
Peripherals

131

9 Peripherals

In this Chapter, the digital protoboard, Commodore mouse, hexadecimal keypad, and logic
analyzers are described. The LEGO control board is described separately in the next Chapter.

9.1 Digital Protoboard

In the lab, each Ultragizmo board station is equipped with a digital protoboard (shown in
Figure 51). The protoboard is a versatile tool providing simple user I/O to the Ultragizmo board.
It is especially handy for debugging SFPGA hardware designs. Each protoboard has 8 switches
(SW1-SW8), a push button (PULSE), 8 LEDs (LED1-LED8) and a 40-pin connector. The 40-pin
connector is connected to the switches, buttons and LEDs. Table 29 shows the connection of the
40-pin connector. Pins 2, 4, 6, 8, 10, 12, 14, 16, and 18 are outputs from the 40-pin connector
driven by the switches and the pulse button. Pins 22, 24, 26, 28, 30, 32, 34, and 36 are inputs to
the 40-pin connector driving LEDs. The protoboard can be easily connected to the SFPGA by
connecting the 40-pin connector of the protoboard with the pin-compatible SFPGA_DIGITAL
port of the Ultragizmo board using a 40-pin ribbon cable.

Pin Connection Pin Connection

1 GND 2 SW1

3 GND 4 SW2

5 GND 6 SW3

7 GND 8 SW4

9 GND 10 SW5

11 GND 12 SW6

13 GND 14 SW7

15 GND 16 SW8

17 GND 18 PULSE

19 GND 20 GND

21 GND 22 LED1

23 GND 24 LED2

25 GND 26 LED3

27 GND 28 LED4

29 GND 30 LED5

31 GND 32 LED6

33 GND 34 LED7

35 GND 36 LED8

37 GND 38 GND

39 GND 40 CLK

Table 29 - Digital Protoboard 40-Pin Connector Pin Assignment

Peripherals

132 Lab Manual for the UofT Ultragizmo Board

Figure 51 - Digital Protoboard

LED8

LED7

LED6

LED5

LED4

LED3

LED2

LED1

SW8

SW7

SW6

SW5

SW4

SW3

SW2

SW1

Peripherals

133

9.2 The Commodore 1352 Mouse

The Commodore 1352 mouse can be interfaced to the Ultragizmo board using the PIT. The
mouse has 6 status lines that encode information about the motion of the mouse in both the x and
y-directions, and whether or not each of the two buttons is pressed. These 6 status lines are con-
nected to the PIT using the mouse cable adaptor. Connect one end of a 40-pin ribbon cable to the
mouse cable adaptor and the other end to the PIT connector on the Ultragizmo board. When you
plug the mouse into the mouse cable adaptor, the connections shown in Table 30 are made.

Internally, the mouse has two rollers, one in the x-direction and one in the y-direction. Sensors
determine the orientation of these rollers, and encode the position of each into a two-bit pattern.
X1 and X0 encode the position of the x-roller, and Y1 and Y0 encode the position of the y-roller.
When the mouse is not moving, the values on the X and Y lines remain constant. When the mouse
moves, however, the rollers spin and the values on the X and Y lines (depending on the direction
of the movement) change in a cyclical pattern. Figure 52 shows the state diagram for both the X
and Y status lines. A transition in either X or Y indicates that the mouse has moved by one unit.

Mouse Pin
(all outputs of mouse) PIT Pin

Y0 PA0

Y1 PA1

X0 PA2

X1 PA3

Left Button PA4

Right Button PA5

Table 30 - Mouse Status Line Connections

X direction

Y1, Y0
= 11

Y1, Y0
= 00

Y1, Y0
= 01

Y1, Y0
= 10

down

X1, X0
= 11

X1, X0
= 00

X1, X0
= 01

X1, X0
= 10

rightright

rightright

left
left

left left

Y direction

down

down

down

upup

up up

Figure 52 - Mouse Status Line Encoding

Peripherals

134 Lab Manual for the UofT Ultragizmo Board

The state of the signals on X1, X0 (or Y1, Y0) can only change to an adjacent state, with the
direction of mouse motion necessary for that transition indicated on the diagram. For example, if
the X1 and X0 go went through the sequence 11-01-00-10-11-01-00, we can tell that the mouse
has moved 6 units to the right.

When a button is pressed the corresponding status line is grounded; when not pressed the sta-
tus line is set to logic 1 by a pullup resistor on the PIT.

The logic values presented by the mouse (on any of its outputs) may “bounce” when switch-
ing from one state to the next. That is, a 0 to 1 transition, for example, might make several transi-
tions as shown in Figure 52. Any program using the mouse must deal with these bouncing signals
in some way; a common method is to wait a few milliseconds for the signals to settle down.

Note that the mouse cannot generate interrupts unless it is interfaced to the M68000 bus
through the SFPGA.

Bouncing Signal

Button Pressed
Button Released

Button Signal

Figure 53 - Bouncing Status Line

Peripherals

135

9.3 The Hex Keypad

The hex keypad has a set of 16 buttons labeled with the numbers 0 to 9 and letters A to F as
shown in Figure 54. It connects to the Ultragizmo’s PIT via a 40-pin ribbon cable.

The hex keypad has eight wires emanating from it: four column wires (C0, C1, C2 and C3)
and four row wires (R0, R1, R2 and R3). When any button is pressed, it electrically connects one
of the column wires to one of the row wires as illustrated in Figure 54. For example, if button A is
pressed then the wire labeled column C2 is electrically connected to the wire labeled row R2. All
the other wires remain unaffected.

Table 31 lists the pin connections on the hex keypad and its corresponding PIT connections.

When a key is pressed on the hex keypad, it bounces for a few milliseconds. The M68000 can
determine, after debouncing for about 10 milliseconds, which key has been pressed by doing the
following. The PIT pins corresponding to the row wires (PA0 -> PA3) should be set as inputs and
the PIT pins corresponding to the column wires (PA4 -> PA7) should be set as outputs. By writing
0s on the outputs, exactly one of the inputs will be read as a 0. The others will be read as 1s since
the PIT has pull-up resistors and the pins are electrically disconnected from anything else. The
zero input corresponds to the row number of the button being pressed. Then the procedure is

Figure 54 - Hex Keypad Connections

Peripherals

136 Lab Manual for the UofT Ultragizmo Board

reversed for rows and columns in order to determine a column number. Given the row and column
number, the M68000 can tell which button is being pressed.

Note that the hex keypad cannot generate interrupts unless it is interfaced to the M68000 bus
through the SFPGA.

9.4 Logic Analyzers

Three types of logic analyzers are available to test hardware in the labs. They are:

• Philips PM3580 Logic Analyzer

• HP 1664A Logic Analyzer

• HP 54645D Mixed Signal Oscilloscope

Please see Fred Aulich’s website at http://www.eecg.toronto.edu/~aulich for instructions on
how to use each one.

Hex keypad
pin

PIT pin

R0 PA0
R1 PA1
R2 PA2
R3 PA3
C0 PA4
C1 PA5
C2 PA6
C3 PA7

Table 31 - Hex Keypad to PIT Connections

LEGO Control Board

137

10 LEGO Control Board

10.1 Introduction

This Chapter outlines the use of the University of Toronto LEGO control board with the
Ultragizmo board. Most of the work students have done with computers has led to something
being displayed on the screen. But this is only a fraction of what computers are used for. Almost
everything, from aircraft to office buildings, and from nuclear power plants to toys, is controlled
by a computer. Unfortunately, real things are too expensive (and dangerous) to work with in an
undergraduate lab.

With LEGO one can build a model of a real world mechanical system, and then use the
computer to control the model. These models will demonstrate many real world problems such as
gear slippage and sensor noise. The student must learn how to overcome these problems. This
provides a better learning experience than can be obtained with a simulation.

The LEGO control board is designed to provide a simple interface between LEGO motors and
sensors, and the Ultragizmo board. Section 10.2 describes the features of the board. Section 10.3
provides a step-by-step tutorial to explain the basic operation of the board. The rest of this chapter
is intended to be a reference. Section 10.4 through Section 10.6 describe the motors, lights, and
sensors respectively. Section 10.7 describes how to use the sensors to generate interrupts.
Section 10.8 presents some tips on LEGO construction. Section 10.9 gives some ideas on using
the LEGO board in the lab and Section 10.10 contains pointers to more information on LEGO and
Section 10.11 lists several sample programs.

Figure 55 - Diagram of the University of Toronto LEGO Controller Board.

Power Plug

LEGO Control Board

138 Lab Manual for the UofT Ultragizmo Board

10.2 LEGO Control Board

Figure 55 shows the University of Toronto LEGO control board designed by Sunil Sebastian
(9T5), Peter Pereira, and Fred Aulich. This board allows up to 4 motors and 4 sensors to be inde-
pendently controlled through the parallel port (PIT) of the Ultragizmo board.

The motors use standard audio power connectors. These connectors provide a 5V DC signal
of either polarity. Two motor override switches are provided (each controls two motors) to
quickly stop the motors in case of a problem.

The sensors use standard audio signal connectors. Great care should be taken to ensure that
the sensors are only connected to the sensor connectors, never elsewhere. Each sensor has a
potentiometer to adjust sensitivity. When the potentiometer is fully clockwise the sensor is least
sensitive (most likely to be read as a 0) and vice versa. The sensor potentiometers allow the
sensors to be used reliably under many lighting conditions.

The power plug on top of the board provides 5V DC and is intended to be used to supply
power to the lights. The audio signal connectors also connect to this port. Lights can also be
connected to the motor connectors, allowing them to be turned on and off under computer control.

The power connector can be attached directly to the power supply on the Ultragizmo board.

Pin Purpose PIT pin Pin Purpose PIT pin

1 Motor 1 enable PADOR0 2 Motor 1 direction PADOR1
3 Motor 2 enable PADOR2 4 Motor 2 direction PADOR3
5 Motor 3 enable PADOR4 6 Motor 3 direction PADOR5
7 Motor 4 enable PADOR6 8 Motor 4 direction PADOR7
9 GND 10 Sensor 1 H1
11 GND 12 Sensor 2 H2
13 GND 14 Sensor 3 H3
15 GND 16 Sensor 4 H4
17 Sensor 1 PBDOR0 18 Sensor 2 PBDOR1
19 Sensor 3 PBDOR2 20 Sensor 4 PBDOR3
21 - 22 -
23 - 24 -
25 GND 26 -
27 GND 28 -
29 GND 30 -
31 GND 32 -
33 - 34 -
35 - 36 -
37 - 38 -
39 - 40 -

Table 32 - Lego Connector Pinout

LEGO Control Board

139

The 40 pin connector is designed to be attached directly to the PIT connector on the
Ultragizmo board. It can also be connected to a protoboard or to the second PIT. The pinout for
the connector is given in Table 32. The third column gives the corresponding pin on the PIT.

10.3 LEGO Tutorial

This tutorial will walk you step-by-step through an example in which the LEGO board is used
to read a sensor and control a motor. For this tutorial you will need:

• Ultragizmo station

• LEGO control board

• 40 pin ribbon cable

• LEGO motor, sensor and light

• 3 LEGO cables, 1 each for a motor, a sensor, and a light

First, connect the power connector on the LEGO board to the power supply on the Ultragizmo
board. The connector only goes in one way, and it doesn’t matter if the Ultragizmo is already
turned on. Next, connect the LEGO board to the PIT using the ribbon cable. Ensure that pin 1 on
the PIT connector is attached to pin 1 on the LEGO board (this will happen automatically if you
use a ribbon cable with notched connectors).

Ensure that both motor override switches are in the off position. Connect the LEGO motor to
motor connector 1 using a grey cable. Connect the sensor to sensor connector 1 using a silver and
gold cable. Connect the light to the power connector on top of the LEGO board with another
cable. Be careful that these connections are done properly. Connecting a motor or light to a sensor
connector may damage the LEGO board. Connecting a sensor to a motor connector or the power
connector may damage the sensor.

Turn on the motor override switch for connectors 1 and 2. Since the reset state of the
Ultragizmo PIT is $FF, the motor should begin spinning. Turn off the motor override switch.

We will now learn how to control the motor using block fill commands (bf). Initialize the PIT
port A direction register (PADDR, address $c10002) to contain $ff. This sets all the bits in port A
to be outputs.

You can now control the motor by changing the value in the port A data output register
(PADOR) which has an address of $c10000. Fill the PADOR with $00 and turn on the override
switch. The motor should be stopped. Bit 0 enables the motor and bit 1 determines the direction.
Try filling the PADOR with the values $01, $02, and $03. Does the motor behave as expected?

Look at sample program 1 in Section 10.11 and make sure you understand how it works. Load
it into the Ultragizmo and run it. This program displays the current value of the sensor (1 if lit, 0 if
dark) and uses it to drive the motor. Pressing any key will exit this program. Notice that the sensor
value changes (and the motor activates) depending on both the orientation and distance between
the light and the sensor.

Move sensor potentiometer 1 fully clockwise. Place the light about 30 cm from the sensor
pointing directly at it. The sensor should display a 0 (if not, move them farther apart). Slowly turn
the potentiometer counter-clockwise to increase the sensitivity of the sensor until a 1 is displayed.
At this point, any decrease in lighting should make the sensor read 0 again. Try passing objects

LEGO Control Board

140 Lab Manual for the UofT Ultragizmo Board

between the light and the sensor, and shading the sensor from room lighting. Getting the sensors
to work reliably is one of the trickiest parts of LEGO design.

You have now used the LEGO board and a simple program to read a sensor and drive a motor.
The next step is to build a model, and write a program to control it. Have fun!

10.4 Motors

The motors are controlled by port A of the PIT as shown in Table 33:

In order to control the motors, port A should be configured as outputs. The motors can then be
controlled by writing data to the port A data output register PADOR. The following code
fragment initializes the PIT and stops all motors:

move.b #$ff,PADDR ;Port A is all outputs (motors)
 move.b #$00,PBDDR ;Port B is all inputs (sensors)
 move.b #$00,PADOR ;Turn off all motors

The DC motors supplied by LEGO have two terminals. The speed of the motor depends on the
voltage between the terminals (about 6,000 rpm at 5V), and the direction depends on the polarity.
There is no absolute direction reference, if the motor seems to be working backwards, simply
reverse the connector at the motor end. The LEGO board provides 5V DC to the motors. Speed
control can be obtained by chopping (turning the motor on and off quickly). The percentage of
time that the motor is on is called the duty cycle. The greater the duty cycle, the greater the speed.
If this technique results in rough operation, try connecting a capacitor across the motor terminals.

The motors draw only a little current when turning (about 100 mA), but draw much more
when starting or whenever there is an applied voltage but the motor is physically prevented from
turning (up to 1.0 A). The latter situation should be avoided to prevent damage to the motor. One
way to prevent this is to use a belt drive (see Section 10.8). This allows the motor to turn even if

PADOR bit
number

Purpose

0 Motor 1 Enable
(1=enable, 0 =stop)

1 Motor 1 Direction

2 Motor 2 Enable

3 Motor 2 Direction

4 Motor 3 Enable

5 Motor 3 Direction

6 Motor 4 Enable

7 Motor 4 Direction

Table 33 - LEGO Motor Control

LEGO Control Board

141

the mechanism becomes jammed. If for some reason a motor ever becomes jammed, turn off the
override switch immediately.

Motors can be connected in parallel and controlled by a single connector on the LEGO board
as illustrated in Figure 56. This technique draws a lot of current through one output and should be
used sparingly.

10.5 Lights

The LEGO lights are designed to operate in conjunction with the sensors. They operate at 5V
DC. They can be connected to the power connector on top of the LEGO board or to a motor
connector. Connecting a light to a motor connector allows it to be turned on and off under
program control. Multiple lights can be connected in parallel as shown in Figure 56.

10.6 Sensors

The LEGO sensors are light detectors with adjustable sensitivity. Figure 57 shows a sensor

brick and the location of the actual sensor. The other hole is to facilitate the use of an index wheel,
as will be described shortly.

The LEGO board converts the sensor output to a digital signal: 1 if light is detected and 0

Figure 56 - Lights (and Motors) Can Be Connected in Parallel by Daisy
Chaining the LEGO Cables

Figure 57 - Location of the Sensor and Axle Hole Used to Mount an Index Wheel

LEGO Control Board

142 Lab Manual for the UofT Ultragizmo Board

otherwise. The sensor potentiometer controls the sensitivity (the amount of light needed to
produce a 1). When fully clockwise the sensor is least sensitive (requires more light to produce a
1).

The sensors connect to bits 0-3 of the port B input buffer as shown in Table 34:

In order to read the sensors port B should be configured as inputs. The sensors can then be
read by reading data from the port B data input. The following code fragment initializes the PIT
and moves the values from the sensors into d0.

move.b #$ff,PADDR ;Port A is all outputs (motors)
 move.b #$00,PBDDR ;Port B is all inputs (sensors)
 move.b PBDI,d0 ;Read the sensor values into d0

The sensors can be used in a variety of mechanical configurations, only two of which will be
described here. The first is as a position indicator that normally gives a 1, but gives a zero when
an object breaks the light beam. This is relatively straight forward to implement.

The second configuration uses an index wheel to keep track of rotation. The index wheel is
coloured with alternating black and white sectors. Light reflected from the disk will produce
alternating 1’s and 0’s which can be counted in order to measure rotation. Great care must be
taken to get this configuration to function properly. It is generally much easier, though less
accurate, to use the 8-sector side of the index wheel instead of the 16-sector side.

First, the sensitivity must be calibrated to reliably detect all of the white and black areas. The
program Calibrate in Section 10.11 can be used to do this:

1. Set-up the mechanical configuration so that the index wheel can be turned by hand.
One possible configuration is shown in Figure 58. The actual positions of the light,
sensor, and index wheel should match those used in your model. Note that the sensor
and the light must be separated to avoid light ‘leaking’ into the sensor. Also, the
separation between the index wheel and the sensor is critical. You might want to try
putting a small pulley between the index wheel and the sensor. A reflective surface
beneath the light also makes a big difference.

2. Load and run the program Calibrate. This program continuously displays the value

PBDI bit
number

Purpose

0 Sensor 1 output
(1=light, 0=dark)

1 Sensor 2 output

2 Sensor 3 output

3 Sensor 4 output

Table 34 - LEGO Sensor Outputs

LEGO Control Board

143

of the sensor and a count of the number of times it has changed.

3. Connect the light to the power connector and the sensor to sensor connector 1.

4. Turn sensor potentiometer 1 fully clockwise (least sensitive).

5. Turn the index wheel and ensure that all of the white and black areas are displayed
as 1 and 0 respectively. If the sensor misses some white areas, turn the potentiometer
counter-clockwise to increase its sensitivity. If the sensor misses some black areas,
move the light farther from the index wheel, or move the wheel closer to the sensor,
and re-calibrate.

Second, the sensor input must be debounced. As the edge between a white and black region
passes in front of the sensor, it may produce a short burst of alternating ones and zeros as shown
in Figure 59. The solution to this problem is to wait until the sensor output has settled before
considering it valid. The following code fragment is intended to wait for a falling edge (a dark
segment). After first detecting a 0, it waits for some time (delay) and then checks to make sure
that the sensor output is still zero.

wait10 move.b PBDI,d0 ;get the sensor outputs
btst.b sensor,d0 ; loop until the sensor gives a zero
bne wait10
move.w #DELAY,d1

deloop dbra d1,deloop ;wait a while, DELAY equ $0010 works well
move PBDI,d0 ;check if the sensor is still zero
btst.b sensor,do
bne wait10 ;if not, wait for it to become zero
...... ;if it is, carry on

Figure 58 - One Possible Configuration for Using a Sensor to Count the Rotations
of an Index Wheel

Figure 59 - An Example of Sensor Bounce

LEGO Control Board

144 Lab Manual for the UofT Ultragizmo Board

The sensors can also be set up to generate interrupts. This will be discussed in Section 10.7.

10.7 Sensor Interrupts

The LEGO control board and the PIT can be used to generate level 5 autovectored interrupts
based on the transitions of the light sensor inputs.

As shown in Section 10.2, sensors 1 through 4 can be connected to the H1, H2, H3, and H4
pins of the PIT through a 40-pin connector. When level 5 interrupts are enabled, a 0 (not sensing
light) to 1 (sensing light) transition or a 1 (sensing light) to 0 (not sensing light) transition on any
of these four pins triggers a level 5 autovectored interrupt from the PIT (Section 8.2.2). See
Section 8.2 for more details and an example on how to configure level 5 autovectored interrupts.

10.8 LEGO Construction

LEGO-Technics is great for constructing all sorts of interesting things. The best method is still
the one kids use: have a general idea of what you want to build, and just simply start snapping
pieces together. You will probably have to rebuild some parts of your model several times before
you get it right. Don’t try and make your model compact, a larger model is easier to modify.

The instruction books provided with the kits give some ideas on how to put the pieces
together. They have good diagrams on how to build gearboxes that step-down from high-speed
low-torque motors to low-speed high-torque drives that can be used in your model. You might
want to use one of the instruction books as a starting place, but don’t be afraid to modify the
design, or try something completely different.

LEGO bricks aren’t square. A single unit brick has a length of one Fundamental LEGO Unit
(FLU), and a length:width:height ratio of 5:5:6 as shown in Figure 60. This ratio, coupled with the
existence of 1/3-height flat pieces, allows the creation of vertical spacings that perfectly match the
horizontal ones. This allows vertical stacks of bricks to be reinforced with cross-beams and
connector pegs, creating sturdy structures that won’t fall apart.

Axles should be supported by at least two beams (spaced as far apart as possible) to prevent
them from twisting and possibly jamming. Axles, gears and pulleys should not be assembled too

Figure 60 - Fundamental LEGO Dimensions Showing How a
Beam Can Be Used to Reinforce a Stack

LEGO Control Board

145

tightly in order to reduce frictional losses. You should be able to move the parts easily by hand
before trying to move them using the motors.

Pulley drives (elastic bands) tend to slip a lot. You can, however, use this to your advantage. If
a motor seizes (is prevented from turning) it draws a lot of current which could damage the motor
or the LEGO controller board. If your model is likely to cause a motor to seize, use a pulley
connection. The slippage allows the motor to turn even when the model isn’t moving. This
technique is used in the claw on the robot arm.

Care must be taken when using the gears to ensure that they mesh properly. If the gears are too
close together they will jam, and if they are too far apart they will slip. The instruction books have
good examples of gear use.

10.9 Lab and Project Suggestions

The LEGO boards can be used in a number of ways. The obvious method is to connect the
LEGO board directly to the Ultragizmo through the PIT. A LEGO lab then becomes an exercise in
programming. One can also connect the LEGO board to a protoboard or to the SFPGA and then
design the necessary hardware to interpret the sensor values and drive the motors. The most
demanding configuration is to connect the LEGO board to the Ultragizmo with the SFPGA as an
intermediary. For example, the software could send an instruction to turn on a motor for 12 pulses
on a sensor. Hardware on the SFPGA would turn on the motor, count the pulses, and then turn off
the motor. The SFPGA could also be used to generate level 6 autovectored or vectored interrupts
based on LEGO board signals.

Most LEGO labs will take at least two weeks because of the time required to build a
mechanical model. A simple one week lab could be based on the tutorial, Lab M10, or Lab M12.
The object would be to drive motors based on sensor inputs, with little or no mechanical
construction.

The LEGO board can also be combined with other hardware available in the lab such as the
hex keypad, CODEC, SFPGA, and mouse.

10.10 For More Information

There is a lot of information available on the internet at http://legowww.homepages.com/ and
by ftp at earthsea.stanford.edu in the /pub/lego directory. Some of the information in Section 10.8
was taken from Chapter 4 of the 6.270 Robot Builder’s Guide by Fred Martin and Randy Sargent,
Department of Elec. Eng. and Comp. Sci, MIT, 1992.

10.11 Sample Programs

All four of the following sample programs are available on-line on the ugsparc system in the
directory /cad2/ultragizmo/MLabs.

Sample1: Tutorial
* This program is for the tutorial in the LEGO board manual.
* It continually reads sensor 1 and displays the result on the
* terminal. When the sensor has a 1 (light detected) the motor

LEGO Control Board

146 Lab Manual for the UofT Ultragizmo Board

* is turned on.

* Declare addresses for PIT and the terminal

PADOR equ $c10000
PBDOR equ $c10001
PADDR equ $c10002
PBDDR equ $c10003
PADI equ $c10004
PBDI equ $c10005

SRB equ $fffff7f3
RBB equ $fffff7f7
TBB equ $fffff7f7

* To run the program, use go 20000

 org $20000

*Initialize PIT
 move.b #$ff,PADDR ;Port A is all outputs (motors)
 move.b #$00,PBDDR ;Port B is all inputs (sensors)
 move.b #$00,PADOR ;Turn off all motors

*Main loop to read the sensor, display it, and drive the motor
*Exits when any key is pressed.

main move.b PBDI,d0 ;read sensors into d0
bsr display ;subroutine to display sensor value
bsr drive ;subroutine to drive the motor
btst.b #0,SRB
beq main ;if a key is pressed, clear the
move.b RBB,d0 ;input, and turn off the motors.
move.b #$00,PADOR
trap #15

* This subroutine displays the sensor value
display movea.l #mesg,a0 ;make a0 point to a message string

bsr Print ;subroutine to print a string
move.b #$30,value
and.b #$01,d0 ;d0 holds 0 or 1 depending on sensor
add.b d0,value ;value contains ascii for 0 or 1
movea.l #value,a0
bsr Print
rts

* Subroutine takes the sensor value (in d0) and decides
* whether or not to drive the motor
drive btst.b #0,d0

beq zero
move.b #$01,PADOR ;turn on motor 1
rts

zero move.b #$00,PADOR ;turn off motor 1
rts

LEGO Control Board

147

* Subroutine prints the string pointed at by a0, ended with a 0
Print btst.b #2,SRB

beq Print
move.b (a0)+,TBB
cmp.b #0,(a0)
bne Print
rts

* Declare data (strings)
mesg dc.b ‘ Sensor One (1=light, 0=dark) = ‘,0
value dc.b $30,$0d,0 ;sensor value followed by CR

LEGO Control Board

148 Lab Manual for the UofT Ultragizmo Board

Sample 2: Calibrate
* This program is very useful for testing a sensor with an index wheel.
* Connect the sensor to #1. Turn pot 1 fully clockwise (least sensitive)
* Run this program. Increase the sensitivity until all of the areas
* are detected reliably.

* Initialize addresses

PADOR equ $c10000
PBDOR equ $c10001
PADDR equ $c10002
PBDDR equ $c10003
PADI equ $c10004
PBDI equ $c10005

SRB equ $fffff7f3
RBB equ $fffff7f7
TBB equ $fffff7f7

* Debounce delay value

DELAY equ $0010 ;seems to work okay, might need to change this

* go 20000 to run program

 org $20000

*Initialize the PITs to keep the motors still (just in case)
 move.b #$ff,PADDR ;Output for motors
 move.b #$00,PBDDR ;Input for sensors
 move.b #$00,PADOR ;Turn motors 1-4 off

*Main loop to check the sensor and print an update
*when it changes. Hitting any key resets the counter.

clr.l d0 ;current state of sensor 1
clr.l d1 ;old state of sensor 1
move.w #-1,d2 ;current count of edges (updated to 0

* first time through loop)

main btst.b #0,SRB ;check for keyboard, if none read sensors
beq sensors
move.b RBB,d2
move.w #-1,d2 ;there was a key input so clear the count
clr.l d1
bra main

sensors move.b PBDI,d0 ;read the sensor, compare it to old
cmp.b d0,d1 ;value, branch to main if there is no change
beq main
bsr delay ;wait for sensor to debounce
move.b PBDI,d0
cmp.b d0,d1 ;if the sensor isn’t still different,

LEGO Control Board

149

beq main ;then go back to main (false alarm)

* The sensor value has changed, so we need to update
* the old value and the count, and display the results

move.b d0,d1 ;update old sensor value
add.w #1,d2 ;update count
move.b #$30,sens1 ;convert sensor output to ascii 1 or 0
btst.b #0,d0
beq skip
move.b #$31,sens1

skip move.b #$30,count ;convert count to ascii, only works for 0-9
add.b d2,count
movea.l #mesg1,a0 ;print the sensor value and count
jsr Print
movea.l #sens1,a0
jsr Print
movea.l #mesg2,a0
jsr Print
movea.l #count,a0
jsr Print
bra main

* Prints the string pointed at by a0 and ended with a 0
Print btst.b #2,SRB

beq Print
move.b (a0)+,TBB
cmp.b #0,(a0)
bne Print
rts

* Sits here for DELAY cycles
delay move.l DELAY,d4
deloop dbra d4,deloop

rts

* Declare data
mesg1 dc.b ‘ Sensor value =’,0
mesg2 dc.b ‘ Count = ‘,0
sens1 dc.b $30,0
count dc.b $30,$0d,0

LEGO Control Board

150 Lab Manual for the UofT Ultragizmo Board

Sample 3: Conveyor Belt
* Simple program to control a conveyor belt with a sensor at either
* end. If a sensor is blocked, belt goes until the other sensor is
* blocked. A key is pressed to reset and start the process over.

* Initialize addresses

PADOR equ $c10000
PBDOR equ $c10001
PADDR equ $c10002
PBDDR equ $c10003
PADI equ $c10004
PBDI equ $c10005

SRB equ $fffff7f3
RBB equ $fffff7f7
TBB equ $fffff7f7

* go 20000 to run program

 org $20000

*Initialize the pit to keep the motors still
 move.b #$ff,PADDR ;Output for motors
 move.b #$00,PBDDR ;Input for sensors
 move.b #$00,PADOR ;Turn motors 1-4 off

*Main loop to get inputs and drive motors
main bsr sensors

cmp.b #$30,s1dat ;if sensor one is 0, move belt in direct 1
beq dir1
cmp.b #$30,s2dat ;if sensor two is 0, move belt in direct 2
beq dir2
bra main

* keep motor going forward until sensor two is 0
dir1 bsr sensors

cmp.b #$30,s2dat
beq stop
move.b #$01,PADOR
bra dir1

* keep motor going reverse until sensor one is 0
dir2 bsr sensors

cmp.b #$30,s1dat
beq stop
move.b #$03,PADOR
bra dir2

* stop the motor and wait for keyboard input before continuing
stop move #$00,PADOR

movea.l #reset,a0 ;print a message to hit a key
jsr Print

LEGO Control Board

151

wait btst.b #0,SRB ;wait for a key
beq wait
move.b RBB,d0
bra main

* read and display current values of the two sensors
sensors move.b PBDI,d2

move.b #$30,s1dat ;initialize sensor values to ascii 0
move.b #$30,s2dat
btst.b #0,d2
beq skip1 ;if the sensor is a 1, change its value
move.b #$31,s1dat ;to ascii 1

skip1 btst.b #1,d2
beq skip2
move.b #$31,s2dat

* print the values
skip2 movea.l #s1,a0

jsr Print
movea.l #s1dat,a0
jsr Print
movea.l #s2,a0
jsr Print
movea.l #s2dat,a0
jsr Print
movea.l #return,a0
jsr Print
rts

* Prints to the screen. a0 points at the string. String ends with a 0.
Print btst.b #2,SRB
 beq Print

move.b (a0)+,TBB
cmp.b #0,(a0)
bne Print
rts

* declare data
s1 dc.b ‘ Sensor 1 = ‘,0
s2 dc.b ‘ Sensor 2 = ‘,0

s1dat dc.b $30,0
s2dat dc.b $30,0

return dc.b $0d,0
reset dc.b ‘Press any key to resume operation ‘,$0d,0

0

Future Ultragizmo Upgrades

152 Lab Manual for the UofT Ultragizmo Board

11 Future Ultragizmo Upgrades

Several new components for the Ultragizmo board are being planned and designed. This chapter
describes a few of them. Please check the /cad2/ultragizmo directory on the ugsparc network, as
well as Fred Aulich’s web page at http://www.eecg.toronto.edu/~aulich for any updates.

11.1 Ultravideo VGA Board

The Ultravideo board will be a VGA graphics board which will interface to the Ultragizmo
board via the PIT. An accompanying tester circuit will test the specifications of student video
designs for suitability to monitors. When specifications are met, the VGA board can be hooked up
to an actual monitor.

11.2 Magnetic Compass

This undergraduate design project is a compass which produces orientation values for the
Ultragizmo board and can be used to help navigating LEGO cars.

11.3 New Laboratory Experiments

New labs are being created for the Ultragizmo board. One lab will use the SFPGA as a copro-
cessor for the MC68306. Three labs will initially be created for the Ultravideo board. One will use
the mouse to move a pointer on a monitor. The second will require the student to download an
image onto the Ultragizmo SRAM, possibly do some image manipulations, and output the result
to the screen. The third will be a videoconferencing lab using both the Ultravideo board and the
CODEC.

Data Sheets

153

12 Data Sheets

Data sheets for Ultragizmo components are accessible via World Wide Web. The URL
addresses are listed here. The URLs are up-to-date as of printing, but are of course subject to
change.

Table 35 - Data Sheet URLs for Ultragizmo Board Components

Motorola MC68306
Intergrated EC000
Processor

http://www.mot-sps.com/products/microprocessors/32_bit/68k/mc68306.html

Altera Flex 10K70
FPGA

http://www.altera.com/html/literature/lf10k.html

Samsung KM6164002
SRAM

http://www.usa.samsungsemi.com/products/summary/speedsram/KM6164002A.htm

Cypress ICD2053B
Programmable Clock
Generator

http://www.cypress.com/cypress/prodgate/timi/icd2053b.html

Cirrus Logic Crystal
CS4216 16-Bit Stereo
Audio Codec

http://www.cirrus.com/products/overviews/cs4216.html

Data Sheets

154 Lab Manual for the UofT Ultragizmo Board

