required to address the particular
4 bit word in the RAM. DRAMs avoid the need for 18 address pins on each chip by multiplexing
the address bits over 9 pins. The steps involved in addressing the DRAM for read and write cycles
are shown in Figure 30. In each case, half of the address bits are driven on the address lines, RAS
is asserted, the second half of the address bits are driven on the address lines, and CAS is asserted.

The signals OE and WE control whether the cycle is a read or write cycle. If OE is asserted,
the cycle is a read and the data appear on the I/O pins shortly after CAS is asserted. If the cycle is
a write, then WE should be asserted and the data driven on the I/O pins before CAS is asserted.
See Figure 30 for details of the two types of cycles.

Figure 30 - DRAM Read and Write Timing Diagrams

F
PG

A
D

ig
it

al
 b

oa
rd

FPGA Laboratory Experiments

66 Lab Manual for the UofT Ultragizmo Board

Because DRAMs are dynamic, they will forget the information stored unless each cell is peri-
odically read. Each access to the DRAM reads an entire row of 512*4 bits, and restores the signal
levels in that row of cells. Each row must be read at least every 8ms. There are a total of 512 such
rows. The easiest way to do this is to read one of the rows every 8ms/512=15.6 microseconds.
However, the DRAM provides some help in doing this. The DRAM has an internal counter that is
consecutively incremented when a CAS-before-RAS refresh cycle is performed (see Figure 31).
A refresh cycle reads the data internal to the DRAM, but does not drive it on any of the I/O pins.
A CAS-before-RAS refresh cycle is performed by asserting CAS, waiting a while, and then

FPGA Laboratory Experiments

67

asserting RAS. The address pins may be driven with any value, since the DRAMs internal counter
supplies the address for this type of cycle.

Figure 31 - DRAM CAS-before-RAS Refresh

This establishes the need for a timer that periodically (every 15 microseconds or less) deter-
mines when it is necessary to perform a refresh. Because of the need for servicing requests for
both refresh and read/write accesses from the M68000, the controller must be designed to accept
requests from two sources. The controller should examine requests for refresh, as well as the bus
of the M68000. When a request is seen, the controller should perform the requested type of cycle.
The controller design must be done carefully, so that if a refresh and a M68000 request happen
simultaneously, one cycle is performed, then the other. It is suggested that the refresh be done
first, to avoid the possibility of indefinitely postponing the refresh (if the M68000 continually
accesses the DRAM).

A suggested hardware structure is shown in Figure 32. There are three main components. A
set of nine 2-to-1 multiplexers is used to multiplex the M68000 address bits A1-18 onto the
DRAMs 9 address bits DRAMA0-8. A refresh counter is used to generate a request for refresh
every 8 microseconds. 8 microseconds is 128 clock cycles using the M68000 clock, so is a conve-
nient number for this purpose. Note that the refresh timer must assert the refresh request until a
refresh cycle is performed, because the DRAM may be in the middle of doing a read or write
cycle when the refresh request occurs. The easiest way to detect that the refresh has begun is to
detect that CAS is asserted and RAS is negated.

For testing purposes you will need to obtain a DRAM chip from your TA. You can place your
chip on the digital protoboard and wire it to the SFPGA using a 40-pin connector connected to the
SFPGA_DIGITAL port.

In the lab:

• Week 1: Design, test, and demonstrate parts 1 and 2 (the register and SRAM control-
ler).

• Week 2: Design, test, and demonstrate part 3 (the DRAM controller).

FPGA Laboratory Experiments

68 Lab Manual for the UofT Ultragizmo Board

Figure 32 - DRAM Controller Block Diagram

FPGA Laboratory Experiments

69

 Lab F6 Bus Arbitration on the M68000

The objective of this lab is to study bus arbitration on the bus of the M68000 microprocessor,
and to become familiar with the design of DMA engines. In this lab you will use the SFPGA to
implement a simple DMA engine that can be controlled via M68000 assembly instructions. This
lab might take two weeks to complete.

Direct Memory Access

The figure below shows the M68000, its bus, the memory, and the SFPGA. In this lab you will
write a DMA engine to copy data from the memory to the 10K70 and vice-versa.

Figure 33 - Block Diagram of M68000 Bus

By using the M68000 to write to registers in your circuit, you will cause your circuit to gain
control of the M68000 bus and perform read and write data transfers. The control registers in your
circuit will allow you to specify the target address and amount of data to be transferred, and to
specify the data being written or examine the data being read.

Bus Arbitration on the M68000

Bus arbitration on the M68000 is performed using three active low signals; Bus Request
(BR), Bus Grant (BG), and Bus Grant Acknowledge (BGACK). The waveform for bus arbitra-
tion is shown below in Figure 34.

Figure 34 - Timing Diagram for Bus Arbitration on the M68000 Bus

10K70

Data
Reg

ControlDRAM

M68000
M68000 Bus

BR

BG

BGACK

> 20 ns

< 1.5 cycles

device is Bus Master

FPGA Laboratory Experiments

70 Lab Manual for the UofT Ultragizmo Board

The device that wants to become master asserts BR. The CPU then asserts BG, which is typi-
cally connected in a daisy chain between devices. In this lab, your circuit is the only potential bus
master (other than the CPU), so you never need to pass the grant.

The device can begin driving bus signals as soon as it receives the grant and the bus is free.
The bus is free when AS, UDS, LDS, DTACK, and BGACK are all unasserted. At this point the
device becomes Master by asserting BGACK and then releasing BR. BGACK must be asserted at
least 20 ns before BR to ensure that all devices recognize that the bus is busy. BR must be released
within 1.5 clock cycles after the assertion of BGACK, or the device may receive a second grant
(sometimes this is desirable). The CPU will release BG after sampling BGACK asserted. The
device must keep BGACK asserted until it is finished driving the bus.

Control Registers

This lab builds on the register interface you designed in Lab F5. In order to control your DMA
engine, you need to implement 3 control registers that can be accessed by the CPU. You may
place your registers anywhere in the free memory space ($a00000 to $bfffff) and may alias them
to multiple memory locations in order to reduce the amount of wiring.

• DMA Address Register (8 bits, suggested location $a00000):

All DMA data transfers should end at memory location $8XX00 in main memory, where XX
is taken from this 8-bit register. Note that the 8 LSB’s of the address are 0. This is done to ensure
that all transfers are aligned to a word address, and that the count can be used directly as part of
the address. This should simplify your design.

• DMA Data Register File (16 bits x 8 locations, suggested starting at $b00000):

This register file contains the data transferred by the DMA engine. If a DMA write is to be
performed, these values will be written into the main memory. If a DMA read is performed, these
are the values read from main memory.

• DMA Control Register (8 bits, suggested location $a00002):

The 3 LSB’s contain the count of the number of words that are to be transferred. To simplify
your design, you can count down from this value to 0. The value of the counter can be used
directly for some of the address lines, and the transfers should stop when the count reaches 0.

The 2 MSB’s are used for read and write controls. Writing a 1 to the MSB of this register
should cause your DMA engine to perform a write transfer of <count> words with a data value of
(data register) ending at address $8XX00. Writing a 1 to the 2nd MSB of this register should
cause your DMA engine to perform a read transfer of <count> words ending at address $8XX00.

Implementation

In addition to the logic required to access and implement the control registers, you will need a
circuit to request the bus and follow the bus arbitration protocol for the M68000. In addition, you

FPGA Laboratory Experiments

71

will need to implement a bus master state machine to perform the data transfers to and from main
memory.

If it simplifies your circuit, you may make the Address register and Control register write
only. If a read is performed to a write only register, DTACK must be asserted normally, but gar-
bage data may be returned.

Figure 35 on the next page shows one possible top level design for your circuit.

The Address Register Logic Block implements the register to hold the XX part of the DMA
address. It also combines the count with $8XX00 and drives this address on the bus when enabled
by the DMA engine.

The Register Access Control Block handles reads and writes to the 3 control registers. The
logic in this block should be very similar to Lab F5.

The Data Register Logic Block implements the register file that holds either the data to be
written for a DMA write, or the data that was read for a DMA read. It must be able to store or
drive the data on the bus as instructed by either the Register Access Control Block or the DMA
Engine.

The Control Register Logic Block implements the counter and the DMA read or write control
logic. When the counter value is non-zero, this block asserts either read or write to instruct the
DMA Engine to perform a data transfer. As each data transfer completes, the DMA Engine will
decrement the count by 1.

The DMA Engine has two functions. When instructed by the Control Register Logic, it
requests the M68000 bus and obeys the bus arbitration protocol. Once it is granted the bus, it
becomes the bus master and performs read or write transfers using the M68000 data transfer pro-
tocol. In the lab, demonstrate a DMA read and a DMA write to your TA.

Excerpts from the Motorola MC68306 Manual

The following is an excerpt from the Motorola MC68306 User’s Manual (p. 3-4) concerning a
bus read cycle:

“A bus cycle consists of eight states. The various signals are asserted during specific states of a
read cycle as follows:

STATE 0 The read cycle starts in state 0 (S0). The processor places valid function codes
on FC0-FC2, a valid address on the bus, and drives R/W high to identify a read cycle.

STATE 1 During state 1 (S1), no bus signals are altered.

STATE 2 On the rising edge of state 2 (S2), the processor asserts AS and UDS/LDS.

STATE 3 During state 3 (S3), no bus signals are altered.

STATE 4 During state 4 (S4), the processor waits for a cycle termination signal (DTACK

FPGA Laboratory Experiments

72 Lab Manual for the UofT Ultragizmo Board

or BERR). If neither termination signal is asserted before the falling edge at the end of S4, the
processor inserts wait states (full clock cycles) until either DTACK or BERR is asserted.

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 Sometime between state 2 (S2) and state 6 (S6), data from the device is driven
onto the data bus.

STATE 7 On the falling edge of the clock entering state 7 (S7), the processor latches data
from the addressed device and negates AS and UDS/LDS. The device negates DTACK and
BERR at this time.”

NOTE: It is our experience that the DTACK negation in the read state 7 in a DMA is short and
can go unnoticed, leading to a hung bus. Not checking for a negated DTACK can solve the prob-
lem.

The following is an excerpt from the Motorola MC68306 User’s Manual (p. 3-7) concerning a
bus write cycle:

“The descriptions of the eight states of a write cycle are as follows:

STATE 0 The write cycle starts in state 0 (S0). The processor places valid function codes
on FC2-FC0, a valid address on the address bus, and drives R/W high (if a preceding write cycle
has left R/W low).

STATE 1 During state 1 (S1), no bus signals are altered.

STATE 2 On the rising edge of state 2 (S2), the processor asserts AS and drives R/W
low.

STATE 3 During state 3 (S3), the data bus is driven out of the high-impedance state as
the data to be written is placed on the bus.

STATE 4 At the rising edge of S4, the processor asserts UDS and/or LDS. The processor
waits for a cycle termination signal (DTACK or BERR). If neither termination signal is asserted
before the falling edge at the end of S4, the processor inserts wait states (full clock cycles) until
either DTACK or BERR is asserted.

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 During state 6 (S6), no bus signals are altered.

STATE 7 On the falling edge of the clock entering state 7 (S7), the processor negates AS,
UDS, and/or LDS. As the clock rises at the end of S7, the processor places the data bus in the
high-impedance state, and drives R/W high. The device negates DTACK and BERR at this time.”

NOTE: It is our experience that the DTACK negation in the write state 7 in a DMA is short
and can go unnoticed, leading to a hung bus. Not checking for a negated DTACK can solve the
problem.

FPGA Laboratory Experiments

73

Figure 35 - Block Diagram of DMA Controller

A
dd

, R
/W

, A
S

,
U

D
S

, L
D

S

D
T

A
C

K

R
eg

is
te

r
A

cc
es

s
C

on
tr

ol

A
dd

re
ss

R
eg

is
te

r
Lo

gi
c

D
at

a

A
dd

co
un

t

lo
ad

en
ab

le

C
on

tr
ol

R
eg

is
te

r
Lo

gi
c

D
at

a
de

cr
em

en
t

re
ad

w
rit

e
lo

ad

D
at

a
R

eg
is

te
r

Lo
gi

c

lo
ad

lo
ad

en
ab

le en
ab

le

D
at

a

D
M

A
E

ng
in

e

B
R

, B
G

, B
G

A
C

K

A
S

, L
D

S
, U

D
S

, R
/W

D
T

A
C

K

FPGA Laboratory Experiments

74 Lab Manual for the UofT Ultragizmo Board

 Lab F7 (CODEC) Playing with Sound Using the Altera 10K70

The objective of this lab is to use the CODEC (COder-DECoder) to read and write sound, and
to do manipulations on the sound. There are three parts to the lab. In the first you will take the
input from the CODEC and output it directly, thus implementing a wire from input to output. In
the second part, you will implement a programmable delay from input to output. In the last part
you will record the input sound, manipulate it, and output it. A functional description of the
CODEC is given in Section 8.6 on page 127.

1 Direct Input to Output

Given the timing requirements stated in section 8.6, implement a circuit which reads the input
from the CODEC and writes the result back to the CODEC, in one cycle of the ssync pulse. For
this lab you will need to implement a shift register as described in Section 8.6 on page 127.

2 Input to Output with Delay

In this section you will read values from the CODEC into a FIFO buffer, which will imple-
ment a delay. The length of the delay will be determined by the value of a 16-bit M68000 register,
identical to the one designed in lab F5. The FIFO buffer should be implemented using the SRAM
memory available on the Ultragizmo board. The SRAM contains 1 MB of memory. Since each
read operation stores 4 Bytes, there is space for 256K values. At a sampling frequency of 48 kHz,
this represents 5.5s of sound (i.e. a maximum delay of 5.5s if continuously sampling). You should
continuously sample and output values. A block diagram of the circuit is shown in Figure 36.

3 Change in Pitch

In this part you will store 256K values in the SRAM, and output them afterwards (i.e. not con-
currently) at a different rate than the sampling rate. This will have the effect of changing the pitch
of the input sound. The output rate should be determined by the value stored in a 16-bit register
accessed through the M68000 bus. Remember that the data are sampled at 48 kHz and that the
output rate is also 48 kHz. To decrease the pitch you could for example output the same values for
two consecutive ssync pulses. To increase the pitch you might send every second stored value to
the output.

FPGA Laboratory Experiments

75

Figure 36 - Block Diagram of Delay Circuit

Register

CODEC

SRAM

M
68

00
0

B
us

inout

SFPGA

• Control Logic

• Pointers to SRAM
• I/O Shift Registers

M68000 Assembly Language Programs

76 Lab Manual for the UofT Ultragizmo Board

6 M68000 Assembly Language Programs

The tutorials in Chapter 2 give examples of actual M68000 assembly language programs and
explain how to execute such programs on the University of Toronto Ultragizmo board. This
chapter provides more detailed information. The first section summarizes the M68000 assembly
language, the second section explains how to assemble a M68000 assembly language program,
and the third section explains how to execute such a program. The fourth section shows what you
should expect to see on your terminal when creating, assembling, and executing an M68000
program. The final section explains the procedure for compiling C code for the Ultragizmo board.

6.1 M68000 Assembly Language

Each line of an M68000 assembly language program can be either a comment, a statement, a
directive, or a blank line. This section describes each of these basic constructs. It is your job to
figure out which of these building blocks to use when writing your M68000 assembly language
program.

Before delving into the details of the M68000 language, you should understand what the
assembly location counter is. The assembly location counter is used by the assembler to keep
track of where an instruction or datum is in memory. The assembler uses this information to
translate symbolic labels into actual addresses.

The initial default value of the assembly location counter is 0. After processing an instruction
or datum, the assembler automatically updates this counter by the number of bytes needed to store
that instruction or datum. You can also change the value of the location counter at any point in an
assembly language program by using an org directive at the appropriate spot in your program. For
example, by placing an org directive before the first instruction in your program, the initial value
of the assembly location counter will be set to the value specified in the org directive. (org
directives are described in more detail in Section 6.1.3.)

Each assembly language program to be executed on the Ultragizmo board will have to have a
starting address greater than or equal to $8001. The Ultragizmo board reserves locations $0 to
$8000 for the FBUG monitor program, so your program must start with an org directive using an
address of at least $8001. Refer to Table 4, “Memory Map of the Ultragizmo Board,” on page 93
for the Ultragizmo board’s memory map.

6.1.1 Comment

A line is treated as a comment if the character in column 1 is a star (*). A comment line is
ignored by the assembler. See also the note on comments in the next section.

6.1.2 Statement

A line in an M68000 program can be a statement which contains an M68000 instruction that
tells the M68000 processor what to do. Each statement contains up to four fields that appear in the
following order:

 Label Operator OperandList Comment
An example of a statement that uses all four fields is:

 loop move.l #10,d1 ;move 10 into register d1

M68000 Assembly Language Programs

77

The fields are separated by white spaces.

A Label is a user-defined symbol which is assigned the current value of the assembly
location counter. It must satisfy the following requirements:

1. It must be composed of alphanumeric characters, of which the first character must be a
letter. Upper and lower cases are treated differently. For example, “Alpha” is a different
label than “alpha”.

2. It may have any number of characters, but the assembler only looks at the first eight.

3. Each label must be unique within the first eight characters from any other label.

The Label field is optional. If a label is present, then it must begin in column 1 of the source
line. Otherwise, one or more spaces (and/or tabs) must be typed to indicate the absence of a label.
A label may appear on a line with no operator.

 An Operator is an instruction mnemonic for an M68000 instruction and the a68 assembler
requires it to be in lower cases. In the example statement above, move.l is an operator. For a
full listing of instruction (opcode) mnemonics, see the text, Computer Organization, by
Hamacher, Vrenesic, and Zaky, fourth edition, or consult a Motorola manual.

An OperandList consists of one or more addressing modes that are separated by commas
with no spaces. In the example statement, two addressing modes—immediate (#10) and register
(d1)—are specified in the OperandList. For a full listing of addressing modes used to specify
an operand, see Computer Organization or consult a Motorola manual. Parts of some addressing
modes, such as absolute addressing or immediate addressing, are written as expressions.
Section 6.1.2.1 below describes what an expression is.

The Comment field is ignored by the assembler; hence it may contain any characters. In the
example statement, the comment begins a semicolon (;). This is not necessary but it makes the
program easier to read for humans.

6.1.2.1 Expression

An expression can be used wherever a numerical value is needed. For example, it can be used
in the OperandList of a statement (see Section 6.1.2) or in an org, dc, or ds directive (see
Section 6.1.3). An expression is composed of numbers, ASCII characters, and symbols which
can be either added or subtracted from each other to obtain an overall numeric value. Some
examples are:

$cfdc

‘A’-6

loop+3 where loop is a label defined in the program

6.1.2.2 Number

A number may be given in any one of hexadecimal, decimal, octal or binary notations. A
hexadecimal number is denoted by a leading ‘$’ character or by a leading ‘0x’, an octal number
by a leading ‘0’ character, and a binary number by a leading ‘%’ character. If there is no special
leading character, then the number is assumed to be in decimal notation. Thus the decimal number
27 can be expressed as:

M68000 Assembly Language Programs

78 Lab Manual for the UofT Ultragizmo Board

$1B hexadecimal notaion

$0x1b hexadecimal notation

27 decimal notaion

033 octal notation

If a negative number (the two’s complement of a number) is desired, precede the number by a
minus sign.

6.1.2.3 ASCII Character

When an ASCII character is preceded and followed by an apostrophe in an expression, it is
assigned the 7-bit ASCII value of the character. For example, ‘A’ is assigned the value $41.

6.1.2.4 Symbol

A symbol must satisfy the following requirements:

1. It must be composed of alphanumeric characters, of which the first character must be a
letter. Upper and lower cases are treated differently.

2. It may have any number of characters, but the assembler only looks at the first eight.

3. Each symbol, with the exception of “d0”, “d1”, “d2”, “d3”, “d4”, “d5”, “d6”, “d7”, “a0”,
“a1”, “a2”, “a3”, “a4”, “a5”, “a6”, “a7”, “sp”, “sr”, and “.” (see below for an explana-
tion), must be defined by appearing as a label within the program or by a direct assign-
ment (see equ directive in Section 6.1.3).

Special symbols “d0”, “d1”, “d2”, “d3”, “d4”, “d5”, “d6”, “d7”, “a0”, “a1”, “a2”, “a3”, “a4”,
“a5”, “a6”, and “a7” represent the data and address registers of the M68000. Besides these special
symbols, there are another three special symbols that the assembler knows about. One is “sp”
which refers to the stack pointer, which in the M68000 is equivalent to address register a7.
Another special symbol is “sr” which refers to the status register. The third special symbol ‘.’
represents the assembly location counter. Recall that the assembly location counter points to the
first word of the current instruction being assembled. Following is an example use of “.”:

 start movea.l #.,a0
Here, ‘.’ refers to location start (i.e. the address of the movea.l instruction). An equivalent
instruction would have been:

 start movea.l #start,a0

6.1.3 Directives

The third basic construct for writing an M68000 program is an assembler directive, which is
an instruction to the assembler. Some directives change the value of the assembly location
counter, other directives generate machine code for data, while others assign numeric values to
symbols. This section describes a few directives that you will find useful.

 The equ directive requires a label (which must begin in the first column); some other
directives (dc and ds in particular) have optional labels. If a directive does not have a label, it
must leave at least one white space character at the start of the line.

M68000 Assembly Language Programs

79

Consult Computer Organization or a Motorola manual for a full listing of directives. (Note:
the Motorola directives opt (options), page (advance to next page) and spc (space lines) are not
supported by this assembler.)

6.1.3.1 ORG Directive

org <expression>

 The org directive sets the assembly location counter to the value of <expression>.
(Section 6.1.2.1 describes what an expression is.) Subsequent assembly code will be placed in
memory beginning at the address specified by the org directive. The default value of the assembly
location counter is 0 if org is not used. Note that org does not produce any data that is stored in
memory, but specifies where subsequent instructions and data are going to be stored.

6.1.3.2 DC Directive

dc.<wordlength> <expressionlist>

 The dc (declare constant) directive stores the data specified by <expressionlist> into
successive locations in memory where the number of bytes for each location is specified by
<wordlength>. The <expressionlist> is a comma-separated list of expressions (see
Section 6.1.2.1) while <wordlength> is one of the letters b, w, or l indicating a byte, word, or long
word, respectively. The assembly location counter is updated by the number of bytes that are
allocated.

For example, the following

flag equ 30
org $200
dc.b ’A’, ’B’, ’C’
dc.b 0,flag,,flag+6

will load successive bytes beginning at address $200 as follows:

The assembly location counter will be equal to 207 after the assembler has finished processing the
last dc.b directive. An example of a word directive is:

org $300
dc.w $cfcc,$99

This will load the memory in the following fashion:

0200 41
0201 42
0202 43
0203 00
0204 30
0205 00
0206 36

0300 cfcc
0302 0099

M68000 Assembly Language Programs

80 Lab Manual for the UofT Ultragizmo Board

The dc directive can also be used to convert a string of ASCII characters into their 7-bit
ASCII codes and insert them into memory at sequential byte addresses. The string is delimited by
the same character at each end, where the delimiting characters may be any printing characters.
For example, the following

org $400
dc.b ‘yes we have no bananas’

results in loading the memory like the following:

Note: the dc directive doesn’t work with all characters. Some special characters are dealt with
differently. If it doesn’t work, break the dc statement into multiple parts and use the hexadecimal
equivalent of the special characters.

6.1.3.3 DS Directive

ds.<wordlength> <number>

 The ds directive advances the assembly location counter by the number of bytes, words, or
operands indicated by <number>. The size of the storage units is specified by <wordlength>.
This causes storage to be allocated, but not initialized to any particular value. An example of this
directive is as follows:

org $500
dc.w $99
ds.w 2
dc.w $bb

This resulting memory load is:

6.1.3.4 EQU Directive

<symbol> equ <expression>

The equ directive assigns the numeric value specified by <expression> to a <symbol>.
(Section 6.1.2.1 explains what an expression is, while Section 6.1.2.4 explains what a symbol is.)
The symbol must begin in the first column, otherwise the assembler will not recognize the equ
directive and instead will print an error message. An example of a direct assignment is:

 label0 equ $cfdc

0400 79
0401 65
0402 73
0403 20

: :

0500 0099
0502 ??
0504 ??
0506 00bb

M68000 Assembly Language Programs

81

6.1.3.5 EVEN Directive

.even

This directive causes the location counter to be advanced to the next even location if it is
presently at an odd address.

6.2 Assembling an M68000 Assembly Language Program

Once you have written your M68000 program, you will need to assemble it, i.e. translate it
into the 0’s and 1’s of M68000 machine code. To do this, use your favourite editor to enter your
M68000 assembly-language program into a file on the ugsparc system. The name of the file
should end in .s.

Assemble your program on the ugsparc system by executing the following command at a
UNIX prompt (prompt%):

prompt% a68 <filename>
where <filename> is the name of the file containing your program. This will create another file
with the same root name as the source file but with a .srec suffix. For example, the command

 prompt% a68 prog1.s
will create a file called prog1.srec that contains the binary representation of the M68000
assembly-language program in prog1.s.

You can tell the assembler to a generate human-readable version of the translated machine
code by using the -l option:

 prompt% a68 -l <filename>
The listing is an annotated version of the original source program. Figure 10 (on page 17) shows
an example of such a listing. For each M68000 instruction and each directive that specifies data
storage, the listing gives its address in hexadecimal, the equivalent machine code in hexadecimal,
and the original instruction or directive. This information is useful for setting breakpoints or
tracepoints when you debug your programs.

By default, the listing will be printed to your screen. You can redirect the output into a file.
For example, the command

 prompt% a68 -l prog1.s > prog1.l
will create a file called prog1.srec as well as a file called prog1.l.

6.3 Executing an M68000 Assembly Language Program

Now that you’ve got a machine-code version of your M68000 program, you can execute it on
the Ultragizmo board.

The first thing you need to do is to load the program and its data into the memory on the
Ultragizmo board. First, make sure you are communicating with the monitor program on the
Ultragizmo board. You should first log into the PC operating system and bring up the CONPORT
and DEVPORT windows on your screen. There should be a ‘Ultrag>’ prompt in the CONPORT
window. If there isn’t, see Chapter 7 for instructions on how to get your PC communicating with
the board. Use the lo command to tell the monitor to transfer a file from the PC:

M68000 Assembly Language Programs

82 Lab Manual for the UofT Ultragizmo Board

Ultrag> lo
In the DEVPORT window, select menu item transfer->send text file. This will bring up a dialog
box. In the dialog box, find the .srec file that has been compiled using the a68 assembler and click
the OK button. At this point you will see a few dots appearing on the screen, after which the
prompt will return. A prompt will indicate that the download was successful. If you don’t get a
prompt, press the reset button on the Ultragizmo board and try again.

Once you have successfully downloaded your program to the Ultragizmo board, you can now
execute it. This is done by typing “go <ProgramOrigin>” where <ProgramOrigin> is the
address where the first instruction of your program is stored:

 Ultrag> go <ProgramOrigin>

6.4 Putting It All Together

This section shows a single session in which you create, assemble, and execute an M68000
assembly language program called lab1.s where the first instruction is stored at the address
$20100. (How would this be done?) Of course, you should not be doing all of this in a single
seamless session at your terminal. We are showing such a session here to illustrate in one place
how to assemble and execute programs on the Ultragizmo board.

It assumes that you already have three windows open on your PC: a TERA TERM SSH
window connected to one of the ugsparc workstations, the CONPORT window, and the
DEVPORT window.

Figure 37 - View of the Desktop

M68000 Assembly Language Programs

83

First you should create your program on the ugsparc workstation through the TERA TERM
SSH window. After lab1.s is created, compile the lab1.s using the a68 command (“prompt%”
means the prompt of the ugsparc workstation seen from the TERA TERM SSH window).

prompt% a68 -l lab1.s > lab1.list

This will create the .srec file, lab1.srec and the listing file, lab1.list.

Figure 38 - Tera Term SSH Window

Next you should go to the CONPORT window, and using lo command to initiate the process
of transferring the .srec file from the PC to the Ultragizmo board. (Remember that the “Ultrag>”
prompt means that you are communicating with the Ultragizmo board.)

Ultrag> lo

Figure 39 - CONPORT Window

Now the Ultragizmo board is waiting for the .srec file. Go to the DEVPORT window, select
menu item File->Send File. Find the lab1.srec file in the dialog box and select OK.

M68000 Assembly Language Programs

84 Lab Manual for the UofT Ultragizmo Board

Figure 40 - Send Text File Window in DEVPORT

You should see some dots in the CONPORT window. A new “Ultrag>” prompt should also
appear in the CONPORT window. Switch back to the CONPORT window and execute the
assembly program by typing:

Ultrag> go 20100

Figure 41 - CONPORT Window after Successful Download

M68000 Assembly Language Programs

85

6.5 Parallel Port Download

If you are executing a long M68000 assembly program, you may wish to download it onto the
Ultragizmo board via the Centronics parallel port rather than through the serial interface, resulting
in a faster download. In order to do this, click on the CONPORT window. At the ‘Ultrag>’
prompt, type the lf command:

Ultrag> lf

Then, run maphome to map your ugsparc account onto the W: drive. After that, click on
Start->Run and type “command” in the pop-up window; this opens a DOS shell. In the DOS
shell, type “W:” to change to the W: directory, and navigate to the directory containing your .srec
file. Finally, at the DOS prompt, type

W:\> copy <filename.srec> lpt1

where <filename.srec> is the name of your file. Dots will appear on the screen as the file is
downloading.

6.6 Using C with the Ultragizmo Board

A version of gcc which will produce executable code compatible with the Ultragizmo boards
is installed on the ugsparc system. Please see Paul Chow’s ECE352 website at
http://www.eecg.toronto.edu/~pc/courses/352/1999/lab1 for instructions on how to use it.

Using the FBUG Monitor Program

86 Lab Manual for the UofT Ultragizmo Board

7 Using the FBUG Monitor Program

The tutorials in Section 2.2 give examples of how to use the FBUG monitor program to
execute your M68000 program and to find errors which invariably occur in programs. This
chapter provides a concise summary of those monitor commands as well as a description of how
to start or restart the monitor program.

Note: The monitor program uses the lower 32K + 1 bytes of memory for data space and stack
space. The UofT Ultragizmo board has 10Mbytes of RAM. Hence, you should write your
program so that it gets stored between the memory locations $8001 and $9FFFFF to avoid
accessing memory that is used for the monitor program and the stack.

7.1 Starting the Monitor Program

When the Ultragizmo board is first powered up, the monitor is communicating to your
terminal through Serial Port B at 19.2K baud. You need to first start the monitor program by
pressing the RESET button on the Ultragizmo board. (Figure 42 on page 92 shows the location of
the RESET button on the board.) When the monitor program is running, it will display its prompt
(Ultrag>) on the screen. The prompt also indicates that the monitor program is waiting for you to
enter a command.

In the case of a program error, the Ultragizmo board may no longer respond to your keyboard
inputs or may appear to be working incorrectly. If this happens, you need to reset the board to a
known state. Resetting the board also restarts the monitor program. You do this by pressing either
the RESET or the NMI (non-maskable interrupt) button on the Ultragizmo board. The RESET
button is more “destructive” than the NMI button in that it resets all the board’s hardware. The
advantage of this is that everything is in a known state after the RESET is pressed. The NMI
button on the other hand interrupts whatever program is currently running and stores enough
information such that this program can be continued later on. The NMI button is often called a
soft reset.

Pressing NMI will first display the current contents of the M68000’s registers as well as the
next instruction to be executed, and will then display the monitor prompt:

PC =$00D0EA9E SR =$00002700 USP =$00001B00

SSP =$00007F88

D0 =$FFFFF7F3 D1 =$00000000 D2 =$00000120 D3 =$00000000

D4 =$00000000 D5 =$0000003F D6 =$00000000 D7 =$00000000

A0 =$FFFFF7F3 A1 =$00002A9A A2 =$000041E8 A3 =$00000000

A4 =$00000000 A5 =$00000000 A6 =$00007F90 A7 =$00007F88

$00D0EA9E 6A00 000C bpl.w $D0EAAC ?

Ultrag>

The first line shows the contents of the Program Counter (PC), Status Register (SR), and User
Stack Pointer (USP). The second line shows the content of the System Stack Pointer (SSP). The
third and fourth line show the contents of the data registers. Lines five and six show the contents
of the address registers. Line seven shows the disassembled instruction at the address pointed by
the program counter.

Pressing RESET will first display the monitor program version number and then display the

Using the FBUG Monitor Program

87

monitor prompt:

UofT/CMC Gizmo2 monitor Version 1.0 - June 26, 1995

Derived from Fbug68 Monitor/Debugger Version 1.1 - 9/28/89

Copyright Motorola Inc. 1989 All Rights Reserved

Ultrag>

7.2 Summary of Monitor Commands

 The monitor commands are divided into several groups: program and memory inspection
commands, execution control commands, and miscellaneous commands.

Most of the monitor commands take optional arguments. Table 2 shows a summary of the
possible arguments.

Numerical values are hexadecimal by default. Hexadecimal, decimal, octal, and binary
numbers also can be entered by preceding them with a leading $, &, @, or %, respectively.

Table 3 summarizes how to use the monitor commands. A table similar to this is printed when
using the h (help) command. The arguments are enclosed in italicized square brackets ‘[]’ to
emphasize that they are optional. When you type a command with an argument, do not include the

Optional
Argument Description Example

<option list> An option delimiter (-) with options if non-default
options are allowed and are being used.

-r

<exp> An expression can be any numerical expression
which may be evaluated using only the arithmetic
+ and - operators.

1000
1+3

<addr> Address field is any valid expression. 2000

<count> Count field is any valid expression preceded by
the count delimiter (:).

:100

<range> A range of memory locations denoted by either
<addr>,<addr> or <addr>:<count>

0,100
0:50

<text> An ASCII string of up to 255 characters preceded
by the text delimiter (;).

;sample text

<size> Can be either:
byte (8-bit) ====> -b
word(16 bit) ====> -w
long(32 bit) ====> -l

-b
-w
-l

<data> Data can be any valid expression. 1000

<symbol> Any monitor command bf

Table 2 - Summary of Optional Arguments to Monitor Commands

Using the FBUG Monitor Program

88 Lab Manual for the UofT Ultragizmo Board

square brackets. These commands are described in more detail in the text after the table.

7.2.1 Commands for Inspecting Memory

bf [<size>] <range> <data>

The Block Fill command fills the specified range of memory with the data listed. If the size
option is not specified the default size used is word.

bs [<size>] <range> <data>

The Block Search command searches the <range> for an exact match of <data>.

Memory Inspection Commands

Block Fill bf [<size>] <range> <data>

Block Search bs [<size>] <range> <data>

Memory Display md [<size>] <addr>
md [<size>] <range>
md -di <addr>

Register Display rd

Execution Control Commands

Breakpoint br
br <addr>
br <addr>:<count>
br -r [<addr>]
br -r

Continue co

Go go [<addr>]

Trace tr [<addr>][<count>]

Miscellaneous Commands

Data Conversion dc <exp>

Help ? [<symbol>]
he [<symbol>]
help [<symbol>]

Load S-Record lo [<offset>]

Load S-Record using parallel
port

lf

Table 3 - Summary of Monitor Commands

Using the FBUG Monitor Program

89

md [<size>] <addr>
md [<size>] <range>

The Memory Display command displays the memory at the given <addr> or <range>.

md -di <addr>

The Memory Display command with disassemble option disassembles the memory starting
at the given <addr>.

rd

The Register Display command displays the contents of all M68000 registers.

7.2.2 Commands for Controlling Execution

The execution-control commands control the execution of a program running on the
Ultragizmo board. They can be used to execute instructions one at a time, to set and clear
breakpoints.

You should be aware of the following when using these commands:

1. Breakpoint and single-step modes cannot be used to debug code that either prints charac-
ters to the screen or reads characters from the keyboard. Both of these modes use the
same DUART as the terminal to perform the necessary I/O. Hence, any data stored in the
DUART will be corrupted.

2. Similarly, be aware that if you have created and enabled an interrupt service routine to
transfer data to and from the DUART, you will intercept the monitor’s input and output.
Hence you should not try to single-step or breakpoint a program once the interrupt is
enabled, as the monitor will behave very erratically.

br

The Breakpoint command with no arguments lists all known breakpoints.

br <addr>

The Breakpoint command with the <addr> argument inserts a breakpoint at the given
address.

br <addr> <:count>

The Breakpoint command with the <addr>:<count> argument inserts a breakpoint at the
given address, however, returns to the monitor environment only after encountering the
breakpoint <count> times.

br -r <addr>

The Breakpoint command with -r option removes a breakpoint at the given address <addr>.

br -r

The Breakpoint command with -r option and without arguments removes all breakpoints.

Using the FBUG Monitor Program

90 Lab Manual for the UofT Ultragizmo Board

co

The Continue command resumes execution of the program from where it was last suspended.

go [<addr>]

The Go command executes the target program at the given address. If an address is not
specified on the command line then the current PC value is used.

tr [<addr>] [<count>]

The Trace command allows the user to single-step though target code and observe the
registers after executing the command line. If count is specified then the microprocessor executes
<count> number of instructions before returning to the monitor environment. A trace begins
from the <addr> listed on the command line or from the current PC if an <addr> is not included.
The trace instruction can be continued by hitting a carriage return. To exit, a period (.) must be
entered.

7.2.3 Miscellaneous Commands

dc <exp>

The Data Conversion command evaluates an input expression to determine its hexadecimal
and decimal equivalent.

? [<symbol>]
he [<symbol>]
help [<symbol>]

The Help command allows the user to view a list of allowable commands and the syntax
associated with them. Symbols used to describe the command usage can be looked up.

lo

The Load command waits for the host system to send an S-Record to the Ultragizmo board
through the COM2 serial port.

lf

The Load Fast command waits for the host system to send an S-Record to the Ultragizmo
board through the LPT1 parallel port.

cc

See Section 8.7 on page 130 for instructions on how to use the Clock Configure command to
configure the programmable clock.

