
Field-Programmable Gate Array

Architectures and Algorithms Optimized

for Implementing Datapath Circuits

Andy Gean Ye

November 2004

Field-Programmable Gate Array

Architectures and Algorithms Optimized

for Implementing Datapath Circuits

by

Andy Gean Ye

A thesis submitted in conformity with

the requirements for the degree of

Doctor of Philosophy

November 2004

The Edward S. Rogers Sr. Department of

Electrical and Computer Engineering

University of Toronto

Toronto, Ontario, Canada

© Copyright by Andy Gean Ye 2004

ii

“ We are pattern-seeking animals, the descendents of hominids who were especiall y dex-

terous at making causal li nks between events in nature. The associations were real often

enough that the abilit y became engrained in our neural architecture. Unfortunately, the belief

engine sputters occasionally, identifying false patterns as real . . .

The solution is science, our preeminent pattern-discriminating method and our best hope

for detecting a genuine signal within the noise of nature’s cacophony.”

– “ Codified Claptrap,” Michael Shermer, Scientific American, June 2003

iii

iv

Abstract

Field-Programmable Gate Arrays (FPGAs) are user-programmable digital devices that

provide efficient, yet flexible, implementations of digital circuits. Over the years, the logic

capacity of FPGAs has been dramatically increased; and currently they are being used to

implement large arithmetic-intensive appli cations, which contain a greater portion of datapath

circuits. Each circuit, constructed out of multiple identical building blocks called bit-slices,

has highly regular structures. These regular structures have been routinely exploited to

increase speed and area-eff iciency in designing custom Application Specific Integrated Cir-

cuits (ASIC).

Previous research suggests that the implementation area of datapath circuits on FPGAs

can also be significantly reduced by exploiting datapath regularity through an architectural

feature called configuration memory sharing (CMS), which takes advantage of datapath regu-

larity by sharing configuration memory bits across, normall y independently controlled, recon-

figurable FPGA resources. The results of these studies suggest that CMS can reduce the total

area required to implement a datapath circuit on FPGA by as much as 50%. They, however,

did not take into account detailed implementation issues such as transistor sizing, utili zable

regularity in actual datapath circuits, and Computer-Aided Design (CAD) tool efficiencies.

This study is the first major in-depth study on CMS. The study found that when detailed

implementation issues are taken into account, the actual achievable area savings can be signif-

icant less than the previous estimations — the CMS architecture investigated in this study is

only about 10% more area eff icient than a comparable conventional and widely studied FPGA

architecture for implementing datapath circuits. Furthermore, this increase in area eff iciency

has a potential speed penalty of around 10%.

v

To conduct the study, a new area-efficient FPGA architecture is designed along with its

supporting CAD tools. The architecture, called Multi-Bit FPGA (MB-FPGA), is the first com-

pletely specified FPGA architecture that employs CMS routing resources. This sharing signif-

icantly reduces the number of configuration memory bits and consequently increases its area

efficiency.

The use of the CMS resources, however, imposes new demands on the traditional FPGA

CAD algorithms. As a result, a complete set of CAD tools supporting FPGAs containing CMS

resources are proposed and implemented. These tools are designed to extract and utili ze datap-

ath regularity for the CMS resources. It is shown that these tools yield excellent results for

implementing a set of realistic datapath circuits on the MB-FPGA architecture.

vi

Acknowledgements

I would li ke to take this opportunity to express my sincere thanks and appreciation to my

academic supervisors. Professor Jonathan S. Rose and Professor David M. Lewis have pro-

vided continual source of guidance, support, advice, and friendship through out my graduate

studies. It has been my privilege to work with these two experienced academics and excellent

engineers. They have made my doctoral studies a truly rewarding and unforgettable experi-

ence. I would especiall y like to thank Professor Jonathan S. Rose for taking the extra mile to

point out the big pictures in my research and my academic career. I would also li ke to thank

Professor David M. Lewis for all his extremely detailed and insightful technical advice.

My father and mother have always been a constant support throughout my studies and

my personal life. Their courage, kindness, hard-working ethics, and constant striving for good-

ness, have been a great inspiration to me. I am especially inspired by their courage in over-

coming almost insurmountable diff iculties in immigrating and establishing themselves in

Canada. This thesis is as much an achievement of theirs as it is mine.

I would like to thank my academic supervisors, the Natural Sciences and Engineering

Research Council, the Ontario Government, Communications and Information Technology

Ontario, and Micronet for their financial support.

Finally, I would li ke to thank all my friends for endless hours of play, insightful discus-

sions, rejuvenating lunch outings, friendship, support, and encouragement. Thank you all !

vii

viii

TABLE OF CONTENTS

1 Introduction
1.1 Introduction to Field-Programmable Gate Arrays ..1
1.2 Thesis Motivation ...2
1.3 Research Approach ...3
1.4 Thesis Contribution ...4
1.4 Thesis Organization ..4

2 Background
2.1 Introduction ...7
2.2 FPGA CAD Flow ..7

2.2.1 Synthesis and Technology Mapping ..9
2.2.1.1 Synopsys FPGA Compiler ..10
2.2.1.2 Datapath-Oriented Synthesis ...11

2.2.2 Packing ...12
2.2.3 Placement and Routing ..13

2.2.3.1 VPR Placer and Router ...13
The VPR Placer ...14
The VPR Router ..14

2.3 FPGA Architectures ..15
2.3.1 A Conventional FPGA Architecture ..16

2.3.1.1 Logic Clusters ...16
Local Routing Network ...18

2.3.1.2 Routing Switches ..19
2.3.1.3 Routing Channels ..20
2.3.1.4 Switch Blocks ...22
2.3.1.5 Input and Output Connection Blocks ..24
2.3.1.6 I/O Blocks ...25

2.3.2 DP-FPGA — A Datapath-Oriented FPGA Architecture26
2.3.2.1 Overview of the Datapath Block ...26
2.3.2.2 Arithmetic Look-Up Tables ..29
2.3.2.3 Logic Blocks ...30

Data Connection Blocks ..32
Shift Blocks ...33

2.3.4 Other Datapath-Oriented Field-Programmable Architectures34
2.3.4.1 Processor-Based Architectures ...35
2.3.4.2 Static ALU-Based Architectures ...37
2.3.4.3 Dynamic ALU-Based Architectures ...38
2.3.4.4 LUT-Based Architectures ...39
2.3.4.5 Datapath-Oriented Features on Commercial FPGAs40

2.3.5 Delay and Area Modeling ..41
2.4 Summary ...42

ix

3 A Datapath-Oriented FPGA Architecture
3.1 Introduction ...43
3.2 Motivation ...45

3.2.1 Heterogeneous Architecture ...45
3.2.2 Logic Block Eff iciency ..46
3.2.3 Parameterization ..48

3.3 Design Goals of MB-FPGA ..48
3.4 A Model for Arithmetic-Intensive Applications ...49
3.5 General Approach and Overall Architectural Description ..52

3.5.1 Partitioning Datapath Circuits into Super-Clusters ..52
3.5.2 Implementing Non-Datapath Circuits on MB-FPGA ..54

3.6 The MB-FPGA Architecture ...54
3.6.1 Super-Clusters ..55

3.6.1.1 Clusters ..57
Local Routing Network ...58
Carry Network in Detail ..59

3.6.1.2 Configuration Memory Sharing ..60
3.6.2 Routing Switches ...60
3.6.3 Routing Channels ...61
3.6.4 Switch Blocks ..63
3.6.5 Input and Output Connection Blocks ...65
3.6.6 I/O Blocks ..67

3.7 Summary ...68

4 An Area Efficient Synthesis Algorithm for Datapath Circuits
4.1 Introduction ...69
4.2 Motivation and Background ...70
4.3 Datapath Circuit Representation ...73
4.4 The EMC Synthesis Algorithm ...75

4.4.1 Word-Level Optimization ..76
4.4.1.1 Common Sub-expression Extraction ..76
4.4.1.2 Operation Reordering ..79

4.4.2 Module Compaction ...81
4.4.3 Bit-Slice Netlist I/O Optimization ...83

4.5 Experimental Results ..86
4.5.1 Area Inflation ...86
4.5.2 Regularity ...89

4.5.2.1 Logic Regularity ...89
4.5.2.2 Net Regularity ...90

4.6 Conclusion ..93

5 A Datapath-Oriented Packing Algorithm
5.1 Introduction ...95
5.2 Motivation ...96
5.3 General Approach and Problem Definition ..99
5.4 Datapath Circuit Representation ...100

x

5.5 The CNG Packing Algorithm ...102
5.5.1 Step 1: Initialization ...102

5.5.1.1 Breaking Nodes ...102
5.5.1.2 Timing Analysis and Criticali ty Calculation ...103

5.5.2 Step 2: Packing ..104
5.5.2.1 Calculating Seed Criti cali ty ..106
5.5.2.2 Calculating Attraction Criticality ..109

Base Seed Criticality ...110
Secondary Attraction Criticality ...110
Shared I/O Count ...111
Common I/O Count ...111

5.6 Results ...112
5.6.1 Super-Cluster Architectures ...113
5.6.2 Regularity Results ..114
5.6.3 Area Results ...114
5.6.4 Performance Results ..116

5.7 Conclusions and Future Work ...117

6 A Datapath-Oriented Routing Algorithm
6.1 Introduction ...119
6.2 Motivation ...120
6.3 The MB-FPGA Placer ...122
6.4 General Approach and Problem Definition ..123
6.5 MB-FPGA Architectural Representation ..124
6.6 The CGR Routing Algorithm ..126

6.6.1 Step 1: Initialization ...127
6.6.2 Step 2: Routing Nets ..130

6.6.2.1 Congestion Cost ..131
6.6.2.2 Optimizing Circuit Delay ..132
6.6.2.3 Expansion Cost ...133

Expansion Topologies ...133
Expansion Cost Functions ...136

6.6.3 Step 3: Updating Metrics ...140
6.7 Results ...141

6.7.1 MB-FPGA Architecture ...141
6.7.2 Track Count ..143
6.7.3 Routing Area Results ...145
6.7.4 Routing Performance Results ..146

6.8 Conclusions and Future Work ...146

7 The Regularity of Datapath Circuits
7.1 Introduction ...149
7.2 MB-FPGA Architectural Assumptions ...151
7.3 Experimental Procedure ..151
7.4 Experimental Results ..152

7.4.1 Effect of Granularity on Logic Regularity ...152

xi

7.4.1.1 Diversity of Datapath Widths ..155
7.4.1.2 Maximum Width Datapath Components and Irregular Logic156
7.4.1.3 Inherent Regularity Distribution ...158
7.4.1.4 Architectural Conclusions ...159

7.4.2 Effect of Granularity on Net Regularity ..159
7.4.2.1 Shift Definition ...161
7.4.2.2 Net Regularity Results ..162
7.4.2.3 Effect of M on Irregular Two-Terminal Connections162
7.4.2.4 Effect of M on the Most Populous Bus Types ..164
7.4.2.5 Architectural Conclusions ...164

7.5 Summary and Conclusions ...165

8 The Area Efficiency of MB-FPGA
8.1 Introduction ...167
8.2 MB-FPGA Architectural Assumptions ...169

8.2.1 A Summary of Architectural Parameters ...170
8.2.2 Parameter Values ..172

8.2.2.1 Physical Placement of Super-Cluster Inputs and Outputs175
8.2.2.2 Physical Placement of Isolation Buffers ...176

8.2.3 Transistor Sizing ..179
8.3 Experimental Procedure ..179
8.4 Limitations of this work ..181
8.5 Experimental Results ..182

8.5.1 Effect of Granularity on Area Eff iciency ...182
8.5.1.1 MB-FPGA Architectures with No CMS Routing Tracks183
8.5.1.2 MB-FPGA Architectures with CMS Routing Tracks184

8.5.2 Effect of Proportion of CMS Tracks on Area Eff iciency186
8.5.3 MB-FPGA Versus Conventional FPGA ..187

8.5.3.1 Parameter Results ..188
Fc_of ...188
Fc_if and Fc_pf ...188
Lf ...190

8.5.3.2 Area and Performance Results ..191
8.6 Summary and Conclusions ...194

9 Conclusions
9.1 Thesis Summary ..195
9.2 Thesis Contributions ...197
9.3 Suggestions for Future Research ..199

Appendix A: Net Regularity Distribution
A.1 MB-FPGA Architectural Granularity = 2 ..203
A.2 MB-FPGA Architectural Granularity = 4 ..203
A.3 MB-FPGA Architectural Granularity = 8 ..203
A.4 MB-FPGA Architectural Granularity = 12 ..204
A.5 MB-FPGA Architectural Granularity = 16 ..204

xii

A.6 MB-FPGA Architectural Granularity = 20 ..206
A.7 MB-FPGA Architectural Granularity = 24 ..208
A.8 MB-FPGA Architectural Granularity = 28 ..210
A.9 MB-FPGA Architectural Granularity = 32 ..213

xiii

xiv

LIST OF FIGURES

2.1 FPGA CAD Flow...8
2.2 Overview of FPGA Architecture Described in [Betz99a] ...17
2.3 Logic Cluster..17
2.4 Basic Logic Element ..18
2.5 Look-Up Table...18
2.6 Routing Switches...20
2.7 Buffer Sharing..21
2.8 Routing Channel ..22
2.9 Staggered Wire Segments..23
2.10 Tiles..23
2.11 Different Topologies of A Horizontal Track Meeting A Vertical Track24
2.12 Input Connection Block ...25
2.13 Output Connection Block...26
2.14 Overview of DP-FPGA Architecture...27
2.15 Overview of Datapath Block..28
2.16 Arithmetic Look-Up Table...29
2.17 Logic Block Connectivity ..30
2.18 DP-FPGA Logic Block ..31
2.19 Data Connection Block ..33

3.1 Arithmetic-Intensive Application ..50
3.2 Datapath Structure..51
3.3 Overview of MB-FPGA Architecture..55
3.4 Super-Cluster with M Clusters...56
3.5 Cluster ..56
3.6 A Modified Cluster from [Betz99a] ...58
3.7 Local Routing Network..59
3.8 Carry Network..60
3.9 BLEs and Configuration Memory Sharing..61
3.10 Routing Switches...62
3.11 CMS Routing Tracks With A Granularity Value of Two...63
3.12 Connecting Routing Buses...65
3.13 Input Connection Block (M=4)..66
3.14 Output Connection Block (M=4) ...67

4.1 Regularity and Area Efficiency..71
4.2 Share Look-Up Table C ...72
4.3 Simplify Look-Up Table B ..72
4.4 4-bit Ripple Adder Datapath Component ..75
4.5 Overall Synthesis Flow ..76
4.6 Mux Tree Collapsing Example ..78
4.7 Result Selection to Operand Selection Transformation...80

xv

4.8 A Bit-Sli ce Netli st Merging Example..82
4.9 Feedback Absorption Example..85
4.10 Dupli cated Input Absorption..85
4.11 4-bit Wide Bus Topology ...91
4.12 4-bit Control Net Topology..92

5.1 Regularity and Performance...97
5.2 A Naive Packing Solution..98
5.3 A Better Packing Solution..98
5.4 Coarse-Grain Node Graph ...101
5.5 Datapath Circuit Represented by the Coarse-Grain Node Graph..............................101
5.6 Overview of the CNG Packing Algorithm...103
5.7 Order for Filli ng Super-Cluster with N = 4, M = 3..105
5.8 Equivalence of BLEs in Clusters...106
5.9 Topology for Identifying Potential Local Connection...107
5.10 Adding a Node to a Super-Cluster at Position (4,1) ..110
5.11 Common Inputs Between Clusters in a Super-Cluster...112
5.12 Regularity vs. Granularity..115
5.13 Area vs. Granularity ...115
5.14 Delay vs. Granularity ...117

6.1 Example of Contention Between CMS and Fine-Grain Nets....................................121
6.2 An Example Routing Resource Graph...126
6.3 Overview of the CGR Routing Algorithm...128
6.4 A Pin-Bus...129
6.5 A Net-Bus Containing Net A, B, and C...129
6.6 Competition for Resources...134
6.7 Expansion Topology ..139
6.8 Double Connection in One Bit of A Node-Bus ...140
6.9 Track Count vs. #CMS Tracks per Channel...144
6.10 Area vs. #CMS Tracks...145
6.11 Delay vs. #CMS Tracks ...146

7.1 Super-Cluster with M Clusters...150
7.2 CAD Flow ..152
7.3 Dividing A Super-Cluster into Datapath Components ..153
7.4 Datapath Component Types Containing a Minimum % of BLEs..............................156
7.5 % of BLEs in Maximum Width Datapath Components...157
7.6 % of BLEs in Irregular Logic vs. M ..157
7.7 A 2-bit wide bus with one-bit shift for M = 4..160
7.8 % of Irregular Two-Terminal Connections vs. M ..163
7.9 The Most Populous Bus Types for Each Granularity...165

8.1 The MB-FPGA Architecture..168
8.2 Tp for FPGA Architectures with N = 4 and I = 10..176
8.3 Isolation Buffer Topology for Conventional FPGA...177

xvi

8.4 Equivalent MB-FPGA Architecture...178
8.5 CAD Flows ..180
8.6 Total Area vs. M with No CMS Routing Tracks..183
8.7 Logic Area vs. M with No CMS Routing Tracks ..185
8.8 Area vs. M with CMS Routing Tracks...185
8.9 Area vs. Proportion of CMS Tracks...187
8.10 Iteration 1: Routing Area vs. Fc_if for Fc_pf = 1.00...189
8.11 Iteration 2: Routing Area vs. Fc_pf for Fc_if = 0.5...189
8.12 Iteration 3: Routing Area vs. Fc_if for Fc_pf = 0.2...190
8.13 Area vs. Logical Track Length...191
8.14 Area vs. Percentage of CMS Tracks..192
8.15 Normalized Delay vs. Percentage of CMS Tracks...193

xvii

xviii

LIST OF TABLES

4.1 Area Inflation for Hard-Boundary Hierarchical Synthesis..74
4.2 LUT & DFF Inflation for Regularity Preserving Synthesis.......................................87
4.3 LUT Count Inflation as a Function of Granularity ..89
4.4 Logic Regularity ..91
4.5 Net Regularity ..92

5.1 Experimental Circuits ..113

6.1 b(n) Values for Each Type of Routing Resource..131
6.2 Expansion Cost ..137
6.3 Experimental Circuits ..142

7.1 % of BLEs Contained in Each Width of Datapath Components154
7.2 Distribution of BLEs for M = 32 ...158
7.3 % of Inter-Super-Cluster Two-Terminal Connections Contained in

Each Type of Buses for M = 12 ..163

8.1 MB-FPGA Architectural Parameters...170
8.2 Values for Architectural Parameters ..173

A.1 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 2 ...203

A.2 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 4 ...203

A.3 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 8 ...204

A.4 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 12 ...204

A.5 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 16 – Part 1 of 2 ..205

A.6 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 16 – Part 2 of 2 ..205

A.7 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 20 – Part 1 of 2 ..206

A.8 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 20 – Part 2 of 2 ..207

A.9 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 24 – Part 1 of 2 ..208

A.10 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 24 – Part 2 of 2 ..209

A.11 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 28 – Part 1 of 3 ..210

xix

A.12 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 28 – Part 2 of 3 ..211

A.13 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 28 – Part 3 of 3 ..212

A.14 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 32 – Part 1 of 3 ..213

A.15 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 32 – Part 2 of 3 ..214

A.16 % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 32 – Part 3 of 3 ..215

1

1 Introduction

1.1 Introduction to Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are user programmable digital devices that

provide efficient, yet flexible, implementations of digital circuits. An FPGA consists of an

array of programmable logic blocks interconnected by programmable routing resources. The

flexibil ity of FPGAs allows them to be used for a variety of digital applications from small

finite state machines to large complex systems. The research reported in this thesis is focused

on reducing the implementation area of large, arithmetic-intensive, systems on FPGAs through

architectural innovations. We also present new and innovative Computer-Aided Design

(CAD) algorithms which are designed to support the new architecture.

Since their invention in 1984 [Cart86], FPGAs have become one of the most widely used

platforms for digital applications. Comparing to alternative technologies, which directly fabri-

cate hardware on sili con, FPGAs have the advantage of instant manufacturabili ty and infinite

re-programmability. They also incur lower cost for low to medium volume production of digi-

tal devices. Unlike full fabrication of integrated circuits, which require highly speciali zed

manufacturing facil ities and cost hundreds of thousands of dollars to prototype, FPGAs can be

programmed on the desks of their designers. This makes the verification of hardware designs

much faster — once a mistake is found, unlike full fabrication, which has to rebuild masks,

corrections on FPGAs only take the reprogramming of a few configuration memory bits. This

also allows multiple design iterations to be done quickly and at a much lower cost. FPGA

based applications also can be updated after they are deli vered to their customers allowing

incremental hardware improvements and adaptation of old designs to new protocols and spec-

2

ifications. Furthermore, FPGA CAD tools are much cheaper to acquire than comparable CAD

tools that support full fabrication.

These advantages allow FPGAs to compete head on with full fabrication technologies,

such as the Application Specific Integrated Circuit (ASIC) technology, for market share. The

user-programmabilit y of FPGAs, however, also has its shortcomings: FPGAs are more expen-

sive in high volume production; circuits implemented on FPGAs are usuall y many times big-

ger and slower than comparable ASICs. In order for FPGAs to overtake full fabrication

technologies, FPGA researchers need to find new and innovative ways of improving the per-

formance and logic density of FPGAs.

1.2 Thesis Motivation

Over the years, the capacity of FPGAs has increased dramatically. Current state-of-the-

art devices can contain near 100,000 logic elements (where a logic element is typicall y a 4-

input look-up table, a flip-flop, and 1-bit worth of arithmetic carry logic) [Alte02] [Xil i02]

with a projected logic capacity of several mill ion logic gates [Xili02]. In comparison, the first

FPGA [Cart86] contains only 64 logic blocks with a projected capacity of between 1000 and

1600 gates. Since the logic capacity has grown significantly, the appli cation domain of FPGAs

has been greatly expanded. Modern FPGAs are often used to implement large arithmetic-

intensive applications, including CPUs, digital signal processors, graphics accelerators and

internet routers.

Arithmetic-intensive appli cations often contain significant quantiti es of regular struc-

tures called datapaths. These datapaths are constructed out of multiple identical building

blocks called bit-slices. They are used to perform mathematical or logical operations on multi-

ple-bits of data. It is our hypothesis that greater area efficiency can be achieved in FPGAs by

incorporating datapath specific features. One such feature is the configuration memory shar-

3

ing (CMS) routing resources proposed by Cherepacha and Lewis in [Cher96], which takes the

advantage of the regularity of datapath circuits by sharing configuration memory bits across

normall y independent routing resources. This reduces the number of programming bits needed

to control these resources and consequently reduces FPGA area.

The primary focus of this thesis is to explore in-depth methods of increasing FPGA logic

density for arithmetic circuits using multi-bit logic and CMS routing structures under a highly

automated modern design environment. The goal of the study is to determine the most appro-

priate amount of CMS routing resources in order to achieve the best logic density improve-

ment for real circuits using real automated CAD tools. Since routing area typically consists of

a significant percentage of the total FPGA area, its reduction is particularly important to

reduce the overall FPGA area. This research is a continuation of the DP-FPGA work [Cher96].

It is also closely related in methodology to several previous FPGA research projects

[Betz99a].

1.3 Research Approach

Datapath-oriented FPGA architectures are studied in this thesis using an experimental

approach. A parameterized FPGA architecture, called Multi-Bit FPGA (MB-FPGA), with bus-

based CMS routing resources has been proposed. A complete CAD flow for the architecture

has also been implemented. The experiments consist of varying the amount of CMS routing

resources and measuring the effects on the implementation area of datapath circuits. The

results of the experiments provide insight to the amount of CMS routing resources that are

needed to achieve area savings for real datapath applications using real CAD tools.

4

1.4 Thesis Contributions

To the best knowledge of the author, the MB-FPGA architecture is the first completely

specified special-purpose FPGA architecture targeting datapaths. It is also the first FPGA

architecture containing CMS routing resources supported by a complete set of CAD tools. Fur-

thermore, the architectural study presented here represents the first in-depth empirical study on

the effectiveness of CMS routing resources in translating datapath regularity into area savings.

Previous studies [Cher96] [Leij03] on the subject are all analytical in nature. As a result, none

of them takes the detailed transistor-sizing issues, the actual benchmark regularity, and the

area efficiency of the CAD algorithms into account. As it will be shown by the results of this

study, these previous studies are much less accurate and tends to overestimate the benefits of

the CMS resources.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the background information rele-

vant to this work, including a review of various CAD tools available for transforming high-

level descriptions of digital circuits into FPGA programming information. The review

includes a brief description of representative tools from each major class of CAD tools. The

chapter also describes the work of two previous architectural studies that significantly influ-

enced the work presented in this thesis.

Chapter 3 presents a new, highly parameterized, datapath-oriented FPGA architecture

called the Multi-Bit FPGA (MB-FPGA). The architecture is unique in that it uses a mixture of

conventional routing resources and CMS routing resources. The combination allows a homog-

enous architecture for the eff icient implementation of large datapath circuits as well as small

non-datapath circuits. The architecture is the basis from which the CAD flow presented in

5

Chapter 4, 5, and 6 are designed and the experiments presented in Chapter 7 and 8 are con-

ducted.

Chapter 4, 5, and 6 presents a new datapath-oriented CAD flow. The flow includes sev-

eral new algorithms covering the entire process of transforming and optimizing high-level cir-

cuit descriptions into FPGA programming information. These algorithms are unique in that

they effectively preserve and utili ze datapath regularity on CMS routing resources. In particu-

lar, Chapter 4 discusses datapath-oriented synthesis; Chapter 5 presents a datapath-oriented

packing algorithm; and Chapter 6 discusses datapath-oriented placement and routing.

Using the synthesis and packing tools presented in Chapter 4 and 5, Chapter 7 character-

izes and quantifies the amount of regularity presented in a typical datapath circuit. Analyti-

cally, this regularity information is used to determine good values for several important MB-

FPGA architectural parameters, including the degree of configuration memory sharing (called

granularity) and the proportion of CMS routing resources.

The MB-FPGA is directly explored in Chapter 8 using an experimental approach. The

CAD flow presented in Chapter 4, 5, and 6 is used to implement a set of datapath circuits on

the MB-FPGA architecture. For each circuit the best area is evaluated by varying a range of

architectural parameters. The experiments measure the effectiveness of CMS routing on

improving the area efficiency of datapath circuit implementations and the effect of these rout-

ing resources on performance.

Finally, Chapter 9 provides concluding remarks and directions for future research.

6

7

2 Background

2.1 Introduction

This chapter reviews the two main fields of research, FPGA CAD tools and FPGA archi-

tectures, that are studied in this thesis. Section 2.2 provides some necessary background infor-

mation on FPGA CAD that is assumed in various discussions, particularly in Chapter 4, 5, and

6, which discuss CAD design for the MB-FPGA architecture. Section 2.3 describes several

previous FPGA architectures to provide a point of reference for the MB-FPGA architecture

presented in Chapter 3 and the FPGA modeling methodology that is used throughout this

work.

2.2 FPGA CAD Flow

Since the focus of this thesis is the design of a datapath-oriented FPGA architecture sup-

ported by a highly automated modern design environment, this chapter begins with an over-

view of the modern CAD tools that are commonly used to implement circuits on FPGAs. A

typical CAD flow for FPGAs consists of a series of interconnected CAD tools as illustrated in

Figure 2.1. The input to the flow usuall y is a high-level description of the hardware, expressed

in high-level hardware description languages such as Verilog or VHDL.

The description is read by a synthesis program [Call98] [Cora96] [Koch96a] [Koch96b]

[Kutz00a] [Kutz00b] [Nase94] [Nase98] [Syno99] [Synp03], which maps the description lan-

guage into a network of Boolean equations, fli p-flops, and pre-defined modules. During the

synthesis process, the Boolean equations are optimized with respect to estimated implementa-

tion area and delay. The optimizations performed at this stage are limited to those that can ben-

efit circuit implementations on any medium, not just FPGAs. Some synthesis algorithms,

including [Call98] [Cora96] [Koch96a] [Koch96b] [Kutz00a] [Kutz00b] [Nase94] [Nase98],

8

also attempt to preserve the regularity of datapath circuits by maintaining a hierarchy that

clearly delineates the boundary of bit-sli ces. These algorithms are often called the datapath-

oriented synthesis algorithms.

The Boolean equations are then first mapped into a circuit of FPGA Look-Up Tables

(LUTs) through the technology mapping process [Syno99]. Then the packing process

[Betz97a] [Betz99a] [Marq99] [Bozo01] groups LUTs and fli p-flops into logic blocks, each of

which usually contains several LUTs and fli p-flops. During the technology mapping and the

packing process, the circuit is again optimized with respect to estimated implementation area

and delay. This time the optimizations are targeted towards specific implementation technolo-

gies. Area is typically optimized by minimizing the number of LUTs or logic blocks that are

Figure 2.1: FPGA CAD Flow

High-Level
Hardware

Description

Synthesis

Placement

Routing

FPGA
Programming

Data

Technology
Mapping

Packing

9

required to implement the circuit; and delay is often optimized by minimizing the number of

LUTs or logic blocks that are on the estimated timing-critical paths of the circuit.

The specific location of each logic block on the target FPGA is determined during the

placement process [Betz99a] [Kirk83] [Marq00a] [Sech85] [Sech86] [Sech87] [Sun95]

[Swar95]. A placement program assigns each logic block to an unique location to optimize

delay and minimize wiring demand.

Finally, during the routing process [Betz99a] [Brow92a] [Brow92b] [Chan00] [Ebel95]

[Lee61] [Swar98], a routing program is used to connect logic blocks together by determining

the configuration of the programmable routing resources. The main task of all routing pro-

grams is to successfull y establish all connections in a circuit using the limited amount of phys-

ical resources available on the target FPGA. The other task of the routing programs is to

minimize delay by allocating fast physical connections to timing-critical paths.

Together the synthesis, technology mapping, and packing process are commonly called

the front end of the FPGA CAD flow; and the placement and routing steps are commonly

called the back end of the FPGA CAD flow. The remainder of this section reviews previous

work on each stage of the FPGA CAD flow. In particular, several tools discussed below,

including the Synopsys FPGA compiler [Syno99] for synthesis and technology mapping, the

T-VPACK packer [Marq99] [Betz99a] for packing, and the VPR (Versatile Placer and Router)

[Betz99a] tools for placement and routing, serve as the framework from which the CAD work

described in Chapter 4, Chapter 5, and Chapter 6 is developed.

2.2.1 Synthesis and Technology Mapping

There are several commerciall y available synthesis tools for FPGAs, including the Syn-

opsys FPGA Compiler [Syno99], Synpli city’s Synplify [Synp03], and Altera Quartus II

[Quar03]. In general, these tools perform both the task of synthesis and technology mapping;

10

however, none of these tools preserves the regularity of datapath circuits since they usually

optimize across the boundaries of bit-slices. These cross-boundary optimizations often destroy

the regularity of datapath circuits. This section first describes the various features of the Syn-

opsys FPGA Compiler [Syno99], which is used as a part of a datapath-oriented synthesis flow

built for the MB-FPGA architecture. Then previous research on datapath-oriented synthesis is

reviewed in detail.

2.2.1.1 Synopsys FPGA Compiler

The Synopsys FPGA Compiler performs a combination of synthesis and technology

mapping. The input to the compiler consists of three fil es including a circuit description fil e,

an architectural description fil e, and a compiler script fil e. The circuit description file

describes the behavior of the circuit that is to be synthesized. The format of the fil e can be in

either Verilog, VHDL, or several other high-level or low-level hardware description lan-

guages.

The architectural description file describes the properties of two fundamental FPGA

building blocks that the input circuit is to be mapped into, the LUTs and the fli p-flops. The

description includes parameters describing various delay and area properties of each building

block. The LUTs are combinational circuit elements each with several inputs and one output.

A LUT can be used to implement any single output Boolean function that has the same num-

ber of inputs as the LUT. The fli p-flops, on the other hand, are used to implement sequential

circuit elements.

The compiler script fil e gives specific compile-time instructions to the FPGA compiler. It

can be used to set up various synthesis boundaries in the input circuit so that circuit elements

wil l not be merged across these boundaries during the synthesis and the technology mapping

11

process. In this research, this feature is used to preserve datapath regularity; and it is described

in more detail i n Chapter 4.

The final output of the Synopsys FPGA compiler is a network of LUTs and fli p-flops that

implements the exact functionality of the input circuit. The compiler can output the final result

in a variety of f il e formats including the Verilog and the VHDL formats.

2.2.1.2 Datapath-Oriented Synthesis

Datapath-oriented synthesis techniques can be roughly classified into four categories

including hard-boundary hierarchical synthesis, template mapping [Call98] [Cora96] [Nase94]

[Nase98], module compaction [Koch96a] [Koch96b], and the regularity preserving logic

transformation algorithm [Kutz00a] [Kutz00b]. Note that most of these algorithms were pri-

maril y developed to speed up the development cycle (tool runtime) of their applications; and

they often pay little attention to area optimization.

Hard-boundary hierarchical synthesis is the simplest form of regularity preserving syn-

thesis. It preserves datapath regularity by performing optimizations strictly within the bound-

aries of user-defined bit-slices. However, as wil l be shown in Chapter 4, this method suffers

from the problem of high area inflation when compared to conventional synthesis algorithms

that do not preserve datapath regularity.

Template mapping [Call98] [Cora96] [Nase94] [Nase98] attempts to reduce the area

inflation of the hard-boundary hierarchical synthesis by mapping the input datapath onto a set

of predefined templates. These templates are datapath circuits that have been designed to be

very area eff icient. In theory, if one can define an arbitrarily large datapath template li brary

and has an unlimited amount of time to reconstruct the input datapath circuits out of these tem-

plates, one can achieve excellent area efficiency. However, in real l ife, limited by a reasonably

sized datapath template library and limited computing time, the template mapping algorithm

12

also performs poorly in terms of area efficiency and can have over 48% area inflation

[Cora96].

Module compaction [Koch96a] [Koch96b] takes one step further. It merges some of the

user-defined bit-slices into larger bit-slices while stil l preserving the regularity of datapath cir-

cuits. This algorithm is modified in Chapter 4 into an very area efficient datapath-oriented syn-

thesis algorithm when complemented with several extra optimization steps. Without these

optimization steps, however, the area efficiency of the module compaction algorithm as pro-

posed in [Koch96a] [Koch96b] is stil l quite poor. For example, the algorithm discussed in

[Koch96b] has an area inflation of on the order of 17%.

Finally, the regularity preserving logic transformation algorithm [Kutz00a] [Kutz00b]

takes an entirely different approach to datapath-oriented synthesis. Instead of preserving user-

defined regularity, it tries to extract regularity from flattened datapath logic. As a result,

although it is effective in area optimization, its effectiveness, in preserving datapath regularity,

is limited by the amount of regularity that can be discovered by the extraction process.

2.2.2 Pack ing

All existing packing algorithms place LUTs and fli p-flops into FPGA logic blocks. Each

logic block has a fixed capacity, which is determined by the number of LUTs and fli p-flops

that the logic block contains and the available number of unique logic block inputs and out-

puts. The VPACK algorithm [Betz97a] tries to maximize the number of LUTs that can be

packed into a logic block by grouping highly connected LUTs together. The T-VPACK algo-

rithm [Marq99] improves upon the VPACK algorithm by using the timing information on top

of the connectivity information. Other packing algorithms, including RPACK and T-RPACK

[Bozo01], further improve upon the VPACK and the T-VPACK algorithms by using routabil-

ity information on top of the connectivity and timing information. Note that all four packing

13

algorithms assume a fully connected logic cluster architecture, which is described in detail in

Section 2.3.1.1. Furthermore, during the packing process each packing algorithm considers

individual LUTs or DFFs in isolation. As a result, none of these algorithms preserves the regu-

larity of the datapath circuits during the packing process.

2.2.3 Placement and Routing

This section gives an overview of the VPR placement and routing tools [Betz99a], which

serve as the basis for the MB-FPGA placement and routing software and algorithms described

in Chapter 6. The VPR placer is based on the simulated annealing algorithm [Kirk83]

[Sech85], while the VPR router is a negotiation-based router [Ebel95]. Note that simulated

annealing based algorithms [Betz99a] [Kirk83] [Marq00a] [Sech85] [Sech86] [Sech87]

[Sun95] [Swar95] are one of the most widely used types of placement algorithms for FPGAs,

while many FPGA routing algorithms are negotiation-based routers [Betz99a] [Chan00]

[Ebel95] [Lee61] [Swar98]. None of the existing placement [Betz99a] [Kirk83] [Marq00a]

[Sech85] [Sech86] [Sech87] [Sun95] [Swar95] and routing algorithms [Betz99a] [Brow92a]

[Brow92b] [Chan00] [Ebel95] [Lee61] [Swar98] preserves the regularity of datapath circuits.

For placement, regularity is destroyed by existing placers, which only incrementall y improve

the placement of individual logic blocks. Routers, on the other hand, also destroy the regular-

ity information as they only route one net at a time.

2.2.3.1 VPR Placer and Router

The VPR placer and the VPR router are contained in a single computer program. The

input to the program consists of two fil es, a circuit description file and an architectural descrip-

tion file. The circuit description fil e describes a network of logic blocks that is to be imple-

mented on an FPGA. The architectural description file specifies the detailed architecture of the

14

FPGA. The architectural choices in the architectural description file are limited to the variants

of the logic cluster based FPGA architecture described in Section 2.3.1.

The VPR Placer

The VPR placer performs placement using the simulated annealing algorithm [Kirk83]

[Sech85]. It first places each logic block randomly onto an unoccupied location on the FPGA.

It then moves two logic blocks by swapping their physical locations or moves a logic block

into a location that is not occupied by any other logic blocks. After each move, the algorithm

either keeps the move or discards the move by comparing the placement before the move with

the placement after the move using a set of metrics. These metrics represent an estimation of

how easily a particular placement can be routed and the achievable speed of the placement

after routing. Usually the optimization strategy chooses a placement with a metric indicating

easier routing or better speed. But occasionally, the algorithm chooses the opposite in the hope

that a bad placement choice can lead to a very good one in subsequent moves.

A key metric in simulated annealing is called the annealing temperature. At the start of a

placement process, the temperature is set at a very high value. Throughout the placement pro-

cess, the temperature is graduall y lowered to zero. At high temperatures, the optimization

strategy wil l be more likely to choose a bad move; while at low temperatures, fewer bad

moves are accepted by the algorithm. Finally at zero temperature, only good moves are

accepted.

The VPR Router

The VPR router takes the output of the VPR placer as its input. The input describes a net-

work of logic blocks whose physical locations are determined. The same architectural fil e that

the placer uses also specifies the routing architecture for the router. Recall that the fundamen-

15

tal goal of the routing tool is to successfull y connect all the nets through the routing network

and to meet the timing constraints of the most timing-criti cal connections.

Since each physical routing resource can only be used by a single net at a time, the best

connection choices for individual nets might conflict with each other. The VPR router uses the

negotiation-based approach of the Pathfinder routing algorithm [Elbe95] to resolve these rout-

ing conflicts. It connects the logic blocks together through several routing iterations. During

each iteration, the router completely routes the entire circuit; and except during the final itera-

tion, each physical routing resource are allowed to be used by several nets at a time. The over-

use is called congestion and the over-used routing resources are called congested resources.

During each iteration, the router connects one net at a time using the maze routing algo-

rithm [Lee61]. For each net, the routing process is guided by a set of metrics that are based on

the delay of the net and the congestion of the routing resources from all the previous routing

iterations. These metrics are updated after each routing iteration to make already congested

resources more costly to use as time progresses. The nets compete for congested resources

based on these metrics. When a net is more timing-critical or has no other alternatives, it is

given priority for the routing resources that it prefers. When a net is not timing-critical or has

other equall y good alternatives, it is forced to give up the congested resource that it occupies.

2.3 FPGA Architectures

This section provides a detailed description of two FPGA architectures proposed in pre-

vious FPGA studies including a conventional FPGA architecture described in [Betz99a] and a

datapath-oriented FPGA architecture described in [Cher96]. These two architectures have

been chosen because of their influence on the MB-FPGA architecture proposed in Chapter 3.

Each FPGA is described in terms of its logic block architecture, its routing architecture, and its

CAD flow. Enough detail s are given, and in some cases specific comments are made, to show

16

how specific architectural features of these FPGAs relate to the research described in this dis-

sertation. Following these detailed architectural descriptions, several existing datapath-ori-

ented architectures are briefly described. The section is concluded by a brief review of the

various techniques used for modeling FPGA delay and area throughout this work.

2.3.1 A Conventional FPGA Architecture

The overall structure of the conventional FPGA architecture proposed in [Betz99a] is

shown in Figure 2.2. It consists of a two-dimensional array of programmable logic blocks,

called logic clusters, with horizontal routing channels between rows of logic blocks and verti-

cal routing channels between columns of logic blocks. At the periphery of the architecture are

the I/O blocks, which bring signals from outside into the architecture and send signals gener-

ated inside the architecture to the outside. At the intersection of a horizontal routing channel

and a vertical routing channel is a switch block, which provides programmable connectivity

between the horizontal and vertical channels. This architecture was developed by Betz et. al.

as the base architecture for the development of the T-VPACK and the VPR tools described in

Section 2.2. The architecture has been used in many architectural studies including [Betz97a]

[Betz97b] [Betz98] [Betz99a] [Betz99b] [Betz00] [Chen03] [Cong03] [Harr02] [Li03] [Lin03]

[Marq99] [Marq00a] [Marq00b] [Sank99] [Swar98] [Tess02] [Varg99]. In this thesis, the

architecture is used as a comparison architecture for the experimental results presented Chap-

ter 5. The structure of each architectural component is described in great detail in [Betz99a],

so each of these components is described in turn.

2.3.1.1 Logic Clusters

The structure of a logic cluster, ill ustrated in Figure 2.3, consists of a set of cluster inputs,

a set of cluster outputs, and several tightly connected Basic Logic Elements (BLEs). The out-

17

puts of the logic cluster are directly connected to the outputs of the corresponding BLEs. The

network that connects all the BLEs within a cluster is called the local routing network.

The detailed structure of a BLE is shown in Figure 2.4. It consists of a LUT, a D-type

Flip-Flop (DFF), and a multiplexer. The LUT output is feed into the DFF input. The multi-

plexer is controlled by a Static Random Access Memory (SRAM) cell and is used to choose

either the LUT output or the DFF output as the output of the BLE. The input of the BLE con-

sists of inputs to the LUT and the clock input to the DFF.

Logic Cluster

Switch Block

Horizontal
Routing
Channel

Vertical
Routing
Channel

I/O Block

Figure 2.2: Overview of FPGA Architecture Described in [Betz99a]

Loca l
R outing
N etw ork

C lus ter
O utp u tsC lus ter

Inpu ts

Figure 2.3: Log ic Cluster

B as ic Log ic
E lem ent

B as ic Log ic
E lem ent

B as ic Log ic
E lem ent

C lock

18

The detailed structure of a LUT is shown in Figure 2.5. The LUT has K inputs and one

output where K is specified as an architectural parameter of the architecture. It can be pro-

grammed to implement any K-input logic function. The LUT is implemented as a multiplexer

whose select lines are the LUT inputs. These inputs select a signal from the outputs of 2K

SRAM cell s to generate the LUT output.

Local Routing Network

The inputs to a local routing network, as shown in Figure 2.3, consist of two types of sig-

nals. The first type is an input to the logic cluster. The second type is an output of a BLE in the

cluster. Each cluster input or each BLE output connects to exactly one input of the local rout-

Look-U p
Tab le

BL E
Inputs

C Lock
Input

D -type
F lip -F lop

S R AM

M u ltip lexer

B LE
O utput

Figure 2.4: Basic Log ic Element

L ook-U p
Tab le

O utput

M ultip lexe r

2K SR AM C e lls

K
Look-U p

Tab le
Inputs

Figure 2.5: Loo k-Up Table

19

ing network. The outputs of the local routing network are connected to the BLE inputs; and

there is exactly one network output for every BLE input.

The local routing network has a full y connected topology. Each output of the network

can be connected to any input of the network. The topology is widely used in many subsequent

FPGA studies including [Marq00b]. The topology also has the advantage of reducing the com-

plexity of the packing tools [Betz99a] since any network input can be connected to any LUT

input. Note that commercial devices including Virtex [Xili02], Stratix [Alte02], and Cyclone

[Alte02], typically use a depopulated local routing network structure [Lemi01], which uses

less area, but requires more complex packing tools.

2.3.1.2 Routing Swi tches

Programmable switches, called routing switches, provide reconfigurable connectivity

throughout the architecture. The architecture uses two types of routing switches, the pass tran-

sistor switch and the buffered switch. As il lustrated in Figure 2.6a, a pass transistor switch

consists of a single pass transistor controlled by an SRAM cell. The switch is bi-directional

which allows electrical current to flow from either end of the switch to another.

A buffered switch, shown in Figure 2.6b, consists of a buffer, a pass transistor, and an

SRAM cell . Since buffers only allow electrical current to flow in one direction, buffered

switches are uni-directional. A bi-directional switch can be buil t out of two buffered switches

using the configuration shown in Figure 2.6c. Comparing the two types of switches, pass tran-

sistor switches are much smaller in size while buffered switches provide more driving strength

and regenerate their input signals. Since pass transistor switches do not regenerate their input

signals, the RC time constant of a signal grows quadratically as a function of the number of

pass transistor switches that the signal passes and the total length of the wire [Betz99a]. As a

20

result, the pass transistor switches are much slower than the buffered switches for connecting

long signal connections.

The FPGA architecture uses a technique called buffer sharing to save the implementation

area of buffered switches. The technique shares a common buffer among several buffered

switches that originate from a common source. An example is shown in Figure 2.7. In the fig-

ure, a source is connected to three sinks through three buffered switches. Without buffer shar-

ing, three separate buffers are needed. With buffer sharing, only one buffer is used.

2.3.1.3 Routing Channels

As ill ustrated in Figure 2.8, each routing channel of the architecture consists of wire seg-

ments and routing switches. Note that for clarity only one horizontal routing channel is shown

in the figure. The vertical channels that intersect the horizontal channel are not ill ustrated. The

(a) Pass Transistor Switch

(b) Buffered Switch

SRAM

SRAM

Figure 2.6: Routing Switches

(c) Bi-Directional Buffered Switch

SRAM

21

number and types of wire segments and routing switches in each channel are specified as

architectural parameters of the architecture. A wire segment starts at one switch block, spans

several logic blocks, and ends at another switch block. The number of logic blocks that the

segment spans is called the logical length of the segment. Routing switches are located in the

switch blocks. They connect wire segments together to form one continuous track, called a

routing track, that spans the entire length of the routing channel. In Figure 2.8, three routing

tracks are il lustrated. The top track contains wire segments of logical length one. The middle

track contains wire segments of logical length two; and the bottom track contains wire seg-

ments of logical length four.

The choice of wire segment lengths is important to the overall performance of the archi-

tecture. Long wire segments are valuable for implementing signals that connect two far away

logic blocks. By using long wire segments, a router can reduce the number of routing switches

used to implement these long connections, and consequently reduce the delay of these connec-

tions. Appropriate combination of segment lengths also can be used to increase the logic den-

sity of the FPGA architecture. By evenly matched the segment lengths with net lengths, the

(a) Three Buffered Switches
Without Buffer Sharing

(b) Three Buffered Switches
With Buffer Sharing

Figure 2.7: Buffer Sharing

Source

Sink 1

Sink 2

Sink 3

Sink 1

Sink 2

Sink 3

Source

SRAM

22

total number of routing switches in any particular implementation of the architecture can be

effectively reduced; and consequently the logic density of the architecture can be increased.

As shown in Figure 2.9, the starting positions of the wire segments with the same length

are staggered in order to ease the physical layout of the architecture. With staggered starting

positions, routing tracks in Figure 2.9 can be rearranged into the topology shown in Figure

2.10 to create identical til es, each containing one logic block and its neighboring routing

resources. With a til e based architecture, the physical layout of FPGAs can be greatly simpli-

fied. Instead of designing the layout of an entire FPGA chip, only the layout of one single tile

has to be designed. The tile then can be duplicated along a two-dimensional array to create a

complete FPGA layout. Note that for clarity only one horizontal routing channel is il lustrated

in Figure 2.9 and Figure 2.10; nevertheless, the same design principle applies for architectures

with both horizontal and vertical routing channels.

2.3.1.4 Swi tch Blocks

A switch block consists of all the programmable switches located at the intersection of a

horizontal routing channel and a vertical routing channel. The FPGA architecture described in

[Betz99a] is designed with two types of switch blocks. One type is based on the disjoint topol-

Logic

Logical

Logical

Logical

Figure 2.8: Routing Channel

Switch
Block

Cluster

Bi-Directional
Routing Switch

Wire
Segment

Length 1

Length 2

Length 4

23

ogy [Hsei90] and the other is based on the Wilton topology [Wil t97]. The disjoint topology is

more popular and is described here. Note that other newer switch block topologies such as the

Imran topology [Masu99] can also be used with the architecture; although they are not further

discussed in this work.

The disjoint topology assumes that all routing channels contain the same number of rout-

ing tracks. For two intersecting channels, every track in the horizontal channel is connected to

the same track number in the vertical channel by routing switches. The architecture described

in [Betz99a] further assumes that the two connecting tracks must have the same segment

length.

Figure 2.9: Staggered Wire Segments

Logic Block Routing Switch Staggered Starting Positions

Track 1
Track 2
Track 3
Track 4

Track 5
Track 6
Track 7
Track 8

Track 1
Track 2
Track 3
Track 4

Track 5
Track 6
Track 7
Track 8

Logic Block Routing Switch

Figure 2.10: Tiles

A Tile

24

There are two configurations for two tracks that are connected at a switch block to inter-

sect. In the first configuration shown in Figure 2.11a, both the horizontal segments and the

vertical segments end at the switch block. This configuration uses six bi-directional switches

to connect the segments together. Two of the six switches are part of the horizontal routing

track or the vertical routing track. The remaining four switches are used to connect the hori-

zontal track to the vertical track. In the second configuration, shown in Figure 2.11b, neither

the horizontal segment nor the vertical segment ends at the switch block. For this configura-

tion, only one bi-directional switch is needed to connect the horizontal and vertical tracks

together. The wire segments are distributed in such a way so that the two connecting tracks can

never intersect in the configuration shown in Figure 2.11c, where segments on one track end at

the switch block, while the segment on the other track does not.

2.3.1.5 Input and Output Connection Blocks

Logic clusters are connected to its neighboring routing channels through connection

blocks. A collection of switches that connect all the inputs of a logic cluster to a routing chan-

(a)
Segments meet at

(b)
Two segments meet at

(c)
Middle of one segment meets

Figure 2.11: Different Topo log ies of A Horizon tal Track
Meeting A Vertical Track

their ends their middle the ends of another two

Wire Segment Logic Block Bi-Directional
Routing Switch

25

nel is called an input connection block, while a collection of switches that connect all the out-

puts of a logic cluster to a routing channel is called an output connection block.

A portion of an input connection block that connect a logic cluster input to a neighboring

routing channel is shown in Figure 2.12. It is implemented using a multiplexer. The output of

the multiplexer is connected to the input of the logic cluster. The inputs of the multiplexer are

connected to a set of routing tracks. Isolation buffers are used to electricall y isolate the multi-

plexer inputs from the routing tracks [Betz99a], shielding the capacitance of the tracks from

the input multiplexers.

A portion of an output connection block that connects a logic cluster output to a neigh-

boring routing channel is shown in Figure 2.13. It is implemented by connecting the logic

cluster output through a shared driving buffer and dedicated pass transistors to a set of routing

tracks. The configuration of both the input connection blocks and the output connection blocks

are controlled by SRAM cells.

2.3.1.6 I/O Blocks

In the FPGA architecture described in [Betz99a], each I/O block contains an input pin for

bringing signals into the FPGA and an output pin for sending internal signals to the outside of

the FPGA. Both the input pin and the output pin are connected to the routing channels through

Figure 2.12: Inpu t Conn ection Block

Logic Cluster

Isolation Buffers

Routing

Logic Block Input

SRAM

Tracks

Cells

26

the same output connection block and the same input connection block that are discussed in

Section 2.3.1.5, respectively.

2.3.2 DP-FPGA — A Datapath-Oriented FPGA Architecture

The work of this thesis is based on the DP-FPGA architecture described in [Cher94]

[Cher96] [Cher97]. The overall structure of the DP-FPGA [Cher96] is shown in Figure 2.14. It

consists of three high-level blocks including the memory block, the control block, and the

datapath block. The memory block consists of banks of SRAM. It can be configured to imple-

ment memory systems of different width and depth. Of the two remaining blocks, the function

of the control block is to implement non-datapath circuits while the datapath block is designed

specifically for implementing datapath. The exact structure of the memory block and the con-

trol block was not specified in detail by the Cherepacha study. The study also did not specify

how each block should be connected to the other two blocks. The focus of the Cherepacha

study was on the architecture of the datapath block, which is described in detail below.

2.3.2.1 Overview of the Datapath Block

The datapath block of DP-FPGA is one of the first FPGA architectures that use the tech-

nique of configuration memory sharing (called programming-bit sharing in the DP-FPGA ter-

minology [Cher96]) to create both the CMS routing resources and the CMS logic blocks. The

Logic Cluster

Figure 2.13: Outpu t Conn ection Block

Logic Block OutputDriving

Pass Transistor

SRAM

Buffer

Routing
Tracks

27

technique creates CMS resources by sharing a single set of configuration memory among sev-

eral programmable resources. By sharing, the amount of configuration memory that is need to

control the programmable resources is reduced and consequently, the implementation area of

datapath applications, which contain a large amount of identical bit-slices, are minimized. The

Cherepacha study demonstrates that there can be significant savings in logic block area when

CMS logic blocks are used instead of conventional logic blocks for implementing datapath cir-

cuits. The effectiveness of the CMS routing resources, which account for the majority of

FPGA area, however, was not investigated in detail by this work.

The Cherepacha study also only specified a subset of the datapath block architecture.

These architectural features are described here. Because of the incompleteness in architectural

specification, no CAD flow was ever designed for the DP-FPGA architecture. The overall

structure of the datapath block is shown in Figure 2.15. Like the conventional FPGA architec-

ture described in [Betz99a], it also consists of a two-dimensional array of logic blocks with

horizontal routing channels between rows of logic blocks and vertical routing channels

between columns. Each routing channel consists of two separate sub-channels. One, called

data sub-channel, is designed to carry multiple-bit wide data. The other, called control sub-

channel, is designed to carry one-bit wide data. The data sub-channels contain more routing

tracks in the horizontal direction than in the vertical direction. The control sub-channels, on

the other hand, contain more routing tracks in the vertical direction.

Control

Datapath

M
em

or
y

Figure 2.14: Overview of DP-FPGA Architecture

28

The datapath block contains two types of switch blocks — the data switch blocks, which

provide connectivity for the data sub-channels, and the control switch blocks, which provide

connectivity for the control sub-channels. The Cherepacha study did not specify the exact

topology of these switch blocks. Neither did it specify the exact topology of the control con-

nection blocks, which connect the logic blocks to the control sub-channel. The Cherepacha

study did specify in detail the structure of the logic blocks, shift blocks, and data connection

blocks. It finds, with a few simpli fying assumptions including the assumption that all transis-

tors are minimum width, and without knowing the exact number of routing tracks per channel,

that collectively these components can potentially double the area efficiency of the corre-

Logic Shift
Block Block

Logic Shift
Block Block

Logic Shift
Block Block

Logic Shift
Block Block

Control
Connection

Block

Data
Connection

Block

Control
Switch
Block

Data
Switch
Block

Data Sub-Channel

Control Sub-Channel
Figure 2.15: Overview of Datapath Block

Carry
Chain

Shift
Chain

29

sponding conventional components for datapath [Cher96]. Each of these architectural compo-

nents is described in turn.

2.3.2.2 Arithmetic Look-Up Tables

The main building blocks of a DP-FPGA logic block are arithmetic LUTs. Structurally,

these LUTs are more complex than the conventional LUTs used in the conventional architec-

ture described in Section 2.3.1. An arithmetic LUT, shown in Figure 2.16, consists of n inputs,

two outputs, two conventional LUTs each with n-1 inputs, two two-input multiplexers and an

SRAM cell . The LUT has two modes of operations, the normal mode and the arithmetic mode,

which are controlled by the SRAM cell . When the SRAM cell is set to be one, the arithmetic

LUT is in the normal mode of operation. In this mode, it behaves as a conventional LUT with

n-inputs and one output. The LUT output is presented on the output P shown in Figure 2.16

and the output G is ignored. When the SRAM cell is set to be zero, the LUT is in the arithmetic

mode of operation. In this mode, one conventional LUT in the arithmetic LUT is used to gen-

erate the output at P, which is used as a propagate signal of a carry look ahead adder. The other

conventional LUT in the arithmetic LUT is used to generate the output at G, which is used as a

generate signal of a carry look ahead adder.

n-1 Input
Look-Up

Table

n-1 Input
Look-Up

Table

0
1

0
1I1

I2

In

0

SRAM

Output P

Output G

Figure 2.16: Arithmetic Loo k-Up Table

Arithmetic
Look-Up

Table
Inputs

30

2.3.2.3 Logic Blocks

The connectivity of a DP-FPGA logic block is shown in Figure 2.17. The logic block has

several input signals, called data inputs, and four output signals, called data outputs. The data

inputs are connected to a neighboring data sub-channel through a data connection block, called

the input data connection block. The data outputs are connected to the same sub-channel

through another data connection block, called the output data connection block. The data out-

puts are further connected to a shift block whose outputs are connected to the data sub-chan-

nel. The logic block also has connections to the logic blocks above and below through carry

signals.

The internal structure of the logic block is shown in Figure 2.18. It consists of four arith-

metic LUTs, one carry block, four flip-flops, and four two-input multiplexers. All four arith-

metic LUTs have the same number of inputs. Each LUT input is connected to a unique data

input of the logic block. All four LUTs share a single set of configuration memory and are

Logic Shift
Block Block

O utput
D ata

C onne ction
B lock

O utput
D a ta

C onn ection
B lo ck

Inp ut
D ata

C onnection
B lock

Data
Sub-Channel

Outputs from

Outputs from
Logic Block Below

Logic Block Above

Figure 2.17: Log ic Block Conn ectivity

Carry to/from
Logic Block Above

Carry to/from
Logic Block Below

Data
Inputs

Data
Outputs

31

identicall y configured at all times. The SRAM cell that controls the operation mode of the

arithmetic LUTs is also shared across all four LUTs.

2n SR AM

n
Loo k-U p

Tab le
Inputs

n
Loo k-U p

Tab le
Inputs

Figure 2.18: DP-FPGA Log ic Block

n
Loo k-U p

Tab le
Inputs

n
Loo k-U p

Tab le
Inputs

C arry
B lock

C lock

C ells

F lip -F lop

C arry C onnections
to /from A N e ighbo ring

L og ic B lock

C arry C onn ections
to /from A N e ighboring

Log ic B lock

L og ic
B lock

O utput

Log ic
B lock

O utpu t

L og ic
B lock

O utput

Log ic
B lock

O utpu t

S R A M

C a rry B lock O utpu t

A rithm etic
Look-U p

Tab le

A rithm etic
Look-U p

Tab le

A rithm etic
Look-U p

Tab le

A rithm etic
Look-U p

Tab le

O utp ut P

O utput G

SR A M for m ode
configura tion

32

The outputs of the LUTs are fed to the carry block. When the LUTs are in the normal

mode of operation, the P outputs are directly connected to the corresponding carry block out-

puts. When the LUTs are in the arithmetic mode of operation, each arithmetic LUT behaves as

a bit-slice of a carry look ahead adder. The carry block generates carry signals based on the P

outputs and the G outputs of the arithmetic LUTs. In the arithmetic mode, each output of the

carry block represents a bit of the sum output of a carry look ahead adder.

Each carry block output is connected to a flip-flop input. Each two-input multiplexers is

used to select either an carry block output or the corresponding flip-flop output to produce a

logic block output. Note that all four two-input multiplexers also share a single SRAM bit that

stores their programmable configuration.

Data Connection Blocks

There are two types of data connection blocks. One type, called the input data connection

block, connects the logic block inputs to the data sub-channel. The other type, called the out-

put data connection block, connects the logic block outputs or the shift block outputs to the

data sub-channel. Both connection blocks are CMS routing resources, which uses configura-

tion memory sharing to increase their logic density. A portion of the input data connection

block is shown in Figure 2.19a. It connects four logic block inputs to four routing tracks in the

data sub-channel through four pass transistors. The four pass transistors share a single config-

uration SRAM bit.

A portion of the output data connection block is shown in Figure 2.19b. It connects the

four logic block outputs to four routing tracks in a data sub-channel through four pass transis-

tors. Again these four pass transistors is controlled by a single bit of SRAM.

33

Shift Blocks

The shift block, shown in Figure 2.17, is a barrel shifter and is design to perform arith-

metic and logical shift operations, which are commonly found in arithmetic appli cations, for

multiple-bit wide data. The block is necessary for the DP-FPGA architecture due to the limited

connectivity provided by the data connection blocks shown above. Without the shift blocks,

the DP-FPGA architecture is only capable of performing coarse-grain shift operations in incre-

ments of four [Cher96]. Such limitation can greatly reduce the usefulness of the architecture.

To accommodate all possible shift operations, the shift block is elaborately designed. It

can either left shift or right shift the output of the logic block and presents the shifted data at its

output. The output is then connected to the data sub-channel through the output data connec-

Log ic B lock or
Sh ift B lock

S R A M

R outing
C h anne l -

D ata
S ub-C hann e l

Figure 2.19: Data Conn ection Block

B lock O u tpu ts

Log ic B lock

R outing
C h anne l -

D ata
S ub-C hann e l

SR A M

B lo ck Inpu ts

(a) Input D ata C onnection B lock

(b) O utp u t D ata C onn ection B lock

34

tion block. For each shift operation, new data can be shifted in from several sources including

the outputs of the logic blocks above and below, constant 0s, and constant 1s.

Several shift blocks can be used to shift multiple-bit wide data generated by multiple

logic blocks when these logic blocks are physically placed adjacent to one another. The place-

ment is necessary in order to allow data to be cascaded from one shift block to another through

the outputs from logic block above and the outputs from logic block below connections shown

in Figure 2.17.

2.3.4 Other Datapath-Oriented Field-Programmable Architectures

Having described in detail the FPGA architectures that form the basis of this work, this

section provides a general survey on the field of datapath-oriented field-programmable archi-

tectures, which are typicall y designed for arithmetic-intensive appli cations. These datapath-

oriented architectures can be classified into four classes, including the processor-based archi-

tectures, the static Arithmetic Logic Unit (ALU)-based architecture, the dynamic ALU-based

architectures, and the LUT-based architectures. Each of these architectural classes is described

in turn; and the section is concluded by a brief review of the various datapath-oriented features

employed in the current state-of-the-art commercial FPGAs.

Note that the first three architectural classes are built around arrays of small processors

or ALUs, which are considerably more complex than LUTs. As a result, these devices usually

have quite different routing demands and contain substantially different routing resources than

the conventional FPGAs. The fourth class of architectures are more FPGA-like — each con-

tains an array of LUT-based logic blocks and segmented routing resources. As a result, this

class of devices are more closely related to the current work and can benefit the most from its

results.

35

2.3.4.1 Processor-Based Architectures

The architectures of PADDI-1 [Chen92], PADDI-2 [Yeun93], RAW machine [Wain97],

and REMARC [Taka98] all consist of an array of processors. These architectures can be said

to be reconfigurable on a cycle-by-cycle basis since, whenever a processor executes a new

instruction, the behavior of the processor is changed. This cycle-by-cycle reconfigurabili ty is

quite different from the conventional FPGAs whose logic blocks are configured only once —

at the beginning of a computation process.

In particular, PADDI-1, PADDI-2, and REMARC all use simple 16-bit wide processors

that can perform addition, subtraction, and several logical operations in hardware. Each pro-

cessor also contains a 16-bit wide register fil e (PADDI-1 and PADDI-2) or data memory

(REMARC) for storing data. Each also has enough instruction memory to store a maximum of

8 (PADDI-1 and PADDI-2) or 32 (REMARC) instructions. Note that these instructions are

stored in full y decoded forms so each instruction might take up to 32 to 53-bits of storage

space. The instructions are executed in an order either as indicated by a global program

counter (PADDI-1 and REMARC) or as specified in the next-program-counter field of each

instruction (PADDI-2).

The RAW machine is composed of an array of full-scale 32-bit wide processors, each

containing a large instruction memory and data memory, as well as a register file. The ALU

inside each processor can perform a variety of arithmetic and logical operations including

hard-wired multiplication and division. The processor also contains a substantial amount of

reconfigurable logic in the form of LUTs and fli p-flops. Note that many specifics of the RAW

machine including the number of instruction and data memory entries, the amount of registers

in each register fil e, the exact structure of the ALU, and the size of the reconfigurable logic are

variable architectural parameters.

36

The processors communicate with each other through global connection networks, which

vary widely from architecture to architecture. In particular, the PADDI-1 device employs a

crossbar network that connects two rows of four processors together. The connections are

made in chunks of 16-bit wide buses. The PADDI-2 architecture is built upon the PADDI-1

architecture. Here eight processors are connected into a cluster using the crossbar network of

PADDI-1. Sixteen clusters are then grouped into two rows of eight clusters. Between these two

rows are several horizontal routing buses that run the full length of the row. The clusters are

connected to the buses through their input or output pins. For better performance, each routing

bus is broken into segments using programmable switches at pre-determined intervals. The

buses are time-shared resources. To communicate, a processor has to use a set of pre-defined

communication protocols to claim a bus. Once a bus is claimed, the communication can be bi-

directional — either to or from the initiating processor.

Each REMARC device contains 64 processors in an 8 by 8 array. There is only one 16-

bit wide bus running horizontall y or verticall y in between every two rows or two columns of

processors. The communication is again time-shared and uses a set of pre-defined protocols.

Note that in this architecture, unli ke the conventional FPGAs, a horizontal bus does not con-

nect to a vertical bus.

Finally, the RAW machine has an elaborate routing architecture. Similar to REMARC,

its processors are arranged in an array structure. There are a number of 32-bit wide buses run-

ning horizontally or vertically in between two rows or two columns of processors. Like con-

ventional FPGAs, at the intersection of a horizontal and vertical routing channel, there is a

switch block. Unlike conventional FPGAs, however, each switch block contains a set of

instruction memory (controlled by the program counter of a nearby processor) whose content

controls the cycle-by-cycle connectivity of the switch block. The switch block also can per-

37

form wormhole routing of packets generated by the processors using the addresses contained

in the header of each packet.

2.3.4.2 Static ALU-Based Architectures

Unlike processor-based architectures, static ALU-based architectures, including Colt

[Bitt96], DReAM [Also00], and PipeRench [Gold00], do not contain instruction memory, the

program counter, and their associated control logic. Instead, the configuration of each ALU is

directly controlled by the configuration memory. Nevertheless, ALU-based architectures stil l

can be rapidly reconfigured since these architectures consume significantly less configuration

memory than the traditional FPGAs.

A Colt [Bitt96] logic block is called an IFU, which contains a 16-bit wide ALU and sev-

eral pipeline registers. The device consists of 16 IFUs placed in a 4 by 4 array. Each IFU is

connected to its immediate neighbors through a set of nearest neighbor interconnects. Two 16-

bit wide inputs of each IFU located at the top row of the array and one 16-bit wide output of

each IFU located at the bottom row of the array are connected together by a full crossbar

(called the smart crossbar) which also provides partial connectivity to chip-level I/Os.

A DReAM [Also00] logic block is called a RPU, which contains two 8-bit wide ALUs

and two banks of 8-bit wide memory. Four RPUs are grouped into a cluster. Within the cluster,

RPUs communicate with each other through a set of 16-bit wide cluster-level local intercon-

nects. Nine clusters in a 3 by 3 array form a DReAM device. The array is interconnected by a

global routing network, which is similar in topology to a conventional FPGA global routing

network. As in conventional FPGAs, the horizontal and vertical routing channels are con-

nected together by switch blocks at their intersections. Unlike conventional FPGAs, however,

the routing tracks are grouped into 16-bit wide buses; and the RPUs communicate across these

buses through a set of pre-defined communication protocols. Note that beside the RPUs, each

38

DReAM device also contains a global communication unit whose function and structure is

beyond the scope of this work.

Each ALU-based logic block of PipeRench [Gold00] is called a stripe, which contains

sixteen 8-bit wide ALUs and a set of registers. Stripes in a PipeRench device are vertically

stacked; and the physical routing network of the device only provides connectivity between

two adjacent stripes. Communication across distant stripes is achieved through rapid reconfig-

uration and by storing data in the internal registers of a stripe. The technique, called virtual

global connection, is described in more detail in [Gold00]. Although essential to the structure

of PipeRench, the technique cannot be readily applied to the traditional FPGAs and is not

described in detail here.

2.3.4.3 Dynamic ALU-Based Architectures

Like the static ALU-based devices, the RaPiD [Ebel96], MATRIX [Mirs96], and Chess

[Mars99] architectures contain only ALU-based logic blocks and no instruction memory.

These ALUs, however, not only can be configured by configuration memory but also by data

from the computation process itself. This extra level of f lexibili ty increases the functionality of

the architectures at the expense of increased architectural complexity and hardware cost.

In particular, each RaPiD device is composed of identical functional units, which consist

of groups of 16-bit wide datapath components including ALUs, registers, RAM blocks, and

integer multipliers. The functional units are li nearly placed in a row and connected to a set of

routing tracks through programmable switches. These tracks are grouped into 16-bit wide

buses and run horizontally across the full length of the row. To increase speed, each track is

broken into a series of wire segments, which are interconnected by programmable switches.

The MATRIX architecture consists of 8-bit wide ALUs and memory blocks placed in an

FPGA-like two-dimensional array. The array is connected by FPGA-li ke routing resources

39

including nearest neighbor connections, length four routing wires, and global routing wires.

The architecture is also deeply pipelined to increase the clock frequency of its appli cations.

Each Chess device consists of a set of 4-bit wide ALUs placed in an array, which is inter-

spersed by RAM blocks. The ALUs and RAM blocks are connected by an FPGA-like global

routing network. The ALUs are also directly connected to their immediate neighbors by a set

of nearest neighbor interconnects.

2.3.4.4 LUT-Based Architectures

Similar to DP-FPGA, Garp [Haus97] and the mixed-grain FPGA [Leij03] are LUT-based

FPGAs that target datapath applications. A Garp device is designed as a reconfigurable fabric

that serves as a co-processor to a MIPS core. The architecture consists of an array of 32 rows

by 24 columns of logic blocks. Each logic block contains two LUTs that are controlled by a

single set of configuration memory. Each LUT has four inputs and is connected by a set of fast

carry connections to other LUTs that are on the same row. The global routing network of Garp

is similar to the global routing network of a conventional FPGA in topology. However, unlike

the conventional routing network where wire segments are connected together by routing

switches, wire segments of Garp remain unconnected to each other. The exclusion of routing

switches significantly reduces the configuration memory required to control a Garp device and

can lead to faster reconfiguration (by allowing the parallel loading of locally stored configura-

tion data). It also, however, severely limits the possible applications of the Garp architecture.

The mixed-grain architecture as proposed in [Leij03] contains a single 4-LUT in each of

its logic blocks. The logic blocks can be configured into two modes including the random-

logic mode and the arithmetic mode. In the random-logic mode, the logic block behaves as a

single 4-LUT. In the arithmetic mode, the 4-LUT is decomposed into 4 2-LUTs to implement

four distinct bit-sli ces. In this mode, each 2-LUT can be used as a part of a full adder, a part of

40

a 2:1 multiplexer, or a two input Boolean equation. The global routing network of the mixed-

grain architecture is similar to the conventional FPGA architecture in topology. The routing

tracks, however, are grouped into 2-bit wide buses. In the random-logic mode, the bus is used

to route a single bit of data; and in the arithmetic mode, the bus is used to route two bits of data

at a time. The architecture also contains some special routing tracks, each independently con-

trolled by a single set of configuration memory, dedicated for routing the control signals of the

logic blocks.

Note that although the work in [Leij03] has defined the basics of the mix-grain FPGA

routing architecture, the work did not measure its area eff iciency by actuall y placing and rout-

ing a set of benchmark circuits on the architecture. Instead, the routing area required to imple-

ment several simple benchmarks are roughly estimated by counting the total number of logic

block pins required to implement each circuit. This method is much less accurate than area

measurements obtained by actuall y implementing a set of well-chosen benchmarks on a given

architecture [Betz99a]. Furthermore, the feasibilit y of the routing architecture has not been

exactly proven since no circuit has been actually implementing on the architecture.

2.3.4.5 Datapath-Oriented Features on Commercial FPGAs

Commercially available general purpose FPGAs have been incrementall y adding datap-

ath-oriented features throughout the years. The earliest adopted datapath-oriented features is

carry chains; and in recent years, more complex datapath-oriented features li ke DSP blocks

[Alte02] (Altera Stratix) and multipliers [Xili 02] (Xil inx Virtex II) have been added to existing

architectures. Unlike the research done in this work, however, these features are mainly aimed

at improving the performance of specific arithmetic functions through heterogeneous architec-

tures. The heterogeneity introduced by the DSP and multiplier blocks often increases the com-

plexity of FPGA CAD flow, which potentially can introduce inefficiency in area utili zation.

41

Finally, even though routing area accounts for a majority of the total FPGA area, none of

the existing commercial FPGAs util izes the CMS routing resources, which employs configura-

tion memory sharing to increase the area efficiency of routing resources in datapath-oriented

appli cations. Furthermore, little research has been done on designing automated CAD tools

that can capture datapath regularity and eff iciently utili ze the regularity on CMS logic or rout-

ing resources.

2.3.5 Delay and Area Modeling

Given an FPGA architecture, three of the most important questions that can be asked

about the architecture are:

1. What is the performance of the architecture?

2. How much area does the architecture consume? and

3. How much power do the appli cations implemented on the architecture demand?

To address the first two questions, one needs a method of measuring the time that it takes

a signal to propagate from one point of the architecture to another and the implementation area

of the FPGA. One obvious approach to addressing these two questions is to physicall y imple-

ment the architecture and measure the delay and area. However, this approach is too time con-

suming to be practical and can be influenced by the skill s of the physical designer.

In this work, a simpler and more efficient approach is used. The approach is described in

detail in [Betz99a]. In [Betz99a], each type of transistor in the FPGA architecture is sized

using a set of guidelines to obtain the best transistor size for performance and area. Then the

Elmore delay model [Elmo48] [Okam96] is used to calculate the delay between any two points

on the architecture; and area (called the minimum-width transistor area) is calculated by total-

ing the area consumed by all transistors in the architecture, and dividing this total area into the

area of a minimum width transistor. Commercially, this methodology was used in the design of

42

the Stratix and Cyclone FPGAs [Leve03] and was shown to give accurate results. Note that the

third question, power, is not investigated in this work.

2.4 Summary

This chapter has described a typical FPGA CAD flow, a conventional FPGA architec-

ture, as well as the datapath-oriented DP-FPGA architecture that form the basis of this work.

Several representative datapath-oriented reconfigurable/FPGA architectures have also been

briefly described. Note that few prior work has invested effort into the detailed architecture of

datapath-oriented FPGAs. Next chapter proposes the detail s of such an architecture.

43

3 A Datapath-Oriented FPGA Architecture

3.1 Introduction

This chapter presents a new FPGA architecture that contains multi-bit logic and CMS

routing resources designed specifically for arithmetic-intensive applications. The architecture

is unique in that its routing channels contain a mixture of conventional fine-grain routing

resources and datapath-oriented CMS routing resources. The combination allows a homoge-

nous architecture for the eff icient implementation of large datapath circuits as well as small

non-datapath circuits. This architecture is used as the base architecture for designing the CAD

tools presented in Chapter 4, Chapter 5, and Chapter 6. Various parameters of this architecture

are explored in Chapter 7 and Chapter 8 to determine the effect of CMS routing on the area

efficiency of the architecture.

An overwhelming majority of circuits in an arithmetic-intensive appli cation are datapath.

These circuits have highly regular and bit-sliced structures. The remainder of the circuits in

these appli cations are non-datapath, which are designed to control the operations of the datap-

ath circuits. Each non-datapath circuit typically resembles a somewhat random-looking net-

work of logic gates and contains lit tle regular structure, which will be called irregular logic.

Since datapath circuits are highly regular, CMS resources created through configuration

memory sharing can be effectively used to increase their area eff iciency. Non-datapath cir-

cuits, on the other hand, cannot benefit from configuration memory sharing since they do not

possess much regularity. In fact, non-datapath circuits implemented on CMS resources often

consume significantly more area since they can only utilize a small fraction of these identi-

cally configured resources.

44

To efficiently implement both datapath and non-datapath circuits, the DP-FPGA archi-

tecture, discussed in Chapter 2, uses a heterogeneous structure that contains one dedicated

region for implementing datapath circuits and another dedicated region for implementing non-

datapath circuits. The use of dedicated regions for each type of circuit, however, has its own

shortcomings including the need of more complex placement techniques, inherent issues of

heterogeneity, inefficient utili zation of programmable resources, and increased complexity in

CAD tool design. The architecture described in this chapter, called the Multi -Bit FPGA (or

MB-FPGA for short) architecture, eliminates these shortcomings through the use of a homog-

enous architecture. The architecture is carefully designed to take advantage of the commonali-

ties between datapath and non-datapath circuits. It also leverages the assumption that an

overwhelming majority of its target appli cations are datapath in structure. Comparing to the

original DP-FPGA architecture, the MB-FPGA design is much simpler in structure and has no

restrictions on placement — properties that can potentiall y increase the utilization of program-

mable resources. The homogenous structure of MB-FPGA also greatly simpli fies the design of

the CAD tools.

The remainder of this chapter describes the MB-FPGA architecture in detail . Section 3.2

motivates the development of the MB-FPGA architecture through a review of the DP-FPGA

architecture discussed in Chapter 2 and a discussion on its shortcomings. Section 3.3 presents

other motivations and li sts the design goals of the MB-FPGA. Section 3.4 presents a structural

model of the arithmetic-intensive appli cations. A description of the general approach for

designing the MB-FPGA architecture follows in Section 3.5. Section 3.6 presents a detailed

description of the MB-FPGA architecture; and finall y Section 3.7 presents concluding

remarks.

45

3.2 Motivation

The MB-FPGA architecture evolves from the DP-FPGA architecture. The primary goal

in designing the MB-FPGA architecture is to improve the DP-FPGA architecture using recent

advances in conventional FPGA research and to create a complete FPGA architectural

description that can be supported by modern CAD tools. As a result, the first step in designing

the MB-FPGA architecture was to identify the shortcomings of the original DP-FPGA archi-

tecture; and improving upon these shortcomings has became the main motivation of the MB-

FPGA design process. This section presents each of these identified shortcomings in order of

their importance.

3.2.1 Heterogeneous Architecture

The DP-FPGA architecture implements logic in an arithmetic-intensive application in

two distinct high-level blocks. The datapath block implements the datapath circuits; and the

control block implements the non-datapath circuits. Inside the datapath block there are two

distinct routing channels. One type of routing channel, the control sub-channel, is used to

bring single-bit signals generated by the control block into the datapath block. The other type

of routing channel, the datapath sub-channel, is used to connect multi-bit signals inside the

datapath block.

This heterogeneous architecture is inefficient for implementing large arithmetic-inten-

sive applications with complex structures for two reasons: First, the architecture predetermines

two separate placement regions, one for datapath logic and the other for non-datapath logic.

This limits the placement options of logic blocks and can lead to placement that causes critical

paths to be far longer than necessary because they are forced to crisscross between the two

major placement regions. Second, the architecture pre-allocates a fixed amount of resources

for each high-level block. Consequently, a circuit can fit in the architecture only if both of its

46

datapath and non-datapath components fit in their respective high-level blocks. If any one type

of logic does not fit in its high-level block, the entire circuit wil l not fit. As a result, for many

appli cations, one of the high-level blocks is often severely underutil ized; and the overall area

efficiency suffers.

The heterogeneity of DP-FPGA further complicates CAD tool design. A CAD flow

designed for the heterogeneous architecture has to assign logic to either the datapath block or

the control block. This assignment usually takes place at a very early stage of the CAD flow,

often right before packing, since each of the high-level blocks has a completely different logic

block design. Normall y datapath logic is assigned to the datapath block; and non-datapath

logic is assigned to the control block. For good performance, however, it is sometimes benefi-

cial to implement some non-datapath logic in the datapath block and vice-versa. Identifying

these special cases needs the help of good timing and area information for each possible

implementation, but the timing and area information at this early stage of the CAD flow often

is highly inaccurate. This makes the design of good CAD algorithms difficult. A homogenous

architecture, on the other hand, avoids the differentiation process entirely; therefore, it greatly

simpli fies the CAD design process.

3.2.2 Logic Block Efficiency

In addition to the diff iculties due to heterogeneity, the logic block architecture of the DP-

FPGA datapath block is inefficient for implementing large arithmetic-intensive applications.

This ineff iciency manifests in two ways. First, modern complex datapath circuits often contain

bit-slices that resemble non-datapath circuits. These bit-sli ces are often large enough to require

tens or hundreds of LUTs to implement. Recent research on conventional FPGA architectures

[Betz97b] [Betz98] [Betz99a] suggests that, for implementing non-datapath circuits, a good

conventional logic block architecture should contain four to ten tightly connected LUTs; and

47

logic blocks containing only one LUT are extremely inefficient. Although a DP-FPGA logic

block contains four LUTs, these LUTs only can be used to implement logic from four separate

bit-slices. As a result, to each bit-sli ce, the DP-FPGA logic block resembles a conventional

logic block containing only one LUT. This small logic block capacity is inefficient for imple-

menting modern large bit-sli ces. To increase efficiency, each logic block of the MB-FPGA

architecture contains several groups of tightly connected LUTs; and each group is used to

implement logic from a single bit-slice.

Second, all LUTs in a DP-FPGA logic block are always identicall y configured through

configuration memory sharing. The routing resources associated with each LUT are also iden-

ticall y configured at all times. In a homogenous architecture, this degree of configuration

memory sharing can lead to poor util ization of both logic and routing resources since the logic

blocks are not only used to implement highly regular datapath logic, but also irregular non-

datapath logic. When a DP-FPGA logic block is used to implement non-datapath logic, only

one of the four LUTs can actuall y be used. The other three LUTs, all sharing the same config-

uration memory, are wasted since they cannot be configured to implement any other logic

functions. As a result, the logic capacity of the DP-FPGA logic block when used to implement

non-datapath logic is only one fourth of the logic capacity of the same logic block when used

to implement datapath logic. To overcome this ineff iciency, the MB-FPGA uses a multi-bit

logic block architecture called super-clusters, which is parameterized to have either no config-

uration memory sharing (which will be the focus of all the investigations conducted in this

work), full configuration memory sharing, or lesser than the full degree configuration memory

sharing.

48

3.2.3 Parameterization

The other major motivation of designing the MB-FPGA architecture is to create a highly

parametrized platform for investigating the effect of various datapath-oriented CMS resources.

The design should be highly parameterized. It should have the same degree of parameteriza-

tion as the one used by the VPR tools discussed in Chapter 2 and should include new parame-

ters to characterize the multi-bit logic and CMS routing resources.

3.3 Design Goals of MB-FPGA

Having discussed the motivations for creating the MB-FPGA architecture, the five

design goals of the MB-FPGA architecture are summarized below:

1. The architecture should be a homogenous architecture with datapath-oriented multi-

bit logic and CMS routing, supporting the area-eff icient implementation of arithmetic-

intensive appli cations.

2. The architecture should be equall y capable of implementing datapath circuits as well

as small non-datapath circuits. (Note that this design goal was not verified experimen-

tall y in this work.)

3. Each logic block should be able to implement several bit-sli ces at once; it should be

large enough to efficiently implement logic from each distinct bit-sli ce.

4. The architecture should be supported by a modern CAD flow, which should contain

new algorithms designed to support the new datapath-oriented architectural features.

5. The architecture can be used as a highly parameterized platform for architectural

experimentation. Particularly, the datapath-oriented CMS resources should be

designed to have a variable degree of configuration memory sharing.

49

3.4 A Model for Arithmetic-Intensive Applications

Since the primary purpose of the MB-FPGA architecture is to provide an area efficient

platform for implementing arithmetic-intensive appli cations, an appropriate model must be

defined for these appli cations. The model presented here is based on the widely used digital

design principles described by several textbooks on digital design including [Hama02]

[Katz94] [Kore02] [West92]. The model is further verified by analyzing several arithmetic-

intensive applications including two CPU designs [Sun99] [Ye97] and a graphics accelerator

design [Ye99a] [Ye99b].

The hardware implementation of an arithmetic-intensive appli cation typically consists of

two interconnected modules, as shown in Figure 3.1. One module is called the arithmetic mod-

ule and the other is called the control module. The arithmetic module is designed to perform

all arithmetic operations of the appli cation. It consists of a collection of interconnected datap-

ath circuits. It also has several multiple-bit wide data inputs and multiple-bit wide data out-

puts. The control module, on the other hand, is designed to control and sequence the

operations performed by the arithmetic module. It consists of a collection of non-datapath cir-

cuits which typicall y are finite-state machines. Its inputs consist of external commands from

outside of the appli cation and the current state of the datapath generated by the arithmetic

module. In terms of the amount of logic that one contains, the arithmetic module typically is

much larger than the control module. This is especiall y true for appli cations that deal with

complex arithmetic operations or have very wide data inputs and outputs.

Note that the arithmetic and the control modules are only conceptual entities designed to

ease the design process of arithmetic-intensive applications. During the actual placement pro-

cess, circuits in each module need not to be physicall y placed in their own distinct regions.

Most of the time, it is actually beneficial in terms of maximizing performance to place the con-

50

trol logic close to the corresponding datapath that it controls instead of placing it close to other

control circuits.

The structure of a datapath circuit is shown in Figure 3.2. It consists of a set of intercon-

nected bit-slices, each of which processes a set of bits from the input data. As ill ustrated, the

bit-slices are lined up from left to right according to the bit positions of the bits that they pro-

cess. The bit-sli ce that processes the most significant bit is positioned at the extreme left of the

figure.

The width of a datapath circuit is defined to be the number of bit-slices that it contains.

This width usuall y is the same as the width of the input and output data of the datapath circuit.

For example, a circuit that processes 32-bit wide data usuall y consists of 32 bit-slices. A data-

path circuit can usuall y be expanded to process wider data by adding more bit-slices to its

structure.

Non-Datapath
Circuits

Datapath
Circuits

Control
Signals

to
Datapath

Datapath
Output

to Control

External
Multi-Bit
Inputs

Datapath
Multi-Bit
Outputs

External
Inputs

to
Control

Figure 3.1: Arithmetic-Intensive App li cation

Arithmetic
Module

Control
Module

51

Within each bit-slice, there is a network of interconnected logic and storage, which is

typicall y implemented by LUTs and DFFs, respectively. The network typicall y resembles the

network found in a non-datapath circuit. With the exception of the bit-slices at both ends of a

datapath circuit, most bit-slices in a datapath circuit usuall y contain identical networks — they

have exactly the same number of DFFs, exactly the same number of LUTs for each available

LUT configuration, and exactly the same connections that connect the LUTs and DFFs

together. The bit-slices at the ends of a datapath often are structurall y different from other bit-

sli ces since they have to deal with the boundary conditions for processing the least and the

most significant bits of inputs. Most often, however, the differences are small .

Bit-sli ces in a datapath circuit often have similar external connections. For example,

assume that there are two datapath circuits, circuit A and circuit B. Also assume that the bit-

sli ces in each circuit are assigned consecutive index numbers with the right most bit-sli ce

assigned zero. If a bit-slice in circuit A with index number i is connected to a bit-slice with

Bit-Slices

Irregular
Bit-Slice

Irregular
Bit-Slice

Figure 3.2: Datapath Structure

Look-Up Table or
D-type Flip Flop

52

index number j in datapath circuit B, the bit-sli ce with index number i + p in circuit A usually

has corresponding connections to the bit-slice with index number j + p in circuit B. If circuit B

has less than j + p sli ces, bit-slice i + p in circuit A often is connected to the bit-sli ce in circuit

B with index number (j + p) modulo nB, where nB is the total number of bit-sli ces in B. Note

that, in both cases, A and B can be used to represent the same datapath circuit.

3.5 General Approach and Overall Architectural Description

Designing FPGA architectures is a complex problem; and there are no prescribed design

methodologies. The general approach taken here, in designing the MB-FPGA architecture, is

to first conceive an eff icient architecture for implementing datapath circuits since these cir-

cuits account for the majority of logic in arithmetic-intensive appli cations. Then the design is

modified to accommodate non-datapath circuits.

The major design effort of the MB-FPGA architecture involves in creating an efficient

partiti oning methodology that can effectively divide datapath circuits into logic blocks, which

are suitable to be automatically placed by modern placement algorithms like the various ver-

sions of the simulated annealing algorithms described in [Betz99a] [Kirk83] [Marq00a]

[Sech85] [Sech86] [Sech87] [Sun95] [Swar95]. This methodology significantly influences the

design of the MB-FPGA architecture, and is described next along with a brief overview of

MB-FPGA. Identifying the similariti es between the datapath circuits and non-datapath circuits

also significantly influences the design of MB-FPGA; and it is described in turn after the

description on the partitioning methodology.

3.5.1 Partitioning Datapath Circuits into Super-Clusters

The sizes and the widths of datapath circuits vary greatly from application to application.

Even within a single appli cation, there can be some degree of discrepancy in the sizes and the

53

widths of datapath circuits. The MB-FPGA architecture accommodates these varying sizes

and widths by partiti oning each datapath circuit into fixed sized chunks. Each chunk is suitable

for implementation on a MB-FPGA logic block, which is called a super-cluster. The partition-

ing process attempts to capture the regularities of each datapath circuit and map the captured

regularities onto the datapath specific features of the super-clusters.

The MB-FPGA architecture is designed with the assumption that the partitioning process

starts from one end of a datapath circuit and progresses to the other end. In this process, every

M neighboring bit-slices are grouped together into a group. For each group, N LUTs and their

associated DFFs are selected from each bit-sli ce and are mapped onto a super-cluster. This

process is repeated until all LUTs and DFFs are mapped onto super-clusters. Within each

super-cluster, LUTs and DFFs from each bit-slice are kept together in a distinct sub-structure

of the super-cluster, called a cluster. Note that if the copies of a particular LUT configuration

exist across several bit-slices in a particular group, the partiti on process will keep these copies

in a single super-cluster.

The partitioning process exposes intra-bit-slice connections and turns them into inter-

super-cluster connections. For super-clusters that are used to implement groups of identical

bit-slices, these inter-super-cluster connections form M-bit wide buses. Signals in each of

these buses share the same source and sink super-clusters. Furthermore, comparing to all the

other signals in the same bus, each of these signals has a unique source cluster and a unique

sink cluster. When the super-clusters are connected together during the routing process, these

buses can be routed through CMS routing resources that use configuration memory sharing to

improve the area efficiency.

54

3.5.2 Implementing Non-Datapath Circuits on the MB-FPGA Architecture

The MB-FPGA architecture uses the similarities between the structure of a bit-sli ce and

the structure of a non-datapath circuit to implement non-datapath circuits in the super-clusters.

For implementing a non-datapath circuit, a super-cluster is broken down into its constituent

clusters, each of which is used to implement a portion of the non-datapath circuit. Since bit-

sli ces are structurally similar to non-datapath circuits, clusters, which are designed for the effi-

cient implementation of bit-slices, can also be efficient for implementing many non-datapath

circuits.

When clusters are used to implement a non-datapath circuit, CMS routing resources that

are created through configuration memory sharing can become inefficient. To increase the area

efficiency of implementing both datapath and non-datapath circuits, only a portion of the MB-

FPGA routing resources are CMS resources. The remaining resources are conventional

resources that do no share their configuration memory bits.

3.6 The MB-FPGA Architecture

The overall structure of the MB-FPGA architecture is shown in Figure 3.3. It consists of

a two-dimensional array of super-clusters interconnected by horizontal and vertical routing

channels. The connectivity between the super-clusters and the routing channels is provided by

switch blocks and connection blocks. On the periphery of the architecture are the I/O blocks

that connect the architecture to the outside world.

The MB-FPGA architecture has several unique datapath-oriented features including a

hierarchical logic block architecture that consists of super-clusters and clusters. It also has

routing channels that contain a mixture of configuration memory sharing routing tracks, called

CMS routing tracks, and conventional routing tracks, called fine-grain routing tracks. Each of

these features is described in turn.

55

3.6.1 Super-Clusters

The structure of an MB-FPGA super-cluster, shown in Figure 3.4, consists of a set of

super-cluster inputs, a set of super-cluster outputs, a set of carry inputs, a set of carry outputs,

and several loosely connected clusters. The external interface of an MB-FPGA cluster is

shown in more detail i n Figure 3.5. It consists of a set of cluster inputs and a set of cluster out-

puts, a set of carry inputs, and a set of carry outputs. The number of carry inputs is equal to the

number of carry outputs for each cluster. The number of carry inputs of a cluster is also equal

to the number of carry inputs of a super-cluster and the number of carry outputs of a super-

C CC

C CC

C CC

C CC

C CC

C CC

C CC

C

C

C

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S
I/O Block

Cluster Super-Cluster

Switch Block

Connection
Block

Fine-Grain Routing Tracks

CMS Routing Tracks

Figure 3.3: Overview of MB-FPGA Architecture

56

cluster. We believe the logic function of the MB-FPGA cluster can be based on any conven-

tional FPGA logic block that is efficient at implementing non-datapath circuits.

The total number of super-cluster inputs is equal to the total number of cluster inputs of

all the clusters in a super-cluster; and each super-cluster input is directly connected to a corre-

sponding cluster input. Similarly, the total number of super-cluster outputs is equal to the total

number of cluster outputs; and each super-cluster output is directly connected to a correspond-

ing cluster output.

The network that connects all the clusters within a super-cluster together is called the

carry network. It is created by connecting the carry outputs of each cluster to the carry inputs

of one of its neighboring clusters to form a carry chain. The carry inputs of the super-cluster is

Cluster Cluster Cluster

Cluster
Outputs

Cluster
Outputs

Cluster
Outputs

Cluster
Inputs

Cluster
Inputs

Cluster
Inputs

Carry
Inputs

Carry
Outputs

Super-Cluster
Outputs

Super-Cluster
Inputs

Carry
Network

Figure 3.4: Super-Cluster with M Clusters

Carry
Network

Cluster
Inputs

Cluster
Outputs

Carry
Inputs

Carry
Outputs

Figure 3.5: Cluster

LUTs
DFFs

57

connected to the carry inputs of the cluster at one end of the carry chain; and the carry outputs

of the super-cluster is connected to the carry outputs of the cluster at the other end.

As it is apparent from the super-cluster structure, a super-cluster containing M clusters

can be used to implement an M-bit wide datapath circuit whose bit-slices are no bigger than

the logic capacity of a single cluster. Larger datapath circuits can be decomposed into smaller

datapath circuits each of which can be implemented by a single super-cluster. When imple-

menting non-datapath circuits, the behavior of the super-cluster is similar to the behavior of M

conventional logic clusters.

3.6.1.1 Clusters

The design of the MB-FPGA cluster is based on the clusters used in [Betz99a], which are

presented in Chapter 2. The overall structure of the cluster is shown in Figure 3.6. It consists of

several tightly connected BLEs and a set of input and output signals as specified in Figure 3.5.

The number of cluster outputs is equal to the number of BLEs in the cluster; and each cluster

output is directly connected to a BLE output. Note that, for the ease of discussion, it is

assumed that there are an even number of BLEs in a cluster; although, with some minor adjust-

ments, the architecture described below applies equall y well to any cluster containing an odd

number of BLEs.

The number of carry outputs is equal to half of the number of BLEs in a cluster in order

to match the nature of the arithmetic structures targeted by MB-FPGA. To connect carry out-

puts, BLEs are grouped into groups of two. One BLE in the group is called a carry BLE; and

the other BLE is called a sum BLE. The output of a carry BLE is connected to a cluster carry

output as well as a cluster output. The output of a sum BLE, on the other hand, is only con-

nected to a cluster output. Both the cluster inputs and the cluster carry inputs are connected to

the local routing network.

58

Local Routing Network

The local routing network, as shown in Figure 3.7, consists of two separate networks.

The first network, labelled local network 1, has a full y connected topology. The inputs to the

network consist of two types of signals. The first type is a cluster input; and the second type is

an output of a BLE in the same cluster. Each of these signals is connected to exactly one net-

work input. The number of outputs of the network is equal to the total number of BLE inputs

in the cluster.

The second network, labelled local network 2, connects the inputs of each BLE to the

corresponding outputs of the first network. It also connects the cluster carry inputs to the

BLEs. As shown in Figure 3.7, for every BLE, one BLE input is connected to both a carry

input and an output of the first network through a two-input multiplexer controlled by an

SRAM cell . All the other BLE inputs are directly connected to their corresponding outputs

from the first network. Since each cluster contains half as many cluster carry inputs as the total

number of BLEs, each carry input is shared by two BLEs — one BLE is a carry BLE and the

other is a sum BLE.

Loca l
R outing
N etw ork

C lus ter
O utputs

C lu ster
Inputs

B as ic L og ic
E lem ent

B as ic L og ic
E lem ent

B as ic L og ic
E lem ent

C arry
Inputs

Figure 3.6: A Mod ified Cluster from [Betz99a]

C arry O utpu t

S um O utput

59

Carry Network in Detail

The carry network is designed to reduce the routing delay of long carry chains which

often exist in datapath circuits. A detailed illustration of a carry network is shown in Figure

3.8. It consists of chains of BLEs connected across the cluster boundaries. In a cluster, the

carry signals are generated by carry BLEs; and each of these carry signals is connected to one

carry BLE and one sum BLE in a neighboring cluster. When implementing ripple carry adders,

the carry BLEs and the sum BLEs are used to implement the carry generation logic and the

sum generation logic respectively. Note that this structure is different from the carry chains in

commercial architectures which propagate within individual clusters.

From

From

Cluster
Inputs

Basic
Logic

Element
Outputs

Fully
Connected

Routing
Network

Basic
Logic

Element

Basic
Logic

Element

Carry Input

Local Local

Figure 3.7: Local Routing Network

Basic
Logic

Element

Basic
Logic

Element

Carry Input

Network 1 Network 2

Sum BLE

Carry BLE

60

3.6.1.2 Configuration Memory Sharing

As il lustrated in Figure 3.9, in an MB-FPGA cluster, several BLEs and their associated

local routing resources can share configuration memory across cluster boundaries. The exact

number of BLEs that share configuration memory is an architectural parameter of the MB-

FPGA architecture and is selected according to the regularity of the target applications. Note

that this architectural feature is not further explored in this thesis; and its characteristics will be

full y studies in detail in future investigations. For the remainder of the thesis, it is assumed that

each BLE is always assigned its own unique set of configuration memory.

3.6.2 Routing Swi tches

The MB-FPGA architecture can use three types of routing switches including the pass

transistor switches and the bi-directional buffered switches used in [Betz99a], the uni-direc-

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Carry
BLE

Sum
BLE

Super-
Cluster
Carry

Output

Super-
Cluster
Carry
Output

Super-
Cluster
Carry
Input

Super-
Cluster
Carry
Input

Outputs
from

Local

Figure 3.8: Carry Network

Network 1
Local

Network 2
Local

Network 2
Local

Network 2
Local

Network 2

Cluster 1 Cluster 2 Cluster 3 Cluster M

61

tional buffered switches used in [Lemi02]. As described in Chapter 2, the buffered switches

can use buffer sharing to reduce their implementation area. The MB-FPGA architecture also

contains switches that share a single set of configuration memory. These switches are called

CMS routing switches. Several examples of the CMS switches are shown in Figure 3.10 along

with their conventional fine-grain counter parts.

3.6.3 Routing Channels

Each routing track in an MB-FPGA routing channel consists of wire segments connected

by routing switches. These routing switches can either be conventional or configuration mem-

ory sharing. Each group of tracks that share a single set of CMS switches is called a routing

bus. The number of tracks in a routing bus is called the granularity of the routing bus. As dis-

cussed in the general approach section, the task of transporting multi -bit wide buses from one

location to another occurs frequently in datapath appli cations. By sharing configuration mem-

ory, CMS routing tracks can route bus signals in less area than the conventional routing tracks.

Three routing buses, each with a granularity value of two, are shown in Figure 3.11.

These routing buses contain wire segments with logical length of one, two, and four respec-

tively. Note that all routing tracks in a routing bus have the same starting position; and the

starting position of the routing bus is defined to be the starting position of all the routing tracks

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

Cluster Cluster Cluster

Potential
Configuration

Memory
Sharing
BLEs

Figure 3.9: BLEs and Configuration Memory Sharing

62

in the routing bus. To conform to the single tile layout methodology outlined in Chapter 2, the

starting positions of routing buses in the MB-FPGA architecture are staggered just like the

starting positions of the routing tracks discussed in Chapter 2.

Not all signals in a datapath circuit can be grouped into buses. For example, control sig-

nals from control logic seldom can be grouped into buses. Since it is inefficient to use a wide

routing bus to route one-bit wide signals, the MB-FPGA routing channels also contain conven-

tional routing tracks, which are called fine-grain routing tracks. Note that, for the study done in

(a) Conventional

(c) Conventional

SRAM

SRAM

(e) Conventional

SRAM

SRAM

(b) Two Configuration Memory Sharing
Pass Transistor SwitchesPass Transistor Switch

Buffered Switch

SRAM

(d) Two Configuration Memory Sharing
Buffered Switches

Bi-Directional Buffered Switch

SRAM

(f) Two Configuration Memory Sharing
Buffered Switches

Figure 3.10: Routing Switches

63

this work, each MB-FPGA routing channel is assumed to contain a mixture of fine-grain rout-

ing tracks and CMS routing tracks. The granularity value of the CMS tracks is set to be equal

to the number of clusters in a super-cluster.

3.6.4 Switch Blocks

A variety of switch block topologies can be used to create the MB-FPGA switch blocks.

Most of these topologies are derived from existing conventional switch block topologies like

the disjoint topology [Hsei90] [Lemi97] and the Wil ton topology [Wilt97]. This section

describes the design decisions that were made for the MB-FPGA routing architecture and their

justifications.

1. A conventional switch block topology defines the connectivity between routing tracks

at the intersection of a horizontal and a vertical routing channel. When the same topol-

ogy is applied to CMS routing tracks, the connectivity defined for any two routing

tracks in the original topology should be used to define the connectivity for two corre-

sponding routing buses in the MB-FPGA architecture. This is the essential notion of

Logical

Logical

Logical Switch
Block

Wire
Segment

Length 1

Length 2

Length 4

Super-Cluster
with Two

Clusters Per
Super-Cluster

Two
Configuration Memory
Sharing Bi-Directional

Routing Switches

Figure 3.11: CMS Routing Tracks With A Granu larity Value of Two

64

CMS routing. Each routing bus should have the same position and the same orienta-

tion as its corresponding routing track relative to the switch block.

2. When connecting two routing buses together, the corresponding bits in each bus

should always be connected together. An example is shown in Figure 3.12. In the fig-

ure, each routing bus is two-bit wide; and each track in a routing bus is labelled with

an index number of either 0 or 1. For each case, only tracks with the same index num-

ber are connected to each other in the switch block.

3. For routing channels that contain both CMS routing tracks and fine-grain routing

tracks, only CMS tracks can be connected to CMS tracks; and only fine-grain tracks

can be connected to fine-grain tracks. This significantly reduces the complexity of the

switch blocks. However, connecting fine-grain tracks to CMS tracks and vice versa

may be beneficial. It is left as an area for future work.

4. The switches that connect two routing buses together must share a single set of config-

uration memory bits; and the switches that connect two fine-grain routing tracks

together must be conventional.

5. In each switch block, the switch block topology that connects CMS routing tracks

together does not have to be the same as the switch block topology that connects the

fine-grain routing tracks together.

Note that there are many other choices that could be made in this design. For example,

li ke the DP-FPGA architecture, hardware shifters can be added to the switch blocks to support

shifting operations. For the purpose of this thesis, however, the decisions listed above are

always used unless it is stated otherwise.

65

3.6.5 Input and Output Connection Blocks

A portion of an input connection block of an MB-FPGA super-cluster is shown in Figure

3.13. Note that, for the ease of ill ustration, the super-cluster is drawn with four clusters. The

topology discussed here, however, applies equally well to super-clusters containing any num-

(a) Six ways of connecting segments that meet at their Ends

(b) Connecting two segments that meet at their middle

0

1

0

1

0 1

0 1

0

1

0

1

0 1

0 1

0

1

0

1

0 1

0 1

0 1

0 1

0

1

0

1

Figure 3.12: Conn ecting Routing Buses

Logic Block

Bi-Directional
Routing Switch

Routing
Bus

66

ber of clusters. As shown in the figure, each input pin of a super-cluster can be connected to a

fixed number of f ine-grain routing tracks. For each super-cluster with M clusters, M super-

cluster inputs, each connected to an input of a unique cluster, are grouped together to form an

M-bit wide bus, called an input bus. Each input bus is connected to a fixed number of routing

buses; and there are as many input buses as the number of cluster inputs.

A portion of an output connection block of a MB-FPGA super-cluster is shown in Figure

3.14. Again, for the ease of illustration, the super-cluster is drawn with four clusters. Individu-

ally, each output pin of the super-cluster can be connected to a fixed number of fine-grain rout-

ing tracks. As with super-cluster inputs, M super-cluster outputs, one from an output of a

unique cluster, are grouped into an M-bit wide bus, called an output bus. Each output bus is

connected to a fixed number of routing buses; and there are as many output buses as the num-

ber of cluster outputs.

As shown in Figure 3.13 and Figure 3.14, when connecting an input/output bus to a rout-

ing bus, the corresponding bits of each bus are connected together. The programmable

switches in each bus-to-bus connection of the output connection blocks are able to share a sin-

gle set of configuration memory.

ClusterCluster Cluster Cluster

Super-Cluster

Input Bus

SRAM

Isolation Buffer

Routing Bus

Figure 3.13: Inpu t Conn ection Block (M=4)

Fine-Grain
Routing
Tracks

Note there is no
sharing of SRAM
here due to the
need to connect
both the fine-grain
and the coarse-
grain tracks to
each input pin.

67

3.6.6 I/O Blocks

As in most conventional FPGA architectures, all I/O blocks of MB-FPGA reside on the

periphery of the architecture. Each I/O block is bi-directional — each I/O block contains one

input pin and one output pin. Both the input pin and the output pin have the same connection

patterns to the fine-grain and CMS routing tracks in their neighboring routing channel. Each I/

O block input or output pin can be connected to a fixed number of fine-grain routing tracks.

M I/O block input pins or M I/O block output pins are grouped together to form M-bit

wide buses, where M is equal to the number of clusters in a super-cluster. The buses formed by

input pins are called pad-input buses; and the buses formed by the output pins are called pad-

output buses. Each pad-input or pad-output bus is connected to a fixed number of CMS routing

buses. Similar to the input bus to routing bus connections and output bus to routing bus con-

nections, when connecting a pad-input or a pad-output bus to a routing bus, the corresponding

bits of each bus are connected together. For pad-output buses, the programmable switches in

each bus-to-bus connection share a single set of configuration memory.

ClusterCluster Cluster Cluster

Super-Cluster

SRAM

Routing Bus

Output Bus

Driving Buffer

Fine-Grain
Routing
Tracks

Figure 3.14: Outpu t Conn ection Block (M=4)

68

3.7 Summary

This chapter has described a new datapath-oriented FPGA architecture, called MB-

FPGA. The architecture is homogenous and contains a mixture of CMS and fine-grain

resources designed for the area eff icient implementation of arithmetic-applications. The archi-

tecture is also highly parameterized and can be used in architectural experiments to investigate

the effect of CMS routing resources.

69

4 An Area Efficient Synthesis Algorithm for Datapath Circuits

4.1 Introduction

This chapter presents a new kind of synthesis algorithm that has been designed specifi-

cally to synthesize datapath circuits into datapath-oriented FPGAs, such as the one described

in Chapter 3. The algorithm is unique in that it preserves the regularity of datapath circuits

while achieving the area eff iciency of more conventional synthesis algorithms that do not pre-

serve datapath regularity. The algorithm is used as a part of a CAD flow in Chapter 7 and

Chapter 8 to explore the architectural parameters and the area eff iciency of the datapath archi-

tecture described in Chapter 3.

Synthesizing datapath circuits for datapath-oriented FPGAs can be more diff icult than

conventional synthesis because the algorithm must preserve the regularity of datapath circuits

in order to utilize the special features of datapath-oriented FPGAs. The task of preserving reg-

ularity limits the optimization opportunities that conventional synthesis algorithms can

exploit, which can severely limit the effectiveness of these algorithms. This is especially true

for tools that focus on minimization of area. To preserve regularity, conventional algorithms

must limit their area optimizations strictly within the boundaries of bit-sli ces. As a result, the

optimization opportunities that exist across bit-slice boundaries cannot be effectively exploited

by these algorithms. For FPGA architectures like the MB-FPGA architecture, which are

designed to improve the area efficiency of FPGAs through the util ization of datapath regular-

ity, improving the area eff iciency of their synthesis algorithms is essential to achieve the over-

all effectiveness of the architecture. The algorithm described here, called the Enhanced

Module Compaction (EMC) algorithm, addresses the issue of area eff iciency by using several

high level techniques that discover optimization opportunities across bit-slice boundaries and

70

transform these bit-slices into more area-efficient implementations while still preserving their

regularity.

EMC has been used to obtain excellent synthesis results for several datapath circuits

from the Pico-Java processor [Sun99]. The results show that the algorithm is able to preserve

datapath regularity while achieving the area eff iciency of conventional synthesis algorithms

that do not preserve datapath regularity.

This chapter is organized as follows: Section 4.2 motivates the development of an area

efficient, datapath-oriented synthesis algorithm by reviewing several existing algorithms. Sec-

tion 4.3 presents the datapath circuit representation used in the EMC algorithm. Section 4.4

describes the algorithm in detail. Section 4.5 presents the synthesis results of the algorithm;

and Section 4.6 gives concluding remarks.

4.2 Motivation and Background

The most effective way of preserving datapath regularity is to preserve bit-slices. Pre-

serving bit-sli ces, however, can often interfere with area optimizations. Consider Figure 4.1,

which shows three interconnected bit-sli ces. All three bit-slices have identical internal struc-

tures consisting of three interconnected 3-input LUTs, A, B, and C. The external connection of

these bit-slices, however, are slightly different. Bit-sli ce inputs a, b, and c are connected to a

different set of external inputs for each bit-sli ce. Inputs d, e, and f, on the other hand, share a

single set of external inputs across all three bit-slices. The remaining bit-slice input, g, is con-

nected to a constant zero for bit-slice 1, to a constant one for bit-sli ce 2, and to a registered ver-

sion of the output of LUT B for bit-slice 3.

The simplest way of preserving bit-sli ces is to perform area optimization strictly within

bit-slice boundaries without considering the bit-sli ce I/O connections. Using this technique,

each bit-slice in Figure 4.1 needs exactly three 3-input LUTs to implement. To be more area

71

efficient, area optimizations can peer across these boundaries without destroying them. In this

case, LUT C can be extracted out of the three bit-sli ces and shared as shown in Figure 4.2. The

total implementation area of the circuit is reduced, since each bit-sli ce only needs two 3-input

LUTs to implement. However, since LUT C does not belong to any bit-sli ce, irregularity is

introduced into the circuit. The implementation area can be further reduced through the intro-

duction of even more irregularities. For example, LUT B in bit-slice 1 and bit-slices 2, can be

implemented using a smaller 2-input LUT as shown in Figure 4.3. If the target FPGA allows

more than one type of LUT, this implementation requires even less area to implement at the

expense of increased irregularity. Although this is a simple example, it ill ustrates the essence

of the problems that occur while preserving datapath regularity during synthesis.

As discussed in Chapter 2, existing synthesis algorithms that preserve datapath regularity

can be classified into four categories: regularity preserving logic transformation-based synthe-

sis [Kutz00a] [Kutz00b], hard-boundary hierarchical synthesis (synthesis that performs opti-

mizations strictly within bit-sli ce boundaries), template mapping [Call98] [Cora96] [Nase94]

[Nase98], and module compaction [Koch96a] [Koch96b]. Among these four algorithms, regu-

larity preserving logic transformation relies on extracting regularity directly from datapath cir-

A

B

C
A

B

C
A

B

C

a b c a b c a b cd e f d e f d e f

g g g
0 1

clock

Figure 4.1: Regu larity and Area Eff iciency

Bit-Slice 1 Bit-Slice 2 Bit-Slice 3

72

cuits without the guidance of bit-slices. Its effectiveness in preserving datapath regularity is

limited because this is a diff icult problem that does not leverage information that exists in the

user design.

Hard-boundary hierarchical, template mapping [Call98] [Cora96] [Nase94] [Nase98],

and module compaction [Koch96a] [Koch96b] algorithms, all make use of user-defined regu-

larity information in the form of bit-slices. All three, however, are not very area eff icient. For

example, when the Synopsys FPGA Compiler is used to synthesize a series of 15 datapath cir-

cuits from the Pico-Java processor [Sun99] using the hard-boundary hierarchical synthesis,

A

B

A

B

A

B

C

a b c a b c a b c

g g g
0 1

clock

Figure 4.2: Share Loo k-Up Table C

Bit-Slice 1 Bit-Slice 2 Bit-Slice 3

A

B0

A

B1

A

B

C

a b c a b c a b c

g

clockBit-Slice 1 Bit-Slice 2 Bit-Slice 3

Figure 4.3: Simplify Loo k-Up Table B

73

there is an average area increase of 38% compared to synthesis that destroys datapath regular-

ity (which wil l be called flat synthesis in the remainder of this thesis). The detailed results of

this experiment after synthesis are summarized in Table 4.1, where column 1 lists the name of

each circuit. Column 2 and 3 li st LUT count for the flat synthesis and the hard-boundary hier-

archical synthesis, respectively. Column 4 lists the percentage of LUT increase for hard-

boundary hierarchical synthesis as compared to the flat synthesis. Column 5, 6, and 7 summa-

rize the same information for the DFF count.

For the template mapping, using the technique discussed in Chapter 2, [Cora96] reports

an area increase of over 48%. The module compaction algorithm, on the other hand, has the

shortcoming of being designed specificall y for the Xil inx XC4000 FPGA architecture. As a

result, the algorithm uses dedicated hardware in XC4000 to implement some of its preserved

regular structures. This artif icially reduces the total number of LUTs needed to implement a

circuit. Furthermore, there are limited experimental results on the algorithm’s area eff iciency

— only two area results were ever publi shed. Both are for relatively small circuits. Even with

dedicated hardware support, the bigger circuit, containing only 712 4-LUT, stil l has a worst

case area inflation of 17%. The much smaller circuit, containing only 112 4-LUT, was shown

to have an area reduction of 16%.

4.3 Datapath Circuit Representation

The goal of this work is to develop an algorithm that preserves datapath regularity. To do

this requires an appropriate format for specifying datapath regularity. The format used in this

thesis consists of a netli st of datapath components, described in VHDL or Verilog, which is

called the top-level netlist. All datapath components used in the netli st are instantiated from a

predefined datapath component library. This library contains fundamental datapath building

blocks such as multiplexers, adders/subtracters, shifters, comparators, and registers.

74

These datapath components are in turn composed of bit-level structures that are called

bit-slice netli sts. A bit-slice netli st is a netlist of logic gates, representing the function of a sin-

gle bit-slice of a datapath. The bit-sli ce netli st is typically instantiated multiple times in a data-

path component. At this level the netli st is called the datapath component level netli st.

The number of bit-sli ce netli st instantiations corresponds to the width of the datapath. All

instantiations are assigned a unique bit-sli ce number from one to the width of the datapath

with the least significant bit-slice labeled one.

An example of a 4-bit ripple carry adder datapath component is shown in Figure 4.4. The

bit-slice netli st of this datapath component is a netli st of logic gates defining a full adder. This

design is instantiated four times to form the 4-bit adder.

#LUTs #DFFs

Flat HB % inflat. Flat HB % inflat.

dcu_dpath 960 1190 24% 288 288 0.0%

ex_dpath 2530 3517 39% 364 364 0.0%

icu_dpath 3120 4430 42% 355 356 0.28%

imdr_dpath 1182 1548 31% 170 170 0.0%

pipe_dpath 443 549 24% 218 220 0.92%

smu_dpath 490 568 16% 190 190 0.0%

ucode_dat 1243 1362 9.6% 224 224 0.0%

ucode_reg 78 172 121% 74 80 8.1%

code_seq_dp 218 366 68% 216 226 4.6%

expon ent_dp 477 725 52% 64 64 0.0%

incmod 779 1207 55% 72 72 0.0%

mantissa_dp 846 1167 38% 192 192 0.0%

multmod_dp 1558 2275 46% 193 193 0.0%

prils_dp 377 675 79% 0 0 0.0%

rsadd_dp 346 526 52% 0 0 0.0%

Total 14647 20277 38% 2620 2639 0.73%

Table 4.1: Area Inflation for Hard-Bound ary Hierarchical Synthesis

75

4.4 The EMC Synthesis Algorithm

Figure 4.5 gives the overall f low of the new datapath-oriented EMC synthesis algorithm,

which consists of four major steps: word-level optimization, module compaction, bit-sli ce I/O

optimization, and within bit-sli ce boundary synthesis. In the first three steps, the top-level

netli st is optimized for area through the transformation and merging of its datapath compo-

nents into more area efficient implementations. During these steps, some logic might be cre-

ated which does not belong to any specific bit-slices. For example, new logic might be created

to generate signals that fan out to multiple bit-sli ces such as the example in Figure 4.2. This

logic is called irregular logic (previously known as non-datapath, to distinguish it from logic

that fits nicely into a datapath) and is represented directly as logic gates in the top-level netlist.

Each one of these three steps is discussed in more detail in the subsections that follow.

In the final and fourth step, each bit-sli ce is synthesized and mapped into 4-input LUTs

and DFFs through the use of a conventional synthesis algorithm. The irregular logic gates are

Instantiation #1 of
Bit-Slice Netlist

Instantiation #2 of
Bit-Slice Netlist

Instantiation #3 of
Bit-Slice Netlist

Instantiation #4 of
Bit-Slice Netlist

cin

o1

o2

o3

o4

a1

b1

a2

b2

a3

b3

a4

b4

cout

a
b

cin

cout

Bit-Slice Netlist

Figure 4.4: 4-bit Ripp le Adder Datapath Compon ent

76

also synthesized and mapped into LUTs and DFFs independently from the datapath compo-

nents using the same conventional synthesis algorithm.

4.4.1 Word-Level Optimization

During the first step, two types of word-level optimizations are performed. One is used to

extract common sub-expressions across bit-slice boundaries. The other uses operation reorder-

ing to reduce area. These two optimizations are performed manually. Their algorithms, which

are suitable for automation, are presented here.

4.4.1.1 Common Sub-expression Extraction

Each datapath component represents a set of arithmetic operations. In the top-level

netli st, datapath components are connected together to form complete mathematical functions.

Each of these functions has multiple bit outputs, where the output bits can be individually

described using logic expressions. Often, common sub-expressions exist across these logic

expressions. More precisely, let both x ([x0 , x1 , ... , xn]) and y ([y0 , y1 , ... , yn]) be bit vectors

Netlist of Datapath Components

Step 1: Word-Level
Optimization

Step 2: Module
Compaction

Step 3: Bit-Slice I/O
Optimization

Step 4: Within Bit-Slice
Boundary Synthesis

Figure 4.5: Overall Synthesis Flow

77

of width n. Let y = f(x) be a mathematical function of x. Each individual bit of y can be

expressed in terms of bits of x as follows:

y0 = f0 (x0 , x1 , ... , xn)

y1 = f1 (x0 , x1 , ... , xn)

...

yn = fn (x0 , x1 , ... , xn)

If there exist a function g (x0 , x1 , ... , xn), such that:

y0 = f ’ 0 (g (x0 , x1 , ... , xn) , x0 , x1 , ... , xn)

y1 = f ’ 1 (g (x0 , x1 , ... , xn) , x0 , x1 , ... , xn)

...

yn = f ’ n (g (x0 , x1 , ... , xn) , x0 , x1 , ... , xn)

then g(x) is called a common sub-expression of f0(x), f1(x), ... , fn(x). The implementation area

of mathematical functions can be reduced by discovering and extracting these common sub-

expressions so that they are only implemented once.

In a conventional synthesis process, common sub-expressions are extracted through logic

transformations. This extraction process usuall y destroys the regularity of datapath circuits,

since conventional synthesis independently transforms logic expressions one bit at a time. We

have found that many of these common sub-expressions can be discovered at the word-level

where entire datapath components are examined based on their functionality. Most impor-

tantly, datapath regularity can be easil y preserved by extracting these common sub-expres-

sions at the word-level where datapath structures remain clearly identifiable.

For the benchmarks investigated in this work, the most effective word-level transforma-

tion that extracts common sub-expressions is multiplexer tree collapsing. In a multiplexer tree,

the multiplexers, their data inputs, outputs, and the interconnection signals form a tree topol-

78

ogy. Each node of the tree, which has multiple inputs and a single output, represents a multi-

plexer. Each input of a node corresponds to a multiplexer data input. The output of a node

corresponds to a multiplexer output. An edge in the graph represents a net connecting a multi-

plexer output to a multiplexer data input, a primary input, or the primary output of the multi-

plexer tree.

A multiplexer tree sometimes can be substituted by a single multiplexer, which requires

much less logic to implement, as ill ustrated in Figure 4.6. Here the multiplexer tree in the left

circuit is substituted by a single multiplexer in the right circuit. To implement the two multi-

plexers and the and gate in the left circuit, two 4-input LUTs are needed for every bit-slice as

indicated by the shaded regions in the figure. To implement the multiplexer and the and gate

in the right circuit, only one 4-input LUT is needed for every bit-sli ce. The extra irregular

logic in the right circuit is the common sub-expression extracted by the transformation. It usu-

ally is shared by several bit-slices, so its area cost is small i n wide datapath circuits.

The algorithm used to collapse multiplexer trees is as follows: First, multiplexer trees are

identified in the top-level netlist. This is easy to perform since the functionality of each datap-

ath component is known. The total number of unique data inputs to each tree is then identified.

Each tree is replaced by a single multiplexer whose width is equal to the number of unique

data inputs of the tree. Each input of the new multiplexer is connected to a unique multiplexer

DFF

A A

R

il

S1

S2

il — irregular logic

Figure 4.6: Mux Tree Collapsing Example

DFF

S1

S2
R

79

tree primary data input. The output of the new multiplexer is connected to the primary output

of the tree. Finall y, the select signal of the new multiplexer is generated using the select signals

of the original multiplexer tree. If the replacement reduces the area cost in terms of LUT and

DFF count, it is retained. Otherwise, the replacement is rejected.

4.4.1.2 Operation Reordering

The second word-level transformation uses operation reordering to reduce area. In partic-

ular, the optimization reorders result selections into operand selections. Arithmetic operators

such as multiplications are, in general, much more expensive than multiplexers. In the event

that several identical operations are performed on independent data sets and only one result is

used, it usually is much cheaper to preselect the input data than to perform all operations in

parallel and select the final results.

An example is given in Figure 4.7. Here the result of two addition operations is selected

by a 2:1 mux. The operation can be more eff iciently performed by preselecting adder inputs

and using a single adder instead of two. Before optimization, five 4-input LUTs are needed to

implement the function. After optimization, only four 4-input LUTs are needed to implement

the same function. This optimization is not obvious at the bit-sli ce level, since cout0a and

cout0b appear to be two independent signals. However, when viewed from the top-level

netli st, the optimization is clearly identifiable.

More generally, assume that there is a function y = f (x) where x ([x0 , x1 , ... , xn]) is an n-

bit wide bit vector and y ([y0 , y1 , ... , yp]) is a p-bit wide bit vector. The function:

if (s == 0) then

 z = f (u)

else

 z = f (v)

80

can be sometimes more cheaply implemented as:

if (s == 0) then

 w = u

else

 w = v

z = f (w)

if f(x) requires more area to implement than the extra multiplexers. The algorithm would

search for multiplexers whose data inputs are from the outputs of identical functions where

these outputs have no other fan-outs. It then compares the area implementation cost of f(x)

with the area implementation cost of the multiplexers. If the area cost of f(x) is greater than the

area cost of the additional multiplexers, the transformation is performed.

+ +

+

Figure 4.7: Result Selection to Operand Selection Transformation

s

s

Before Optimization After Optimization

a b c d

e

a bc d

e

a0 b0 c0 d0

e0

s0

cin0a

cout0a
sum carry sum carry

cin0b

cout0b

s0
a0 c0 b0 d0

sum carry

cin0

cout0

e0

Bit-Slice Netlist Before Optimization

Bit-Slice Netlist After Optimization

81

4.4.2 Modu le Compaction

The goal of module compaction is to create larger bit-sli ces, which can be more effi-

ciently synthesized by the conventional synthesis algorithms. This compaction process is per-

formed as the second step of the optimization. Here two connected bit-slice netlists are

iteratively merged together to form a larger bit-sli ce netlist. The algorithm repeatedly iterates

through the input netli st until there are no eligible datapath components left to be merged. By

creating larger bit-sli ce netlists, more optimization opportunities are created for the conven-

tional synthesis stage shown in Figure 4.5, where the synthesis is restricted to within the

boundaries of bit-sli ce netli sts. This merging process is similar to the module compaction

algorithm proposed by Koch in [Koch96a] as discussed in Chapter 2. It differs in its merging

criteria; unlike Koch’s algorithm, it does not depend on any placement information. As a

result, the EMC algorithm can be more easily integrated into existing CAD flows.

The basic merging operation is a pattern identification process. Two groups of bit-sli ces

from two datapath components are merged if the following conditions are met:

1. These two groups contain equal numbers of bit-sli ces.

2. All bit-slices in each group have consecutive bit-sli ce numbers as defined in Section 4.3.

3. All bit-slices in one group are identicall y connected to their corresponding bit-slices in the

other group. Here two corresponding bit-slices are defined to be bit-sli ces from two dis-

tinct groups, each with the same offset from the lowest bit-slice number in its group.

Each merging operation creates a new datapath component. The bit-sli ce netli st of the

new component combines the two original bit-slice netli sts. If a merging group does not

include all the bit-sli ces of its datapath component, the remaining slices in the component are

split into two datapath components — one with all the bit-slices whose bit-sli ce numbers are

82

smaller than the bit-slice numbers of the merging group, and the other with all the bit-sli ces

whose bit-sli ce numbers are larger than the bit-sli ce numbers of the merging group.

An example of module compaction is shown in Figure 4.8. Here, before merging, as

shown in Figure 4.8a, there are two datapath components with labels FA and mx, respectively.

One component contains five slices of full adders labeled FA0 to FA4. The other component

contains four sli ces of single-bit 2:1 multiplexers labeled mx0 to mx3. Based on the merging

rules stated above, two full adders, FA1 and FA2 can be merged with two single-bit 2:1 multi-

plexers, mx0 and mx1, to form a new datapath component. The remaining three full adders are

broken into two new components after merging. The four new datapath components created by

the merging process is shown in Figure 4.8b. They are labeled A, B, C, and D.

Two extra conditions are imposed to prevent a carry type signal from causing all bit-

sli ces connected to it to be merged into a single component. For example, consider a second

merging iteration on the circuit of Figure 4.8b after the initial merging described above. Data-

path component A wil l be quali fied to be merged with the first sli ce of datapath component B

since they are connected by the carry signal. Then, in the third merging iteration, component A

and B will be completely merged into a single bit-sli ce. After two more iterations, the carry

Figure 4.8: A B it-Slice Netli st Merging Example

FA0 FA1 FA2 FA3 FA4

mx0 mx1 mx2 mx3

FA0 FA1 FA2 FA3 FA4

mx0 mx1 mx2 mx3

A

B

C

D

FA

mx

(a) Before Merging

(b) After Merging

83

chain will cause A, B, and D in the figure to be merged into a single bit-sli ce, which com-

pletely destroys the regularity of the datapath.

To prevent this, first, merging operations are ordered so that operations that wil l create

the widest datapath components are performed first. Second, for every bit-sli ce netli st an

ancestors field is defined, which is a set of bit-sli ce netli sts. Initiall y each bit-sli ce netli st has

only itself in its ancestors set. When two bit-sli ce netlists are merged, the ancestors set of the

new bit-sli ce netli st is the union of the ancestors sets of the two merging bit-sli ce netli sts. If

the intersection of the ancestors of two bit-sli ce netli sts is not empty, these two bit-sli ce

netli sts cannot be merged together.

With the ancestors field, nothing can be merged during the second merging iteration in

Figure 4.8b, since all mergable component pairs, (A, B) and (B, D) share one common ances-

tor — FA.

4.4.3 Bit-Slice Netlist I/O Optimization

Each bit-slice netli st has a set of predefined I/O signals that enter and exit the netlist.

Depending on the usage of these signals, some of them can be eliminated and converted into

internal signals of the netli st. Since each bit-slice netlist is synthesized using a conventional

synthesis algorithm in the final step of the synthesis flow, converting I/O signals into internal

signals can reduce the implementation area of bit-slices by providing extra information to the

conventional synthesizer. In this optimization process, four types of bit-sli ce I/O signals are

converted into internal signals of bit-slices. Each is discussed below.

Before any I/O optimization is performed, each datapath component in the top-level

netli st is first divided into m-bit wide subcomponents, where m is specified by the user. Each

subcomponent is a self-contained datapath component with its own bit-sli ce netlist definition

and a netlist of m instantiations of the bit-sli ce netli st. The division starts from the least signif-

84

icant bit of each datapath component and groups adjacent m bit-sli ces into a subcomponent. If

the width of the datapath component is not an integer multiple of m, the subcomponent con-

taining the most significant bits will be less than m-bit wide. The variable m is called the gran-

ularity of the synthesis flow. A larger m preserves more datapath regularity typicall y at the

expense of increased area, while a smaller m decreases area at the expense of preserving less

datapath regularity. After division, each original datapath component in the top-level netlist is

substituted by its corresponding subcomponents.

The first type of I/O optimization is constant absorption. When an input of a bit-sli ce

netli st is always connected to the same constant value (either zero or one) for all i nstantiations

of the netlist in a datapath component, this input signal is converted into a constant internal

signal of the netlist.

The second type of I/O optimization is feedback absorption. When a connection exists

between a bit-slice netlist input and a bit-sli ce netlist output for all instantiations of the netlist,

this input signal is converted into an internal signal and reconnected to the corresponding out-

put inside the netli st.

An example of feedback absorption is shown in Figure 4.9. Here Datapath Component

A consists of four bit-slices, which are all i nstances of the same bit-sli ce netli st. Since each of

the slice inputs labeled Ai1 is connected to a corresponding slice output labeled Ao from the

same slice, Ai1 is eliminated as an input of the bit-slice netli st and is converted to an internal

signal. Ai1 is reconnected to Ao inside the netlist.

The third type of I/O optimization is dupli cated input absorption. When two bit-sli ce

netli st inputs are connected together for all i nstantiations of the design, one of the input signals

is converted into an internal signal and is reconnected to the other input signal inside the

netli st.

85

An example of dupli cated input absorption is shown in Figure 4.10. As before, Datapath

Component A consists of four bit-slices, which are all i nstances of the same bit-slice netlist.

Since each of the slice inputs labeled Ai1 is always connected to a corresponding sli ce input

labeled Ai2 in the same sli ce, Ai2 is eliminated as an input of the bit-sli ce netlist and is con-

verted to an internal signal. Ai2 is reconnected to Ai1 inside the netli st.

The last type of I/O optimization is unused output elimination. When a bit-sli ce netli st

output does not connect to any other signals in all instantiations of the bit-sli ce netlist, this out-

put signal is converted into an internal signal of the bit-slice netli st, which wil l permit the

downstream synthesis to optimize it away.

D
at

ap
at

h
C

om
po

ne
nt

 A

Before Optimization After Optimization

Figure 4.9: Feedback Absorption Example

Ai1

Ai2
Bit-

Slice A1

D
at

ap
at

h
C

om
po

ne
nt

 A

Ai2
Bit-

Slice A1

Ai2
Bit-

Slice A2

Ai2
Bit-

Slice A3

Ai2
Bit-

Slice A4

Ao Ao

Ai1

Ai2
Bit-

Slice A2

Ai1

Ai2
Bit-

Slice A3

Ai1

Ai2
Bit-

Slice A4

Ao

Ao

AoAo

Ao

Ao

Figure 4.10: Dup licated Inpu t Absorption

D
at

ap
at

h
C

om
po

ne
nt

 A

Before Optimization After Optimization

Ai1

Ai2
Bit-

Slice A1

Ai1

Ai2
Bit-

Slice A2

D
at

ap
at

h
C

om
po

ne
nt

 A

Ai1Bit-
Slice A1

Ai1Bit-
Slice A2

Ai1Bit-
Slice A3

Ai1Bit-
Slice A4

Ai1

Ai2
Bit-

Slice A3

Ai1

Ai2
Bit-

Slice A4

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

86

4.5 Experimental Results

The experimental results from applying the EMC synthesis on fifteen datapath bench-

marks are presented in this section. These fifteen circuits are from the Pico-Java processor

[Sun99], which is a 32-bit processor; and the benchmark set covers all major datapath compo-

nents of the processor. Note again that the word-level optimizations, described in Section

4.4.1, were performed manually. The other two optimization steps were done by automated

algorithms implemented in the C-language. The Synopsys FPGA Compiler [Syno99] is used

to perform the within bit-sli ce boundary synthesis. Unless specified otherwise, all the data pre-

sented here are synthesized using a granularity value (m), as defined in Section 4.4.3, of four.

In the remainder of this section, the area inflation of EMC is first discussed; and then the regu-

larity results are presented in turn.

4.5.1 Area Inflation

For every benchmark circuit, the final LUT and DFF count of the EMC synthesis is com-

pared with the counts achieved by a fully conventional synthesis flow that flattens the datapath

hierarchy. The conventional flow is also performed by the Synopsys FPGA Compiler. In order

to assure that the best achievable conventional synthesis results are used to be compared with

the EMC synthesis, two conventional synthesis flows are used. One flow directly synthesizes

the input netlist of the EMC algorithm. The other flow resynthesizes the output netlist of the

EMC algorithm. In some cases, one flow offers slightly better results than the other; and the

best result is always used as the flat synthesis result.

Table 4.2 summarizes the LUT and DFF inflation of each benchmark circuit for the hard-

boundary hierarchical synthesis, and the new EMC synthesis. Each inflation figure is calcu-

lated by comparing the regularity preserving synthesis with the best conventional synthesis

87

results. The formula, , is used to calculate the inflation for both LUTs and

DFFs. In the formula, DA represents the synthesis area of the regularity preserving synthesis;

FA represents the synthesis area of the flat conventional synthesis.

Column one of the table lists the name of each benchmark circuit. Columns two and three

give the LUT and DFF count of each circuit from the best conventional synthesis flow. Col-

umns four and five restate the inflation figures of the hard-boundary hierarchical synthesis,

which were shown in Table 4.1. Here, synthesis is performed without the first three optimiza-

tion steps of the EMC algorithm. Columns six to eleven summarize the inflation figures for

Best Flat
Synthesis

Area

Area Inflation for Regu larity Preserving Synthesis

Hard-
Bound ary

Hierarchical

EMC —
Word-Level

Optimization
Only

EMC —
Word-Level

Optimization
and Modu le
Compaction

Full EMC

#LUT #DFF LUT DFF LUT DFF LUT DFF LUT DFF

dcu_dpath 960 288 24% 0.0% 22% 0.0% 8.1% 0.0% 0.63% 0.0%

ex_dpath 2530 364 39% 0.0% 38% 0.0% 26% 0.0% 0.91% 0.0%

icu_dpath 3120 355 42% 0.28% 24% 0.28% 23% 0.28% 3.7% 0.0%

imdr_dpath 1182 170 31% 0.0% 31% 0.0% 29% 0.0% 3.1% 0.0%

pipe_dpath 443 218 24% 0.92% 19% 0.92% 19% 0.92% 6.3% 0.0%

smu_dpath 490 190 16% 0.0% 16% 0.0% 9.4% 0.0% 0.61% 0.0%

ucode_dat 1243 224 9.6% 0.0% 9.6% 0.0% 9.6% 0.0% 4.9% 0.0%

ucode_reg 78 74 121% 8.1% 113% 8.1% 113% 8.1% 5.1% 0.0%

code_seq_dp 218 216 68% 4.6% 53% 4.6% 53% 4.6% 2.3% 0.0%

expon ent_dp 477 64 52% 0.0% 31% 0.0% 26% 0.0% 5.0% 0.0%

incmod 779 72 55% 0.0% 50% 0.0% 36% 0.0% 11% 0.0%

mantissa_dp 846 192 38% 0.0% 29% 0.0% 28% 0.0% 3.8% 0.0%

multmod_dp 1558 193 46% 0.0% 42% 0.0% 15% 0.0% 4.9% 0.0%

prils_dp 377 0 79% 0.0% 77% 0.0% 36% 0.0% 2.9% 0.0%

rsadd_dp 346 0 51% 0.0% 51% 0.0% -2.6% 0.0% -12% 0.0%

Total 14647 2620 38% 0.73% 32% 0.73% 22% 0.73% 3.2% 0.0%

Table 4.2: LUT & DFF Inflation for Regu larity Preserving Synthesis

i nfl ati on
DA
FA
-------- 1–=

88

various configurations of EMC to show the contributions of each individual optimization step.

In particular, columns six and seven show the inflation figures when only step 1 (word-level

optimization) and step 4 (within bit-sli ce boundary synthesis) are performed. Columns eight

and nine li st the inflation figures when step 1, step 2 (module compaction), and step 4 are per-

formed. Finally columns ten and eleven list the inflation figures for the full EMC synthesis.

The average LUT inflation of the hard-boundary hierarchical synthesis is 38% and the

average DFF inflation is 0.73%. The word-level optimization reduces the average LUT infla-

tion to 32%; and the combined word-level optimization and module compaction reduce the

average LUT inflation further down to 22%. Using the full EMC algorithm, the average LUT

inflation is finall y reduced to 3.2% and the DFF inflation is reduced to zero. Note that the bit-

sli ce netlist I/O optimization contained in the full EMC algorithm utili zes many optimization

opportunities created by the previous module compaction step, which creates bit-slices con-

taining many common I/O signals through the merging of smaller bit-sli ces.

The benchmarks exponent_dp, icu_dpath, and code_seq_dp benefited the most from

word-level optimization. Their LUT inflation figures were reduced by 21, 18, and 15 percent-

age points, respectively. Benchmarks rsadd_dp, prils_dp, and multmod_dp, on the other hand,

benefited the most from module compaction. Their LUT inflation was reduced by 54, 41, and

27 percentage points, respectively, when module compaction is performed on top of word-

level optimization. Finall y, benchmarks ucode_reg, code_seq_dp, and pril s_dp benefited the

most from bit-slice I/O optimization. The LUT inflation figures were reduced by 108, 51, and

33 percentage points, respectively, when the optimization is performed on top of word-level

optimization and module compaction.

The numbers from Table 4.2 show that the EMC algorithm does not significantly

increase the LUT and DFF count for the benchmarks as compared with flat synthesis and is

89

much more area efficient than the hard-boundary hierarchical synthesis. For the circuit,

rsadd_dp, the EMC algorithm even discovered more optimizations than the conventional syn-

thesis, resulting in much smaller area.

Finally, Table 4.3 presents LUT count inflation as a function of m, the granularity of syn-

thesis. DFF count inflation remained at zero with increasing m. The table shows that the LUT

inflation increases from 3.5% to 7.4% as m is increased from 4 to 32. The cause of this

increase is the less efficient I/O optimization as described in Section 4.4.3 as a result of the

increased datapath component width.

4.5.2 Regularity

Various aspects of the datapath regularity were measured for the circuits after they are

synthesized by the EMC algorithm in order to illustrate that the regularity was preserved. The

granularity of the synthesis, m, is again set at four. Higher granularities typicall y result in

higher regularity.

4.5.2.1 Logic Regularity

To measure the logic regularity preserved by the synthesis process. The benchmark cir-

cuits are first synthesized by the full EMC algorithm. LUTs and DFFs in the synthesized cir-

cuit are divided into two groups. The first group is called regular logic, which, as defined in

Section 4.3, contains LUTs and DFFs that belong to datapath components. The second group

is called irregular logic, which contain LUTs and DFFs that do not belong to any datapath

component. Note that several optimizations described in Section 4.4 create irregular logic dur-

m 1 4 8 12 16 20 24 28 32

Avg. LUT
Inflation (%)

0.0 3.5 4.6 6.3 6.7 6.5 6.7 6.8 7.4

Table 4.3: LUT Coun t Inflation as a Function o f Granu larity

90

ing the optimization process, so the proportion of regular logic as compared to irregular logic

in a netlist is changed by the synthesis process.

Before synthesis, nearly all l ogic in the benchmarks is regular. After synthesis, the

detailed regularity results for each circuit is shown in Table 4.4. In the table column 1 lists the

name of each circuit. Column 2, 3, and 4 list the number of LUTs, the number of DFFs, and the

total number of LUTs and DFFs for each circuit after EMC synthesis. Column 5, 6, and 7 li st

the number of LUTs, the number of DFFs, and the total number of LUTs and DFFs that are

preserved in datapath for each circuit after synthesis. Finall y column 8 lists the total percent-

age of LUTs and DFFs that are in datapath. Overall, the EMC algorithm preserves a signifi-

cantly amount of logic regularity. Here, 90% of the total number of LUTs remain in datapath

components after synthesis, while only 10% of the logic resides in irregular logic.

4.5.2.2 Net Regularity

The regularity of nets after synthesis was also measured. Table 4.5 shows two major

types of two-terminal connections (defined as a logical connection containing one LUT/DFF

output pin and one LUT/DFF input pin) exist in datapath benchmarks after synthesis — bus

and control signals. The first column of Table 4.5 lists the name of each benchmark circuit.

The second column li sts the total number of two-terminal connections in each circuit.

A two-terminal bus is defined as an m-bit wide bus (four in this table) that connects one

datapath component to another and obeys the following two conditions: First, each bit of the

bus must be generated by a distinct bit-sli ce in the source datapath component and absorbed by

a distinct bit-slice in the sink datapath component. Second, the source bit-sli ce and the sink

bit-slice must have the same bit-sli ce number. The topology of a 4-bit wide bus is shown in

Figure 4.11. On average 48% of two-terminal connections in these benchmarks can be

91

grouped into 4-bit wide busses. The percentage number for each benchmark is summarized in

column three of Table 4.5.

A control net is a single net that enters a datapath component and fans out to all m bit-

sli ces (4 in this table). The topology of a 4-bit control net is shown in Figure 4.12. The control

 #LUT #DFF
#LUT +
#DFF

#LUT in
Datapath

#DFF in
Datapath

#LUT +
#DFF in

Datapath

%LUT &
DFF in

Datapath

dcu_dpath 966 288 1254 900 288 1188 95%

ex_dpath 2553 364 2917 2390 350 2740 94%

icu_dpath 3235 355 3590 3108 352 3460 96%

imdr_dpath 1218 170 1388 1132 160 1292 93%

pipe_dpath 471 218 689 387 188 575 83%

smu_dpath 493 190 683 428 190 618 90%

ucode_dat 1304 224 1528 1224 224 1448 95%

ucode_reg 82 74 156 68 64 132 85%

code_seq_dp 223 216 439 52 152 204 46%

expon ent_dp 501 64 565 320 64 384 68%

incmod 867 72 939 772 64 836 89%

mantissa_dp 878 192 1070 772 192 964 90%

multmod_dp 1634 193 1827 1388 152 1540 84%

prils_dp 388 0 388 324 0 324 84%

rsadd_dp 305 0 305 281 0 281 92%

Total 15118 2620 17738 13546 2440 15986 90%

Table 4.4: Logic Regu larity

4-bit wide bus

sink datapath component

source datapath component

bit-slice

Figure 4.11: 4-bit Wide Bus Topo logy

92

nets on average consist of 35% of the total two-terminal connections in these benchmarks. The

detailed percentage number for each benchmark is shown in column four of Table 4.5.

Overall , there are 83% of two-terminal connections that belong to either a bus or a con-

trol net. There are few two-terminal connections that belong to both a bus and a control net at

Total
Two-

Terminal
Conn .

Percentage of Two-
Terminal Conn .

that are 4-Bit Wide
Busses

Percentage of Two-
Terminal Conn .
that are Fan-Out

Four Control
Signals

dcu_dpath 2232 49% 43%

ex_dpath 6547 52% 39%

icu_dpath 8047 47% 36%

imdr_dpath 3100 50% 36%

pipe_dpath 1049 48% 42%

smu_dpath 1167 48% 25%

ucode_dat 3143 52% 41%

ucode_reg 194 72% 21%

code_seq_dp 799 58% 18%

expon ent_dp 1362 32% 23%

incmod 2013 42% 33%

mantissa_dp 2533 47% 36%

multmod_dp 3380 39% 25%

prils_dp 864 41% 32%

rsadd_dp 722 52% 27%

Total 37152 48% 35%

Table 4.5: Net Regu larity

4-bit control net

datapath component
bit-slice

Figure 4.12: 4-bit Control Net Topo logy

control logic (can be either datapath or irregular)

93

the same time. Note that in order to standardize the amount of logic contained in a datapath

component in the above definition of bus and control signals, a datapath component is defined

to be a group of LUTs and DFFs that can be fitted into an MB-FPGA super-cluster. The super-

cluster contains four clusters; and each cluster contains ten inputs and four BLEs. The packing

algorithm that will be described in Chapter 5, is used to create these fixed sized datapath com-

ponents before the regularity measurement.

4.6 Conclusion

This chapter presented the EMC synthesis algorithm targeting datapath-oriented FPGAs.

It empiricall y demonstrated that the algorithm is nearly as efficient in terms of LUT/DFF

usage as the conventional flat synthesis algorithms. In terms of LUT and DFF count, the algo-

rithm produces circuits on average with only 3%–8% LUT inflation and no increase in register

count. The regularity of the fifteen benchmark circuits was also measured. The results show

that there is a high degree of regularity in these synthesized benchmarks, with 48% of two-ter-

minal connections that can be grouped into 4-bit wide busses and 35% of two-terminal con-

nections from highly regular control signals with at least 4-bit fan-out.

94

95

5 A Datapath-Oriented Packing Algorithm

5.1 Introduction

This chapter presents a new kind of packing algorithm that has been designed specifi-

cally for datapath circuits. The algorithm is unique in that it preserves the regularity of datap-

ath circuits and maps the preserved regularity onto the super-clusters of the MB-FPGA

architecture described in Chapter 3. This algorithm and software is employed in Chapter 7 and

Chapter 8 to investigate the effect of CMS routing on the area efficiency of FPGAs.

Packing that preserves datapath regularity can be more difficult than classical packing as

described in [Betz97a] [Marq99] [Bozo01] because the task of preserving datapath regularity

limits the flexibility of the packing tools. Recall that the MB-FPGA architecture captures data-

path regularity by implementing identical portions of neighboring bit-slices in a single super-

cluster. Within the super-cluster, logic from each bit-sli ce is implemented in individual clus-

ters. Under this architecture, when a LUT or a DFF from a datapath is packed into a cluster,

other LUTs and DFFs from the same bit-sli ce should be given priority for implementation in

the same cluster. Similarly, LUTs and DFFs from neighboring bit-slices should be given prior-

ity for implementation in the super-cluster that the cluster resides in. The algorithm described

here, called the coarse-grain node graph (CNG) packing algorithm, addresses this issue of pre-

serving datapath regularity by simultaneously packing several identical LUTs or DFFs from

neighboring bit-sli ces. It also uses speciall y designed metrics to optimize the implementation

area of datapath circuits and the delay of timing-critical nets.

CNG has been used to obtain excellent packing results for the datapath circuits from the

Pico-Java processor [Sun99]. It is able to pack for a wide range of super-cluster configurations

while preserving a high degree of datapath regularity; and its area efficiency and performance

96

approach those of the traditional packing algorithms, which do not preserve datapath regular-

ity.

This chapter is organized as follows: Section 5.2 motivates the development of the datap-

ath-oriented packer; Section 5.3 defines the datapath-oriented packing problem; Section 5.4

presents the model that is used to represent datapath circuits for the CNG packing algorithm;

Section 5.5 describes the algorithm in detail; Section 5.6 presents the results from the tests of

the packer; and Section 5.7 gives concluding remarks.

5.2 Motivation

A key problem in packing for the MB-FPGA architecture is that packing choices made

for one LUT or one DFF from a bit-slice may limit the packing choices of another LUT or

DFF. Consider Figure 5.1, which shows two groups of identical bit-slices. The first group con-

sists of bit-sli ce 1, 2 and 3; and the second group consists of bit-slice 4, 5, 6, 7, and 8. For the

purpose of timing analysis, each LUT is assumed to have a logic delay of 1 time unit. Each

connection between any two LUTs is also assumed to have a propagation delay of 1 time unit

if it is implemented inside a super-cluster and 10 time units if it is implemented outside a

super-cluster. In the figure, assuming that all connections are implemented outside super-clus-

ters, the most timing-critical path is the path that connects bit-slice 2, 5, 6, 7, and 8 together

through LUT A and LUT D in bit-sli ce 2, LUTs labeled E in bit-sli ce 5, 6, and 7, and LUT E

and LUT F in bit-slice 8. The total delay of this critical path is 60 time units.

Now, assume that each target super-cluster contains three clusters and each cluster con-

tains two BLEs. Naively, a timing-driven packer, which also attempts to preserve datapath reg-

ularity, might pack bit-slice 1 first. Considering bit-slice 1 in isolation, the packer wil l try to

minimize the local critical path that connects LUT A, B, and C together. As a result, LUT A

and B will be packed into a single cluster and LUT C and D will be packed into another clus-

97

ter. Once bit-slice 1 is packed, in order to preserve datapath regularity, bit-slice 2 and 3 wil l

have to be packed using exactly the same configuration as bit-sli ce 1. After packing these three

bit-slices into clusters, the three clusters containing LUT A and B can be grouped into a super-

cluster; and the clusters containing LUT C and D can also be grouped into a super-cluster.

Similarly, bit-sli ce 4, 5, 6, 7, and 8 can be packed into two super-clusters; and the entire pack-

ing solution is shown in Figure 5.2. This naive packing solution, however, is sub-optimal since

LUTs on the critical path are separated into six clusters across four super-clusters, resulting in

a critical path delay of 33 time units.

A better solution is for the packer to pack bit-sli ce 2 first. In this case, LUT A and D are

packed into a cluster and LUT B and C are packed into another cluster based on the real criti-

A

B

C

D

E

F

A

B

C

D

A

B

C

D

E

F

E

F

E

F

E

F

Bit-Slice 1 Bit-Slice 2 Bit-Slice 3

Bit-Slice 4 Bit-Slice 5 Bit-Slice 6 Bit-Slice 7 Bit-Slice 8

Figure 5.1: Regu larity and Performance

98

cal path. As shown in Figure 5.3, in this solution, LUTs on the critical path are contained in

only five clusters across three super-clusters, consisting of super-cluster 1, 3, and 4. Conse-

quently, this packing solution is much faster that the previous one and has a critical path delay

of 24 time units.

Note that LUTs on the part of the criti cal path that connects bit-sli ce 5, 6, 7, and 8

together are packed into separate clusters in order to preserve datapath regularity. Also, the

carry chains in the super-clusters are used to improve the performance of this section of the

critical path. Although this is a simple example, it ill ustrates the essence of the problem that

arises from the need of preserving datapath regularity.

A
B

C
D

E
F

A
B

C
D

E
F

A
B

C
D

E
F

E
F

E
F

Super-Cluster 1

Super-Cluster 2

Super-Cluster 3 Super-Cluster 4

Figure 5.2: A Naive Packing Solution

A
D

B
C

E
F

A
D

B
C

E
F

A
D

B
C

E
F

E
F

E
F

Super-Cluster 1

Super-Cluster 2

Super-Cluster 3 Super-Cluster 4

Figure 5.3: A Better Packing Solution

99

Common approaches used for packing of other FPGA architectures are not suitable for

the super-clusters of the MB-FPGA architecture. VPACK [Betz97a], T-VPACK [Marq99],

RPACK [Bozo01], and T-RPACK [Bozo01] are all ineffective because, as discussed in Chap-

ter 2, they are all designed for purely cluster based FPGA architectures. Each algorithm can

only pack one LUT and one DFF at a time while completely ignoring the regularity of the

datapath circuits.

5.3 General Approach and Problem Definition

The input to the CNG packing algorithm is derived from the output of the EMC algo-

rithm as described in Chapter 4, which consists of a netli st of LUTs and DFFs. The netli st also

contains a description of the boundaries of each bit-sli ce in the input circuit. This netli st is first

processed to create BLEs by iterating through each of its bit-sli ces. Within a bit-sli ce, a LUT is

grouped with a DFF to form a BLE if the connection between the LUT and the DFF has the

following three properties:

1. The input of the DFF is directly connected to the output of the LUT.

2. The DFF is the only sink of the LUT output.

3. The DFF is in the same bit-slice as the LUT.

Otherwise, the LUT is assigned to a BLE by itself. Each DFF that cannot be grouped with any

LUTs based on the three properties above is also assigned to a BLE by itself. Note that prop-

erty 1 and 2 are the criteria that the more traditional packing algorithms, including VPACK, T-

VPACK, RPACK, and T-RPACK, use to group LUTs and DFFs into BLEs. Property 3 is

added to ensure the preservation of datapath regularity during the grouping process.

After the creation of BLEs, the task of the CNG packing algorithm is to assign each BLE

first to a super-cluster of the MB-FPGA and then to a cluster in the super-cluster. Each super-

cluster is assumed to have a fixed number, M, of clusters. Each cluster is assumed to contain a

100

f ixed number, I, of cluster inputs and a fixed number, N, of BLEs. The top priority of the

assignment is to preserve datapath regularity of the input circuit. When possible, the assign-

ment should also minimize the total number of super-clusters used (to minimize the imple-

mentation area) and the critical path delay of the input circuit.

5.4 Datapath Circuit Representation

Since the primary purpose of the CNG packing algorithm is to preserve datapath regular-

ity, an appropriate format for specifying datapath regularity must be defined for the packer.

The format used in this chapter consists of a graph, G(V,A), which is called the coarse-grain

node graph. The nodes, V, of G(V,A), represent the BLEs; and the edges, A, of G(V,A) repre-

sent the two-terminal connections that connect the BLEs together. Each node of G(V,A) can

contain either one or several identical BLEs; and the number of BLEs contained in the node is

called the granularity of the node. A node containing one BLE is called a fine-grain node; and

it represents a BLE that does not belong to any datapath component. A node containing more

than one BLE, on the other hand, is called a coarse-grain node; and each BLE in the node is

from a unique bit-slice of a datapath component.

An example of the coarse-grain node graph is shown in Figure 5.4, which represents the

datapath circuit shown in Figure 5.5. The graph consists of 11 interconnected nodes represent-

ing the 25 BLEs in the circuit. Nodes A through F are 3-bit wide coarse-grain nodes. A, B, C,

and D represent the corresponding BLEs in bit-sli ces 1, 2 and 3, while nodes E and F represent

BLEs labeled E and F in bit-slices 4 and 5, respectively. E’ and F’ are 2-bit wide coarse-grain

nodes. E’ represents the two BLEs labeled E in bit-slices 7 and 8, while F’ represents the BLEs

labeled F in the same two bit-sli ces. Finall y nodes G, H, and I are fine-grain nodes, which rep-

resent BLEs with the corresponding labels in the irregular logic part of the circuit.

101

D

F’

A

CB

F

E E’

G

H

I

1-Bit Wide

2-Bit Wide

3-Bit Wide

Fine-Grain

2-Bit Wide

3-Bit Wide

Node

Coarse-Grain
Node

Coarse-Grain
Node

Figure 5.4: Coarse-Grain Node Graph

A

B

C

D

E

F

G

H

I

E

F

E

F

E

F

E

F

A

B

C

D

A

B

C

D

Bit-Slice 1 Bit-Slice 2 Bit-Slice 3

Bit-Slice 4 Bit-Slice 5 Bit-Slice 6 Bit-Slice 7 Bit-Slice 8

Figure 5.5: Datapath Circuit Represented by the Coarse-Grain Node Graph

Irregular Logic

102

5.5 The CNG Pack ing Algorithm

The overall f low of the packing algorithm is shown in Figure 5.6. It consists of two major

steps. In the first step, initialization, the algorithm adjusts the granularity of the coarse-grain

node graph and performs timing analysis on the input circuit. In the second step, packing, the

algorithm groups nodes into super-clusters. Note that this algorithm is derived from the T-

VPACK algorithm [Marq99], which is modified to accommodate the unique features of the

MB-FPGA super-clusters. The basic principles described here, however, can also be employed

to transform other packing algorithms, including VPACK [Betz97a], RPACK [Bozo01], and

T-RPACK [Bozo01], into datapath-oriented algorithms.

5.5.1 Step 1: Initialization

Step 1, initiali zation, consists of two sub-steps. First, each coarse-grain node whose gran-

ularity value is greater than the granularity value of the target architecture (such as the M value

for the MB-FPGA presented in Chapter 3) is transformed into a set of nodes. Each node in the

set has a granularity value that is smaller than or equal to the granularity of the super-clusters.

Timing analysis is then performed on the input circuit. Each of these sub-steps is described in

turn.

5.5.1.1 Breaking Nodes

Given a coarse-grain node that is more than M bits wide, the breaking nodes function

starts at the most significant bit of the node and continuously groups M neighboring BLEs into

new coarse-grain nodes. If there are less than M BLEs remaining at the least significant end,

these remaining BLEs are grouped by themselves into a coarse-grain node that is less than M-

bit wide. These newly formed nodes are then used to substitute the original node in the coarse-

grain node graph.

103

5.5.1.2 Timing Analys is and Criticali ty Calculation

During timing analysis, the propagation delay and the expected arrival time of each BLE

input or output pin is first calculated for the input circuit. The slack of each net is then derived

from the delay and the expected arrival time metrics. For all of the above timing calculations,

Timing Analysis

Breaking Nodes

i = 0, j = 0

Create a new super-cluster

j = j + 1

Is j > N?

No

Yes

i = i + 1

Is i > M?
Yes

No

Are there anymore
nodes left?

Is position (i, j) occupied in
the super-cluster?

Yes

No

Exit

Find the most suitable node for position (i, j) in the super-cluster

Add the most suitable node to the super-cluster at position (i, j)

Yes

No

Step 1:

Step 2:

Initialization

Packing

Figure 5.6: Overview of the CNG Packing Algorithm

104

the logic delay of each BLE is set to be 1 time unit and the propagation delay of each two-ter-

minal connection that connects two BLEs together is set to be 10 time units. Finall y, the clock

cycle time of the input circuit is set to be the delay of the most critical path of the circuit.

These values were shown to generate good packing results for the T-VPACK algorithm in

[Marq99] from which the current algorithm is derived.

The final step of the timing analysis calculates the criti cali ty value for each net in the

input circuit as defined in [Marq99]. For completeness, the criticality definition is briefly sum-

marized here. The criti cali ty is used to represent the slack information in a normalized form.

The formula for calculating a criti cali ty value from a corresponding slack value is shown in

Equation 5.1. Here, the slack value is normali zed by dividing into the maximum slack of the

circuit, max_slack. The normali zed value is then subtracted from one to derive the correspond-

ing criticality value. For nets that are on the critical path of a circuit, whose slack value is zero,

the corresponding criti cali ty value is one. Less critical nets have smaller criticality values; and

the least critical nets, whose slack values are equal to max_slack, have a corresponding criti-

cality value of zero.

Equation 5.1

5.5.2 Step 2: Pack ing

During step 2, new super-clusters are created one at a time and each super-cluster is filled

with nodes from the coarse-grain node graph. Nodes are added to a super-cluster in a predeter-

mined order. Assuming that the ith BLE in the jth cluster is denoted by the pair of integers (i,

j), a node is added to position (1, 1) first. Then, as shown by Figure 5.7, nodes are sequentially

added to positions (2, 1), (3, 1), ..., (N, 1), (1, 2), (2, 2), ... (N, 2), ..., (1, M), (2, M), ... (N, M),

if these positions are not already occupied by BLEs.

criticali ty 1
slack

max_slack
-------------------------–=

105

This order of adding nodes to super-clusters guarantees that if no BLEs have been added

to position (i, j), BLE positions (i, j + 1), (i, j + 2), ..., (i, M) will also be unoccupied. To find

the most suitable node for BLE position (i, j), CNG first finds all nodes whose granularity is

less than M - j + 1. If (i, j) is equal to (1, 1), then the seed criticality function is used to select

the most suitable node from this group of nodes. Otherwise, the attraction criti cali ty function

is used instead. Once the most suitable node with a granularity value of m is determined, the

BLEs in this node are added to consecutive BLE positions (i, j), (i, j + 1), ..., (i, j + m - 1) with

the least significant BLE added to position (i, j) and the most significant BLE added to posi-

tion (i, j + m - 1).

Note that because of the carry network, not all BLE positions in an MB-FPGA cluster are

equivalent. This lack of equivalency is the reason why CNG must select nodes for each spe-

cific positions in a super-cluster. An example is shown in Figure 5.8. Here there are three

BLEs, A, B, and C, in a super-cluster. These BLEs are connected by a carry chain through the

carry network. In the figure, the BLE position (1, 1) is equivalent to the BLE position (3, 1);

therefore, BLE A can be moved to position (3, 1) provided that BLEs B and C are also moved

to position (3, 2) and (3, 3) respectively. However, BLE A cannot be moved to position (2, 1)

or (4, 1) since these two positions are not equivalent to BLE position (1, 1) due to the differ-

ence in their carry connections.

(1,1)
(2,1)
(3,1)
(4,1)

(1,2)
(2,2)
(3,2)
(4,2)

(1,3)
(2,3)
(3,3)
(4,3)

1
2
3
4

5
6
7
8

9
10
11
12

BLE Position
Index

Order for Adding Nodes to Super-Clusters

Figure 5.7: Order for Filli ng Super-Cluster with N = 4, M = 3

106

The remainder of this section describes the two criticality functions, including the seed

criticality function and the attraction criticality function, which are used in the packing pro-

cess. Each of these functions is described in detail i n turn.

5.5.2.1 Calculating Seed Criticali ty

The first node added to a super-cluster is called a seed. This seed node is selected using a

metric called the seed criticality metric, which measures the maximum possible speed

improvement of building super-clusters based on one particular node as the seed node. Imple-

menting a seed node in a super-cluster by itself does not necessarily improve the performance

of a circuit; however, when a subsequent node, A, is added to the same super-cluster, many

two-terminal connections that connect the seed node and node A together can then be imple-

mented in the local routing networks or the carry network of the super-cluster. Because these

networks are inside the super-clusters, they are inherently much faster than the global routing

network. Consequently, the performance of the circuit is improved. Note that each of the two-

terminal connections that can be implemented inside the super-cluster is called a potential

local connections of the seed node.

Potential local connections can be identified using a pattern matching process. This pro-

cess first labels all the BLEs in each node consecutively from 1 to m, where m is the granular-

ity of the node. The BLE at the least significant position is labeled 1; and the BLE at the most

significant position is labeled m. Potential local connections are then identif ied by matching

A (1,1)
(2,1)
(3,1)
(4,1)

B (1,2)
(2,2)
(3,2)
(4,2)

C (1,3)
(2,3)
(3,3)
(4,3)

Figure 5.8: Equ ivalence of BLEs in Clusters

107

each two-terminal connection of the seed node against the four topologies shown in Figure

5.9. If the connection matches one of the topology, then it is a potential local connection. Oth-

erwise it is not.

Figure 5.9a shows two two-terminal connections in the configuration of topology 1. One

connection connects BLE 1 to BLE 2, while the other connection connects BLE 2 and BLE 3

together. In general, in topology 1, both the source BLE and the sink BLE of the two-terminal

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Seed Node

Seed Node

Seed Node

Seed Node

Topology
Corresponding
Super-Cluster
Connections

(a) Two Two-Terminal Connections in Topology 1 Configuration

(b) Two Two-Terminal Connections in Topology 2 Configuration

(c) Three Two-Terminal Connections in Topology 3 Configuration

(d) Three Two-Terminal Connections in Topology 4 Configuration

Figure 5.9: Topo logy for Identifying Potential Local Conn ection

108

connection is in the seed node. The index of the source BLE is one less than the index of the

sink BLE. As shown by Figure 5.9a, topology 1 connections can be implemented in the carry

networks of the super-clusters.

Figure 5.9b and Figure 5.9c shows connections in topology 2 and topology 3 configura-

tions, respectively. As shown, in topologies 2 and 3, the source and the sink BLEs exist in two

distinct nodes; and for either topology 2 or 3 the source BLE is always in the seed node. Fur-

thermore, for topology 2, the index of the source BLE is one less than the index of the sink

BLE. For topology 3, on the other hand, the source BLE and the seed BLE have the same

index. Topology 2 can be implemented in the carry networks; and topology 3 is suitable for

implementation in the local routing networks of the super-clusters. Finally, topology 4 is

almost identical to topology 3 with the exception that the sink BLE is in the seed node.

Equation 5.2

The formula for calculating seed criticality is shown in Equation 5.2. In the equation, the

function max(X) returns the maximum value in a set, X, of real numbers. Function cnt(X),

returns the number of elements that are equal to max(X) in the set X. S(n) is the complete col-

lection of all the net criti cali ty values from all the potential local connections of node n.

The function, max(S(n)), corresponds to the maximum speed improvement achievable

by implementing n as a seed node. cnt(S(n)) is a tie breaker; and it counts the number of poten-

tial local connections that can achieve the maximum speed improvement. Note that max(S(n))

and cnt(S(n)) are analogous to the base seed criticalit y and the number of path affected metrics

used in [Marq99], respectively. These functions, however, are more general in nature and are

appli cable to a wider range of FPGA clustering architectures than the fully connected topology

assumed by [Marq99].

seed_criticality n() max S n()() ε cnt× S n()() ε2 d n()×+ +=

ε 1«()

109

The metric distance to source, d(n), on the other hand, is an unmodified version of the

same metric defined in [Marq99], which is described in detail in [Marq99]. Nodes with the

same max(S(n)) values usually are connected together by a single criti cal path. d(n) measures

the order of these nodes along the critical path. Everything else being equal, the node that is

the furthest from the source of the critical path is given the highest priority for implementation

as a seed node. This allows the packing process to start packing from one end of the critical

path instead of from the middle. As suggest by the study done in [Marq99], this packing order

minimizes the overall critical path delay of a circuit.

5.5.2.2 Calculating Att raction Criticality

Once a seed is added to a super-cluster, CNG fills the super-cluster based on the attrac-

tion criticality metric. Each node in the coarse-grain node graph has an attraction criti cali ty

metric as shown in Equation 5.3. The metric consists of four parts: the base seed criticality,

B(n), accounts for the performance improvement of implementing a node in a super-cluster;

shared I/O count, C(n), accounts for the number of additional cluster I/Os that is needed to

implement a node in a super-cluster; and finally secondary attraction criticality, Bp(n), and

common I/O count, Cp(n), account for the closeness of the placement resulting from adding a

node to a super-cluster. These four parts are weighted and summed into the attraction critical-

ity metric. Each of these parts are described in turn.

Equation 5.3

attraction_criticality n()=

α β B n() 1 β–()+× C n()
Pmax
------------×

 +×

1 α–() τ Bp× n() 1 τ–()
Cp n()

M Pmax×
-----------------------×+

 ×

110

Base Seed Criticality

As shown in Figure 5.10, after a node is added to a super-cluster, the connections

between the node and the super-cluster can be classified into two types. The first type consists

of connections that can be implemented in the local routing networks of the clusters or the

carry network that connects the clusters together. The second type consists of connections that

have to be routed through the global routing network. The implementation of the first type of

connections often results in increased performance; and this increase in performance is mea-

sured by the base attraction criti cali ty in Equation 5.3. It is equal to the maximum criti cali ty

among all type one connections in addition to all internal connections of the node that can be

implemented in the carry network.

Secondary Attraction Criticality

Adding a node to a super-cluster also makes all BLEs in the node physically closer to the

BLEs in the super-cluster. This physical closeness makes type two connections potentially

much faster than any connection that connects two separate super-clusters. The secondary

attraction criti cali ty is used to measure this speed up. It is equal to the maximum criti cali ty

among all type two connections in addition to all internal connections of the node that must be

routed through the global routing network.

1,1
2,1

1,3

3,1
4,1

1,2
2,2
3,2
4,2

2,3
3,3
4,3

BLE BLE

Occupied
BLE

Position
Unoccupied

BLE
Position

Type 1
Connection

Type 2
Connection

Figure 5.10: Add ing a Node to a Super-Cluster at Position (4,1)

111

Shared I/O Count

Since cluster inputs are limited routing resources, it is important to minimize the usage of

cluster inputs when adding nodes to a super-cluster. As described in [Marq99], it is preferable

to choose BLEs with the following three types of I/Os for a cluster:

1. a BLE input that is connected to the same net as one of the cluster inputs

2. a BLE input that is connected to one of the cluster outputs

3. a BLE output that is connected to a cluster input

When adding a BLE with type 1 or 2 inputs to a cluster, the duplicated BLE inputs do not

require additional cluster inputs. Adding a BLE with a type 3 output to a cluster eliminates the

cluster input that is connected to the output of the BLE. The shared I/O count metric measures

the I/O commonalities between a node and a super-cluster. It is equal to the total number of the

three types of BLE I/Os in a node when each BLE is matched with its corresponding cluster.

Note that, in Equation 5.3, Pmax is defined to be the maximum possible value of the shared I/O

count metric. It is used in the equation to normalize the shared I/O count to a value that is

between 0 and 1.

Common I/O Count

Adding a node to a super-cluster might increase the number of common I/O signals

shared by various clusters of a super-cluster. As shown in Figure 5.11, for two clusters from

the same super-cluster, routing an input signal that is shared by the two clusters usually

requires less resources than routing two distinct inputs. Similarly, routing the output of one

cluster to another requires less routing resources if both clusters are in the same super-cluster.

The common I/O count is used to account for this increase in routing efficiency. It is analogous

to the shared I/O count metric. However, instead of measuring the number of I/O signals that

are in common between each BLE and its corresponding cluster, the common I/O count is

112

equal to the total number of BLE I/Os in a node that is in common with all the I/Os of a super-

cluster excluding the signals that have already been counted by the shared I/O count metric.

Note that for all experiments performed in this thesis, are set to be 0.85,

0.75, and 0.75 respectively. These values are experimentall y shown to generate good packing

results when the CNG algorithm is used to pack the 15 benchmark circuits from the Pico-Java

processor [Sun99].

5.6 Results

CNG has been used to pack several benchmark circuits into various super-cluster archi-

tectures of MB-FPGA. The packing results shown in this section are based on the fifteen data-

path circuits from the Pico-Java Processor from Sun Microsystems [Sun99]. Each circuit is

first synthesized into several granularity values using the EMC algorithm as described in

Chapter 4. Table 1 gives the name, size (number of BLEs) of each circuit for a given granular-

ity value. For each synthesis granularity, the synthesized circuits are packed into a correspond-

ing super-cluster architecture with the same granularity value. The detailed structure of these

super-cluster architectures is described in detail in the next sub-section. The packing results

for regularity, area, and performance are then described in turn.

Figure 5.11: Common Inpu ts Between Clusters in a Super-Cluster

Two clusters sharing
a common input
requires only one

track to route.

Two clusters with
two distinct inputs

requires two
tracks to route.

α β and τ, ,

113

5.6.1 Super-Cluster Architectures

The overall structure of a super-cluster used in the tests of the CNG algorithm contains a

variable number, M, of clusters, where M is the granularity of the MB-FPGA architecture.

Each cluster of the super-cluster contains 10 (I) input pins, a fully connected local routing net-

work, and 4 (N) BLEs. An I value of 10 and an N value of 4 were chosen because they were

shown to be the most efficient for the clusters of conventional FPGA architectures in

[Betz97b] [Betz98] [Betz99a]. Several values of M were investigated. These values are the

same as the ones shown in Table 1, namely 1, 2, 4, 8, 12, 16, 20, 24, 28, and 32.

Circuit Name
Number of BLEs Obtained by Each Synthesis Granu larity

1 2 4 8 12 16 20 24 28 32

code_seq_dp 362 364 364 364 364 364 364 364 364 364

dcu_dpath 958 962 966 974 982 974 978 982 986 990

ex_dpath 2823 2747 2649 2719 2947 2955 2942 2938 2918 2938

expon ent 467 517 517 539 567 565 565 565 565 565

icu_dpath 3254 3237 3245 3245 3273 3277 3281 3285 3289 3294

imdr_dpath 1286 1268 1255 1286 1288 1283 1291 1296 1294 1297

incmod 870 862 867 940 948 1005 1000 995 993 1021

mantissa_dp 912 919 942 966 971 982 983 983 977 983

multmod_dp 1602 1636 1634 1636 1636 1636 1653 1635 1637 1637

pipe_dpath 452 499 452 503 503 501 483 503 503 501

prils_dp 363 396 393 385 385 393 389 385 385 409

rsadd_dp 350 314 313 305 305 305 305 305 305 305

smu_dpath 561 557 557 560 563 561 543 563 563 561

ucode_dat 1264 1273 1304 1278 1282 1286 1290 1294 1298 1301

ucode_reg 78 80 82 86 86 94 90 86 106 110

Table 1: Experimental Circuits

114

5.6.2 Regularity Results

Two yardsticks are used to measure the amount of regularity preserved by the CNG

packer. The first yardstick measures the percentage of BLEs in all datapath components of

width M, where M is the number of clusters in a super-cluster. The second yardstick measures

the percentage of BLEs in all datapath components which are at least 2-bit wide. Figure 5.12

plots these two metrics against the granularity of the target super-clusters over all benchmark

circuits. As shown, over 85% of BLEs are in at least 2-bit wide datapath components regard-

less of the granularity of the target super-clusters. The percentage of BLEs in M-bit wide data-

path components drops from over 90% when M is equal to 2 to slightly over 40% when M is

equal to 20. The metric then increases again to slightly less than 55% when M is further

increased to 32. (Note that the underlying cause of the variation of this metric is discussed in

detail in Chapter 7.) These are excellent results especiall y considering that the conventional

packers preserve li ttle regularity. Note that since the packer does not break up coarse-grain

nodes that represent datapath components when the synthesis granularity and the packing

granularity are equal, any logic regularity from the synthesis process is completely preserved

by the packer in these experiments.

5.6.3 Area Results

One penalty that the CNG algorithm pays in preserving datapath regularity is in area

inflation. The average area consumed by super-clusters over all the benchmark circuits is

shown in Figure 5.13, which plots the arithmetic average across the fifteen benchmark circuits

against the granularity of the target super-clusters. Note that the area of each super-cluster is

measured using the minimum-width transistor area as defined in [Betz99a], which was dis-

cussed in detail i n Chapter 2. As shown, when M is equal to 1, the packer does not preserve

any datapath regularity and is able to achieve the lowest area. The area slowly increases when

115

M is increased from 1 to 4. Then it rises quickly when M is increased from 4 to 12. The rate of

increase then slows when M is further increased to 32. Overall the maximum area inflation

occurs when M is equal to 32. Here the area is 18% larger than the area obtained when no data-

path regularity was preserved (when M is equal to 1).

The reason for this increase in area is that as the granularity of packing increases, the

packer has to deal with an increasing variety of datapath width. Geometrically, it is much

40%

50%

60%

70%

80%

90%

100%

Percentage of Regular BLEs Preserved

2 4 8 12 16 20 24 28 32

Granularity (M)

Width > 1

Width = M

Figure 5.12: Regu larity vs. Granu larity

30%

Circuit Area in
Minimum-Width Transistor Area (x106)

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Granularity (M)

1 2 4 8 12 16 20 24 28 32

Figure 5.13: Area vs. Granu larity

116

harder to fit datapath components with a large variety of width into the structure of the super-

clusters. Furthermore, at high granularity values, one super-cluster contains many more BLEs

than super-clusters with lower granularity values. This reduces the number of super-clusters

needed to pack a circuit; however, it also increases the number of wasted BLEs if a super-clus-

ter is only partiall y fil led.

Overall , the data in Figure 5.13 shows that the granularity values of 2, 4, and 8 represent

a reasonable trade-off between regularity and area inflation. At these values, the packer pre-

serves a large amount of regularity while only giving up between 1% to 6% of area.

5.6.4 Performance Results

The CNG packing results show that the preservation of regularity benefits the overall

logic performance of datapath circuits when the carry networks is significantly faster than the

local routing networks. This is true for the MB-FPGA architecture, since carry networks are

more directly connected to the BLE inputs as compared to the local routing networks. The

same is true for many commercial FPGAs where the speed of the carry networks is much

faster than local routing [Alte02] [Xil i02]. If the speed of the carry networks is similar to the

speed of the local routing networks, on the other hand, the logic performance of the circuits

degrades when regularity is preserved.

The geometric average of logic delay over the fifteen benchmark circuits are shown in

Figure 5.14. Note that to calculate logic delay, the delay of the global routing network is set to

be zero. There are two curves in the figure. The first curve labeled slow carry assumes that

each two-terminal connection in both the local routing networks and the carry networks have 1

time unit of delay. The logic delay through a BLE is also assumed to be 1 time unit. The sec-

ond curve labeled fast carry, on the other hand, assumes that the carry networks are much

faster than the local routing networks. A connection in the carry networks is assumed to have

117

0.01 time units of delay; and a connection in the local routing networks is assumed to have 1

time unit of delay. The logic delay through a BLE is still assumed to be 1 time unit.

The slow carry curve increases from 28.2 time units to slightly over 32 time units as M is

increased from 1 to 8. The curve then decreases to around 29 time units as M is further

increased to 32. The fast carry curve, on the other hand, decreases significantly from 28.2 to

24.3 when M is increased from 1 to 4. As M is further increased to 32, the curve stays within

the range of 24 to 25 time units. These data demonstrate the benefit of identifying regularity

and the carry chains associated with it for architectures with fast carry connections. For the

benchmark circuits, a speed improvement around 14% is achieved for fast carry architectures.

If the carry connections are not significantly faster than the connections in the local routing

networks, however, there is a speed penalty of around 15% for the benchmark circuits.

5.7 Conclusions and Future Work

This chapter has described a new kind of packing algorithm that is designed specifically

for preserving datapath regularity. The algorithm treats several BLEs, each from a unique bit-

33

32

31

30

29

28

27

26

25

24

23
1 2 4 8 12 16 20 24 28 32

Granularity (M)

Logic Delay (in time units of delay)

Fast Carry

Slow Carry

Figure 5.14: Delay vs. Granu larity

118

sli ce of a datapath, as a single group, and considers the packing options of the entire group at a

time. The algorithm also uses various techniques to accommodate the special architectural fea-

tures of the MB-FPGA architecture. The algorithm is able to preserve a large amount of datap-

ath regularity and achieves good performance results while incurring a small amount of area

inflation in logic area.

Future research should try to further reduce the logic area inflation of the algorithm. It

also should find ways of further improving the performance of the packed circuits.

119

6 A Datapath-Oriented Routing Algorithm

6.1 Introduction

This chapter presents a new datapath-oriented routing algorithm that has been designed

specifically for the MB-FPGA routing architecture described in Chapter 3. The algorithm is

unique in that it balances the usage of conventional fine-grain routing tracks with datapath-ori-

ented CMS routing tracks, allowing the MB-FPGA architecture to achieve maximum area sav-

ings over a wide range of datapath circuits. This algorithm and software is used in Chapter 7

and Chapter 8 to investigate the effect of CMS routing on the area-eff iciency of FPGAs.

The routing problem for MB-FPGA is more diff icult than classic routing because there

are two distinct types of routing tracks and each type is designed for a specific purpose. The

CMS routing tracks are primarily designed for routing a group of regularly structured connec-

tions from a common source to a common sink; the fine-grain routing tracks are designed to

route irregular connections that cannot be grouped into any regular groups. It is usually benefi-

cial to use each type of routing track for its intended purpose; however, when one type of rout-

ing track is over-subscribed, it might be beneficial to route the intended connections through

the other type of routing track. As a result, groups of regular connections and individual irreg-

ular connections might compete for the same type of routing track. Resolving such competi-

tion is essential to achieving 100 percent routing completion. The algorithm described here,

called the Coarse-Grain Resource (CGR) routing algorithm for MB-FPGA, addresses the issue

of the balanced use of routing tracks by carefull y considering the usage of each type of track

and compensating the overused type with the under-used type. The algorithm also has the abil-

ity to optimize the routing delays of time-critical connections, by assigning the fastest paths to

the connections that need them the most.

120

CGR has been used to obtain excellent routing results for the datapath circuits from the

Pico-Java processor. The results show that CGR is able to route relatively large MB-FPGA

architectures containing various proportions of CMS routing tracks; and it is able to effectively

translate the regularity in inter-super-cluster connectivity into area savings.

This chapter is organized as follows: Section 6.2 motivates the development of the datap-

ath-oriented router; Section 6.3 describes the placement algorithm that is used in conjunction

with the CGR router; Section 6.4 defines the routing problem; Section 6.5 presents the model

used to represent MB-FPGA architectures containing CMS routing tracks; Section 6.6

describes the CGR routing algorithm in detail; Section 6.7 presents the results from the tests of

the router; and Section 6.8 gives concluding remarks.

6.2 Motivation

A key problem in datapath-oriented routing of MB-FPGA is to decide if a group of regu-

lar connections should be routed through the CMS routing tracks or the fine-grain routing

tracks. This will be il lustrated with a contrived example shown in Figure 6.1. It shows three

views of the same section of an FPGA. The first view gives the routing options for a group of

four regular connections that connect the super-cluster on the top-left corner to the super-clus-

ter on the bottom-right corner of the figure. These four connections are collectively labelled as

connection bus A. The second and the third view in the figure give the routing options for two

individual connections labelled B and C respectively. In the figure, a routing switch is shown

as an X, a wiring segment as a dotted line, and a possible route as a solid line. There are nine

wire segments in the routing channel. Wire segments 1 through 4 are from a group of four

CMS routing tracks. These four tracks form a single CMS routing bus by sharing a single set

of configuration memory. Wire segments 5 through 9 are from five independent fine-grain

routing tracks.

121

Now, assume a router that always routes groups of regular connections through the CMS

routing tracks. Since wire segments 1, 2, 3, and 4 are the only CMS tracks, they must be

selected for connection bus A. Then one of the connections B and C cannot be routed because

they both rely on the same single remaining option, namely the wire segment numbered 5.

Under these circumstances, a more flexible router would choose the fine-grain wire segment 6,

7, 8, and 9 for connection bus A. Connection B then can be routed through wire segment 1 of

the CMS routing tracks. Since wire segment 2, 3, and 4 share the same set of configuration

memory as wire segment 1, they also become unavailable to route the remaining connection.

Finally connection C can be routed through wire segment 5. Although this is a simple exam-

ple, it il lustrates the essence of the problems that occur because of the differentiation of rout-

ing tracks into fine-grain tracks and CMS tracks.

Common approaches used for routing in other FPGA architectures are not suitable for

MB-FPGA. Maze Router [Lee61], CGE [Brow92a] [Brow92b], Pathfinder [Ebel95], VPR

[Betz99a] [Swar98], and NC [Chan00] are ineffective because, as shown in Chapter 2, none of

them is equipped to deal with the CMS routing tracks. Each algorithm assumes the routing

SC

SC

SC

SCSCSC

Options for Connection Bus A Options for Connection B Options for Connection C

SC SC

SCSC

SCSC

Figure 6.1: Example of Contention Between CMS and F ine-Grain Nets

1
2
3
4

5

6
7
8
9

1
2
3
4

5

6
7
8
9

1
2
3
4

5

6
7
8
9

SC - Super-Cluster

View 1 View 2 View 3

memory
sharing
switches

122

channels contain only fine-grain routing tracks, which do not share any configuration memory;

and each algorithm completely ignores datapath regularity.

6.3 The MB-FPGA Placer

The input to the CGR routing algorithm is derived from the output of the CNG packing

algorithm as described in Chapter 5. It consists of a netli st of super-clusters. These super-clus-

ters are first placed by a datapath-oriented placer that employs the simulated annealing algo-

rithm. The placer, called the MB-FPGA placer, is a modified version of the VPR placer

[Betz99a] [Marq00a] as described in Chapter 2. It uses exactly the same annealing schedule

and the same cost functions as the ones used by the VPR placer. It differs from the VPR placer

in how clusters are moved during the annealing process. This difference arises from the need

of preserving datapath regularity.

Like the VPR placer, the MB-FPGA placer first assigns each super-cluster to a random

location. Then it i teratively improves the initial placement by moving either clusters or super-

clusters. This ability of the MB-FPGA placer to move logic blocks from two different hierar-

chies — the cluster level and the super-cluster level — constitutes the major difference

between it and the VPR placer, which only can move a single hierarchical level of logic

blocks, namely the clusters. Moving two levels of logic blocks gives the MB-FPGA placer the

unique abili ty of concurrently preserving datapath regularity, by moving individual super-clus-

ters that contain datapath components, as well as maximizing placement eff iciency when pos-

sible, by moving individual clusters residing in super-clusters that contain only irregular logic.

To create a move, an initial cluster, is first randomly selected. If the initial cluster is a part

of a datapath, the entire super-cluster containing the cluster is moved to a new, randomly

selected, location. If this location is already occupied by another super-cluster, this super-clus-

ter is then moved to the original location containing the initial cluster. If the initial cluster is

123

not a part of a datapath, another cluster position is randomly selected. If this position is unoc-

cupied, the initial cluster is moved to the position. Otherwise, the cluster occupying the posi-

tion (called the target cluster) is swapped with the initial cluster if the target cluster is not a part

of any datapath. If the target cluster is a part of a datapath, the super-cluster containing the ini-

tial cluster is swapped with the super-cluster containing the target cluster. Finally, the move is

evaluated using the cost functions, and is either accepted or rejected based on the evaluation

result and the annealing schedule.

6.4 General Approach and Problem Definition

After the placement, the routing problem is transformed into the following: for each two

point connection, the router must first identify if the connection belongs to any group of regu-

lar connections. It then should choose specific routing resources to implement the two point

connection. The algorithm should prefer CMS routing tracks if the connection is a part of a

group of regular connections. Otherwise, fine-grain routing tracks should be used when avail-

able.

The CGR router takes a routing resource graph and a netli st as its input. The routing

resource graph represents a target MB-FPGA architecture; and the netlist represents a circuit

of interconnected super-clusters in the target architecture. The router then finds a feasible

(defined below) routing solution in the routing resource graph for each net in the netli st. The

solution should minimize the delay of input circuit, in terms of minimizing the maximum

propagation time of all signals in the placed and routed input netli st, as well as the amount of

resources consumed by the input netlist.

A routing solution is defined to be a collection of interconnected nodes and edges that

contains the source node and all the sink nodes of a net. To be feasible, the occupancy value —

the total number of times that a node appears in all routing solutions — of each node in the

124

routing solution must be less than or equal to its capacity value. Otherwise, the routing solu-

tion is said to be infeasible. A net is said to be routed, once a routing solution (either feasible

or infeasible) is found.

6.5 MB-FPGA Architectural Representation

Since the primary purpose of the CGR routing algorithm is to provide a means of investi-

gating the datapath-oriented routing architecture of MB-FPGA, an appropriate model must be

defined to capture the unique features of MB-FPGA. The model that has been chosen is a rout-

ing resource graph G(V,A) consisting of a set of nodes, V, connected by edges A. Note that

this model is similar to the routing resource graph of [Betz99a]; however, it is considerably

more complex because it models the multi -bit logic, CMS routing tracks, and CMS switches,

as well as the fine-grain resources. In the CGR routing resource graph, each node, V, repre-

sents a piece of routing resource. There are seven types of nodes, representing a signal source

(called a source node), a signal sink (called a sink node), a super-cluster input pin, a super-

cluster output pin, an input pin of an I/O block, an output pin of an I/O block, or a routing track

(either a CMS track or a fine-grain track). Each edge in the routing resource graph represents a

programmable routing switch.

Each node of the routing resource graph is associated with a capacity value. This value

represents the maximum number of times that the routing resource represented by the node

can be used in the final routing solution. For each pin or each routing track, this capacity value

is one since each of these routing resources can only be legally used once. For each source or

sink node, this capacity value is a positive number whose value depends on the equivalency of

super-cluster output or input pins [Betz99a]. In general, if a source (sink) is connected to X

super-cluster output (input) pins, these pins must be logically equivalent; and the capacity of

the source (sink) is equal to X.

125

A super-cluster containing M clusters is modeled using M source nodes and M sink

nodes. Each cluster is assigned one source node and one sink node. A source node is con-

nected to all the output pins of its cluster; and its capacity is equal to the total number of BLEs

(or output pins) in the cluster. A sink node is connected to all the input pins of its cluster; and

its capacity is equal to the total number of cluster input pins.

Some of the nodes in a routing resource graph are grouped into node-buses. A node-bus

can be M source nodes or M sink nodes of a super-cluster. It also can be M cluster input or out-

put pins in an input bus or output bus, M routing tracks in a routing bus, M pad input pins or

pad output pins in a pad-input bus or pad-output bus. (Recall that all the above bus types are

defined in Chapter 3.) Edges connected to a node-bus are similarly grouped into edge-buses

with each bus containing M edges. Each edge-bus is associated with a flag indicating if the

switches in the bus share a single set of configuration memory. When the configuration mem-

ory is shared, all M switches in the bus must be turned on and off at the same time. When the

state of these memory sharing switches are changed, the occupancy values of all the nodes

connected immediately downstream to these switches must be increased and decreased simul-

taneously.

An example of the routing resource graph and its corresponding routing resources is

shown in Figure 6.2. The super-cluster shown in the figure contains two clusters, meaning M =

2. Each cluster contains two input pins, two output pins, and is connected to a neighboring

routing channel containing two fine-grain routing track and a two-bit wide routing bus. Also

noted in the figure are the logic capacity of each node, the grouping of the node-buses, and the

grouping of the edge-buses.

126

6.6 The CGR Routing Algorithm

The overall flow of the CGR routing algorithm is shown in Figure 6.3. It consists of three

major steps. In step 1, initialization, the algorithm identifies two types of bus structures — the

pin-buses and the net-buses — in the input netli st. (These buses are defined in detail in Section

Fine-Grain

Fine-Grain

CMS

Routing Track #1

Routing Track #2

Routing Bus

E

F G

H I

J K

L

M

N

O
P

SRAM

Buffer

Cluster
Super-Cluster

A B C D

E F G H I J K L

M N O P

Cluster Cluster

Source Nodes (Capacity = 2 / Node): B, D
Sink Nodes (Capacity = 2 / Node): A, C
Input Pins (Capacity = 1 / Node): E, F, I, J
Output Pins (Capacity = 1 / Node): G, H, K, L
Fine-Grain Routing Tracks (Capacity = 1 / Node): M, N
CMS Routing Tracks (Capacity = 1 / Node): {O, P}
Node-Buses: {A, C}; {B, D}; {E, I}, {F,J}; {G, K}; {H, L}; {O, P}
Edge-Buses without Memory Sharing: {E->A, I->C}; {F->A, J->C}; {B->G, D->K};

Figure 6.2: An Example Routing Resource Graph

(a) Super-Cluster

(b) Routing Resource Graph

 {B->H, D->L}; {O->E, P->I}
Edge-Buses with Memory Sharing: {H->O, L->P}

127

6.6.1.) Routing is then performed in step 2 where buses identified in step 1 are given priority

for routing through the CMS routing tracks. In step 3, various cost metrics are updated accord-

ing to the routing results from step 2. Once step 3 is completed, each net is reset to its unrouted

state; and step 2 and step 3 are repeated in a new routing iteration. The repetition continuous

until the exit condition is met. Note that the CGR algorithm described here is built upon the

VPR routing algorithm as described in [Betz99a]; nevertheless, the basic principles presented

here can also be used to transform other conventional routing algorithms into datapath-ori-

ented routers. (VPR [Betz99a] is selected as the basis of this work over the original Pathfinder

[Elbe95] router mainly due to its extensive support for FPGA architectural evaluation and

modeling, which the Pathfinder router lacks.)

6.6.1 Step 1: Initialization

During step 1, CGR identifies inter-super-cluster connections that can be eff iciently

routed through the CMS routing tracks. For each input netlist, the initialization step first clas-

sifies all inter-super-cluster connections into two types of two-terminal connections (defined

as a logical connection containing one super-cluster output pin and one super-cluster input

pin) — groups of coarse-grain two-terminal connections called the pin-buses and individual

fine-grain two-terminal connections. Then inter-super-cluster nets are similarly classified into

groups of coarse-grain nets called net-buses and individual fine-grain nets. The amount of

two-terminal connections or nets captured by these buses is a function of the amount of datap-

ath regularity presented in the input netlist.

A pin-bus is a group of M two-terminal connections with the following four properties:

1. M is equal to the granularity of the MB-FPGA.

2. All connections must originate from the same source super-cluster and terminate at the

same sink super-cluster.

128

3. Each two-terminal connection must have a unique source cluster and a unique sink cluster.

Identify pin-buses and net-buses in the input netlist.

Add all nets that are not in net-buses to the unrouted-nets list.

i = 1

Is i <= the number of

Yes

No

Route net-bus(i).

Are all nets in net-bus(i) Yes

No

Add nets with unrouted connections to the unrouted-nets list.

i = i + 1

i = 1

Is i <= the number of nets

Yes

No

Route net(i) in the unrouted-nets list.

i = i + 1

Is exit condition met?

Yes

No

Exit

Update metrics; rip up nets; and empty the unrouted-nets list.

Step 1:

Step 2:

Step 3:

in the unrouted-nets list?

completely routed?

net-buses in the input netlist?

Initialization

Routing
Nets

Updating
Metrics

Figure 6.3: Overview of the CGR Routing Algorithm

129

4. For each two-terminal connection, its source cluster must have the same index as its sink

cluster.

An example of a pin-bus is il lustrated in Figure 6.4.

Routing algorithms are most eff icient when they are used to route a net, which contains a

source and all the sinks of the source, at a time instead of individual two-terminal connections.

To increase routing eff iciency, pin-buses are grouped into net-buses. A net-bus is defined to be

a group of M nets that contains at least one pin-bus, where M is equal to the granularity of the

MB-FPGA. Note that a net-bus may also contain fine-grain two-terminal connections in addi-

tion to pin-buses. An example of net-buses is shown in Figure 6.5.

A Pin-Bus

Figure 6.4: A Pin-Bus

Figure 6.5: A Net-Bus Containing Net A, B, and C

Pin-Bus #1 Pin-Bus #2

Two-Terminal
connections that

do not belong
to any pin-buses

Net A Net B Net C

130

6.6.2 Step 2: Routing Nets

After initialization, CGR first iterates through all the net-buses in the input netli st and

routes the pin-buses through the CMS routing tracks. For each pin-bus, the algorithm also

routes the first bit of the bus through the fine-grain routing tracks. The cost of routing the first

bit is then compared with the cost of routing the entire pin-bus. When the CMS tracks are

much more congested than the fine-grain tracks, the cost of routing the pin-bus through the

CMS tracks will be higher than the cost of routing the first bit through the fine-grain tracks. In

this case, the solution of routing the pin-bus through the CMS tracks is rejected. Instead each

connection in the pin-bus is routed individually as described in the next two paragraphs. On

the other hand, if using the CMS routing tracks incurs lower cost, the solution of routing the

pin-bus through the CMS tracks is accepted.

During the routing of the net-buses, an unrouted-nets li st is constructed. It contains three

types of nets including all the fine-grain nets in the input netlist, nets in net-buses that contain

fine-grain two-terminal connections, and net-buses containing pin-buses that are too expensive

to be routed through the CMS routing tracks.

After iterating through the net-buses, CGR goes through the unrouted-nets li st and routes

each individual net in the li st. Here only the unrouted connections in a net are routed. Again, a

net is routed through both the fine-grain and the CMS routing tracks. The cost of using the

fine-grain tracks is compared against the cost of using the CMS tracks. The lower cost option

is always chosen as the final routing solution.

Note that as in other congestion-negotiation routing algorithms, each net-bus and each

individual net is routed using the maze expansion algorithm, and the routing solutions are

guided by the expansion cost. This cost is a combination of the congestion cost and the delay

131

cost. It is also a function of the topology of the expansion. The congestion cost, delay cost, and

the expansion cost are described below in more detail .

6.6.2.1 Congestion Cost

The CGR algorithm uses the same congestion cost function as the VPR router [Betz99a].

The VPR congestion cost function is briefly summarized here for completeness. A congestion

cost is assigned to each node, n, in the routing resource graph. As shown in Equation 6.1, this

congestion cost is a product of the base cost, b(n), the current congestion cost, p(n), and the

historic congestion cost, h(n). The base cost, b(n), is a function of the routing resource type.

Different routing resources are assigned different base cost values as shown in Table 6.1.

Equation 6.1

The current congestion cost, p(n), is defined to be a function of the difference between

the current occupancy of the node and the capacity of the node as shown in Equation 6.2. The

scaling factor, pfac, in Equation 6.2 is called the routing schedule of the router. The initial

value of pfac is a small (< 0.5), so during early iterations, the current congestion of the node is

a small part of the total cost of the node. This allows each node to be used more than its capac-

ity allows. The value of pfac is increased by a factor of 1.5 to 2 during each routing iteration.

So during the latter iterations, the current congestion cost becomes a significant factor in deter-

Routing Resource b(n)

Routing track 1

Super-Cluster Outpu t pin 1

Super-Cluster inpu t pin 0.95

Source 1

Sink 0

Table 6.1: b(n) Values for Each Type of Routing Resource

congestion_cost n() b n() p n() h n()××=

132

mining the total cost of a node. Consequently, at latter routing iterations, once a node reaches

its full capacity, it no longer can be used in the routing solutions of other nets.

Equation 6.2

The historic congestion cost, h(n), is an accumulation of the past congestion values; and

it is defined by Equation 6.3. For the first iteration, I = 1, the historic congestion, h(n)1 is set to

be one. For each subsequent iteration, the difference between occupancy and capacity is scaled

by a constant value, hfac, and is added to the historic congestion cost, h(n)I-1, from the previ-

ous iteration to derive the current historic congestion cost, h(n)I. The usual value of hfac is

between 0.2 and 1.

Equation 6.3

6.6.2.2 Optimizing Circuit Delay

As with the VPR routing algorithm, CGR calculates the delay of each net using the

Elmore delay model. For calculating the Elmore delay, the capacitance and the resistance of

each routing resource are obtained through the SPICE simulations as described in [Betz99a].

The delay values are then used to determine the criticali ty of each two-terminal connections.

Note that for all the experiments performed in this thesis, the device characteristics of the

CMC 0.18 process is used in the SPICE simulations.

For each two-terminal connection, the criticalit y of the connection is calculated using

Equation 6.4. Here i represents the source of a two-terminal connection and j represents the

sink of the two-terminal connection. As shown by Equation 6.4, the criticalit y is a value

between zero and one inclusively. It is a function of the slack of the connection and Dmax, the

p n() 1 max 0 occupancy n() 1 capacity n()–+[] pfac×(,)+=

h n()I

1 I 1=

h n()I 1– max 0,(+

occupancy n() capacity n()–[] hfac)× I 1>î

=

µm

133

critical path delay of the circuit. When the total delay of a connection is close to the maximum

delay of the circuit, the net has a very small slack. Consequently, its criticality is high. When

the total delay of a connection is much smaller than the maximum delay of the circuit, the net

has a very large slack. Consequently its criti cali ty is low. Both the slack and Dmax values are

re-calculated in each routing iteration based on the connectivity data obtained from the previ-

ous routing iteration.

Equation 6.4

6.6.2.3 Expansion Cost

When routing a net-bus, CGR expands one node-bus at a time as it is typicall y done in

many other routing algorithms [Lee61] [Brow92a] [Ebel95] [Betz99a] [Chan00]. The expan-

sion starts at the node-bus where the sources of the net-bus reside. It first expands into all the

immediate neighboring node-buses. It then finds the node-bus with the least expansion cost.

This node-bus is then expanded in turn. The expansion continues until the node-bus containing

the targeted sinks is reached. When routing an individual net, the same algorithm is applied to

individual nodes instead of node-buses.

Expansion Topologies

The expansion cost of CGR is not only designed to balance delay with congestion, but

also to balance the use of CMS and fine-grain routing tracks based on the following two fac-

tors:

1. The number of net-buses and fine-grain nets in the input netlist.

2. The available number of CMS and fine-grain routing tracks in the MB-FPGA architecture.

The expansion cost also addresses the complication resulting from the “dual personalit y” of

several types of routing resources — these resources can be considered either as an extension

criticali ty i j,() max 1
slack i j,()

Dmax
-----------------------– 0(,)=

134

of fine-grain tracks or CMS tracks. For example, a super-cluster input pin can be considered

either as an individual input pin or as a part of a super-cluster input bus. When connected to a

signal from a fine-grain routing track, the pin behaves like the extension of the fine-grain rout-

ing tracks. When connected to a signal from a group of CMS routing tracks carrying a net-bus,

on the other hand, the pin behaves like a part of the extension of the CMS routing tracks. Rout-

ing resources that behave similarly include super-cluster output pins, I/O block input and out-

put pins, sources, and sinks.

Because of this dual personality, fine-grain nets often compete with coarse-grain net-

buses for resources. An example is shown in Figure 6.6, which shows three different views of

the same MB-FPGA tile. The tile contains a super-cluster and four routing channels, which are

connected by disjoint switch blocks [Hsei90]. In the figure, the unoccupied routing tracks are

shown in dashed lines; and the occupied routing tracks are shown in solid lines. Finally, the

Figure 6.6: Competition for Resources

(a) Switch Pattern

(b) Routing Solution 1 (c) Routing Solution 2

A B C D

A B CD

A B CD

Net-Bus Net-BusFine
Grain
Net

Fine
Grain
Net

CMS
Routing Tracks

Fine-Grain
Routing Tracks

Super-Cluster

Bottom Channel

Left Channel

135

switch pattern for the input connection blocks is shown in Figure 6.6a, where an X marks the

position of a routing switch.

Figure 6.6b and Figure 6.6c shows two different routing solutions for routing a fine-grain

net and a 4-bit wide net-bus. As shown, both the fine-grain net and a net in the net-bus can use

pin A to get into the super-cluster. These two nets are said to be in competition for the same

routing resource. In Figure 6.6b, the router first routes the fine-grain net through pin A. To

avoid congestion, only three nets in the net-bus can get into the super-cluster from the bottom

channel through pins B, C, and D. To complete the routing process, the net-bus needs to be

routed from the bottom channel into the left channel and then into the super-cluster. In Figure

6.6c, pin A is used by the net-bus instead. All four bits of the net-bus can now be routed into

the super-cluster through the bottom channel. However, one extra fine-grain routing segment

has to be used in the left channel to connect the fine-grain net to the super-cluster.

This example shows the need of two separate expansion cost functions for dual-personal-

ity routing resources — one for the fine-grain expansions and the other for the coarse-grain

expansions. Furthermore, these two cost functions should be consistently defined so that they

can be fairly compared with each other. The CGR router accommodates the dual-personali ty

routing resources by classifying all possible expansions into five expansion topologies. Each

topology is completely defined by three items — the source node(s) of the expansion, the sink

node(s) of the expansion, and the routing switch(es) that connect the source node(s) to the sink

node(s). Each of these expansion topologies is then assigned a maximum of two unique cost

functions, one for routing fine-grain nets and the other for routing coarse-grain net-buses. Fur-

thermore, these functions are designed to share several key ingredients to ensure fair compari-

son. Each of these functions and its corresponding expansion topology are described in turn in

more detail .

136

Expansion Cost Functions

As shown in Table 6.2, the expansion cost is calculated based on the expansion topolo-

gies. The table is divided into three major columns including the expansion topology column,

the net type column, and the expansion cost column. The expansion topology column is then

subdivided into five sub-columns. Each topology is labelled by a unique number in sub-col-

umn 1. Sub-column 2 and 3 li st the granularity of the expansion source and the expansion sink

respectively. Sub-column 4 states whether the edges connecting the expansion source and the

expansion sink form a memory sharing edge-bus. Sub-column 5 li sts several examples for

each expansion topology. The net type column li sts the two routing scenarios for each expan-

sion — a single net or a net-bus. Finally, the expansion cost column li sts the formulas for cal-

culating the expansion cost under each scenario.

Note that, in these formulas, nto is used to denote the expansion sink if it is a fine-grain

node. On the other hand, if the expansion sink is a node-bus, Nto is used instead; and Nto(l) is

used to denote the lth bit in the node-bus, Nto. Finally, for the topologies where the expansion

sink is a node-bus and a single net is being routed, Nto(k) denotes the node, in the expansion

sink, through which the single net will be actuall y routed. Similar convention applies to the

expansion source, which is denoted by nfrom, Nfrom, Nfrom(l), or Nfrom(k) for a given circum-

stance.

All formulas, shown in Table 6.2, are variations of Equation 6.5. The equation has three

terms. The first term, C(n), represents the total congestion cost of all nodes in an expansion

path that connects the source of a net to node n. The second term, D(n), represents the delay of

the expansion path from the source to node n. These two terms are scaled by the criticalit y of

the target sink. If the two-terminal connection connecting the source to the sink is very critical

then the delay cost dominates. If the net is not critical then the congestion cost dominates. The

137

Expansion Topo logy
Net

Type
Expansion Cost

#
From

Node(s)
To

Node(s)
Mem
Shar

Examples

1 fine-
grain
node

fine-
grain
node

N/A fine-grain
track -> fine-
grain track

net

net-bus N/A
2 fine-

grain
node

node-bus N/A fine-grain
track -> super-
cluster input

pin

net

net-bus N/A
3 node-bus fine-

grain
node

N/A super-cluster
output pin ->

fine-grain
track

net

net-bus N/A
4 node-bus node-bus no CMS track ->

super-cluster
input pins;
sources->

super-cluster
input pins;

super-cluster
output pins ->

sinks

net

net-bus

Table 6.2: Expansion Cost

1 criticality i j,()–[] C nto() +×

criticality i j,() D nto()× +

future_expansion_cost nto()

C nto() congestion_cost nto() +=

C nfrom()

1 criticality i j,()–[] C Nto k()() +×

criticality i j,() D Nto k()()× +

future_expansion_cost Nto k()()

C Nto k()() congestion_cost Nto k()() +=

C nfrom()

1 criticality i j,()–[] C nto() +×

criticality i j,() D nto()× +

future_expansion_cost nto()

C nto() congestion_cost nto() +=

C Nfrom k()()

1 criticality i j,()–[] C Nto k()() +×

criticality i j,() D Nto k()()× +

future_expansion_cost Nto k()()

C Nto k()() congestion_cost Nto k()() +=

C Nfrom k()()

max(1 criticality i j,()–[] C Nto l()() +×

criticality i j,() D Nto l()()× +

future_expansion_cost Nto l()()
l M=

l 1=
)

C Nto l()() congestion_cost Nto l()() +=

C Nfrom l()()

138

third term represents the estimated future expansion cost, which is described in detail in

[Betz99a]. Briefly, the future expansion cost is calculated by estimating the remaining expan-

sion path that connects node n to the target sink. The total cost of this estimated path is then

calculated and used as the future expansion cost.

Equation 6.5

Expansion topology #1 is illustrated in Figure 6.7(a). In this topology, both the expansion

source and the expansion sink are fine-grain nodes. The edge that connects these two nodes

together does not belong to any edge-bus. For this topology, Equation 6.5 is used to calculate

the expansion cost with n set to be nto. The expansion cost for topology #2 and #3 are similarly

defined.

Expansion topology #4 is ill ustrated in Figure 6.7(b). Here both the expansion source and

the expansion sink are node-buses, and are connected by an edge-bus that does not share con-

5 node-bus node-bus yes super-cluster
output pins ->
CMS tracks;

CMS tracks ->
CMS tracks

net

net-bus

Expansion Topo logy
Net

Type
Expansion Cost

#
From

Node(s)
To

Node(s)
Mem
Shar

Examples

Table 6.2: Expansion Cost

1 criticality i j,()–[] C Nto k()() +×

criticality i j,() D Nto k()()× +

future_expansion_cost Nto k()()

C Nto k()()=

max congestion_cost Nto l()()
l M=

l 1=

 +

C Nfrom k()()

max(1 criticality i j,()–[] C Nto l()() +×

criticality i j,() D Nto l()()× +

future_expansion_cost Nto l()()
l M=

l 1=
)

C Nto l()() congestion_cost Nto l()() +=

C Nfrom l()()

expansion_cost n() 1 criticality i j,()–[] C n() +×=

criticality i j,() D n() +×
future_expasion_cost n()

139

f iguration memory. When only routing a fine-grain net through this expansion topology, Equa-

tion 6.5 is used to calculate the expansion cost with n set to be Nto(k).

It is important to note that, due to the dual personality of some routing resources, nodes

in a node-bus do not necessaril y have the same congestion cost. An example is shown in Fig-

ure 6.8. Here the nodes in the node-bus represent four input pins. All four pins are connected

to a net-bus through a CMS routing bus. Pin 0, however, has one more connection — it is also

connected to a fine-grain net through a fine-grain routing track. The occupancy value of pin 0

is 2 while the occupancy values of pin 1, 2, and 3 are 1. Since the occupancy values are differ-

ent, the expansion costs are also different. So when routing a net-bus through expansion topol-

ogy #4, Equation 6.5 is used to calculate the expansion cost for each node in the expansion

sink. The maximum cost is then used as the final expansion cost to account for any differences

in either delay or congestion.

Expansion topology #5 is il lustrated in Figure 6.7(c). Here both the expansion source and

the expansion sink are node-buses. These two node-buses are connected by an edge-bus that

shares a single set of configuration memory. When routing a fine-grain net through this expan-

sion topology, the maximum congestion cost over all nodes in the expansion sink is first calcu-

Expansion Source Expansion Source

Expansion Sink Expansion Sink

(a) (b) (c)

Edge-Bus
without

Edge-Bus
with

Figure 6.7: Expansion Topo logy

SRAM
Sharing

SRAM
Sharing

Expansion Source

Expansion Sink

140

lated. To account for the sharing of the configuration memory, the maximum congestion cost is

added to the accumulated congestion cost of the expansion source to derive the accumulated

congestion cost for node Nto(k). Equation 6.5 is then used to calculate the expansion cost

where n is substituted by Nto(k). If a net-bus is routed through this expansion topology, on the

other hand, Equation 6.5 is used to calculate the expansion cost for each node in the expansion

sink. The maximum cost is then used as the expansion cost.

Note that to encourage net-buses to use the CMS routing tracks, the expansion cost of

routing the first bit of each net-bus through the fine-grain routing tracks is penali zed by a con-

stant multipli cation factor. In this thesis a multipli cation factor of 20 is found to work well for

the benchmarks.

6.6.3 Step 3: Updating Metrics

The tasks performed in step 3 include updating congestion cost for each node and calcu-

lating criticalit y values for each net. The exit condition is also checked at this step to see if the

maximum number of routing iterations has been reached. Finally, CGR rips up all previously

routed nets by setting the occupancy values of all nodes in the routing resource graph to zero.

It then empties the unrouted-nets li st in preparation for the next routing iteration.

Figure 6.8: Doub le Conn ection in One Bit of A Node-Bus

Super-Cluster
Cluster 1 Cluster 2 Cluster 3 Cluster 4

CMS
Routing
Tracks

Fine-Grain
Routing
Track

A Node-Bus
Containing 4
Super-Cluster

Input-Pins

141

6.7 Results

CGR has been used to route several industrial circuits implemented on the MB-FPGA

architecture. The routing results shown in this section are based on the fifteen datapath circuits

of the Pico-Java Processor [Sun99] described in Chapter 4 and 5. Each circuit is first synthe-

sized using the EMC synthesis algorithm as described in Chapter 4. Then it is packed into

super-clusters using the CNG packing algorithm described in Chapter 5. The placement algo-

rithm, described in Section 6.3, is then used to place each circuit onto a square MB-FPGA that

contains just enough super-clusters to accommodate the circuit.

Table 6.3 gives the name, size (the number of super-clusters, two-terminal connections,

and pin-buses) of each benchmark circuit. The super-cluster architectures used to obtain these

results will be presented in detail in the next sub-section along with the detailed routing archi-

tecture used in the investigation. After the architectural description, the routing results in terms

of track count, routing area and routing performance are described in turn.

6.7.1 MB-FPGA Architecture

The detailed MB-FPGA architecture used in the tests of the CGR algorithm is presented

here. This architecture is constructed based on the results of several previous studies on con-

ventional cluster-based FPGA architectures described in [Betz97b] [Betz98] [Betz99a]

[Betz99b] [Marq00b]. These architectural choices are described and justified in much more

detail in Chapter 8. A brief summary of these choices is presented here.

Each super-cluster used in this investigation consists of 4 clusters. Each cluster contains

4 BLEs (with one 4-LUT in each BLE) and 10 inputs. At the super-cluster level, this translates

to 40 super-cluster inputs grouped into 10 4-bit wide input buses and 16 super-cluster outputs

grouped into 4 4-bit wide output buses. The input buses are distributed around the periphery of

each super-cluster with 2 buses at the top, 2 buses on the right side, 3 buses at the bottom and

142

3 buses on the left side of each super-cluster. The output buses are uniformly distributed

around each super-cluster.

The switch block topology used in this study is the disjoint topology [Hsei90] for both

the fine-grain tracks and the CMS tracks. For input/output connection blocks, each super-clus-

ter input/output pin is connected to 40%/25% of the fine-grain tracks in each of its neighboring

routing channels. Similarly each input bus/output bus is connected to 40%/25% of the 4-bit

wide CMS routing buses in each neighboring channel. It is assumed that, for each circuit, the

physical dimension of each I/O block is small enough so that the circuit will always be core-

limited after placement. Each I/O block input or output pin is assumed to connect to 20% of

the fine-grain routing tracks in its neighboring routing channel. Similarly, each pad-input or

pad-output bus is assumed to connect to 20% of the CMS routing buses. Finall y, each routing

Circuit
#Super-
Clusters

#Two-Term.
Conn .

#Pin-Buses

code_seq_dp 23 799 116

dcu_dpath 63 2232 273

ex_dpath 176 6547 851

expon ent_dp 32 1362 109

icu_dpath 217 8047 945

imdr_dpath 81 3100 387

incmod 57 2013 211

mantissa_dp 64 2533 298

multmod_dp 105 3380 330

pipe_dpath 29 1049 126

prils_dp 26 864 89

rsadd_dp 21 722 94

smu_dpath 36 1167 140

ucode_dat 83 3143 409

ucode_reg 6 194 35

Table 6.3: Experimental Circuits

143

segments (either fine-grain or CMS) is assumed to expand two super-clusters. Note that the

architectural generation methodology described in [Betz00] [Betz99a] is used to generate the

actual topology of the input/output connection blocks based on the percentage values pre-

sented above.

Two architectural variables are used in the tests of the CGR routing algorithm. These

variables are the number of CMS routing tracks and the number of f ine-grain routing tracks in

each routing channel. The testing process consists of first specifying a fixed number of CMS

routing tracks per channel for routing a given circuit. The CGR router is then used to find the

minimum number of f ine-grain routing tracks required in each channel (in addition to the fixed

number of CMS routing tracks) in order to successfully route the circuit. The methodology

used in searching for the minimum number of fine-grain routing tracks is similar to the ones

described in [Betz99a] [Betz99b]. The data collected from these tests are used to demonstrate

the abil ity of the CGR algorithm to utili ze the CMS routing tracks in place of the fine-grain

routing tracks.

6.7.2 Track Count

The arithmetic average of the additional number of fine-grain routing tracks required to

route a circuit for a specified number of CMS routing tracks is shown in Figure 6.9, where the

average number of f ine-grain tracks is plotted against the specified number of CMS tracks.

The X-axis is track count in terms of the number of CMS routing tracks specified in the inves-

tigation. The Y-axis is also track count, but it is in terms of the number of tracks needed in

order to successfully route a circuit.

Also plotted in the figure is the arithmetic average of the total number of tracks (fine-

grain tracks plus CMS tracks) required per channel for routing a circuit against the specified

144

number of CMS tracks. Finall y, for the ease of reference, the number of CMS routing tracks

specified in each investigation is transferred from the X-axis into the dashed line in the figure.

As shown, the average number of f ine-grain tracks decreases from 56 tracks down to less

than 30 tracks per channel as the average number of CMS tracks is increased from 0 to 80

tracks per channel. This decrease is due to the use of the CMS tracks in place of the fine-grain

tracks by CGR. Note that the fine-grain tracks decreases significantly when the number of

CMS tracks is increased from 0 to 40 tracks per channel. By adding these 40 CMS tracks, a

maximum of 21 fine-grain tracks are eliminated. The rate of decrease slows significantly when

the number of CMS tracks is further increased from 40 to 80 tracks per channel. By adding

these 40 CMS tracks, only 5 fine-grain tracks are saved. This slow down is due to the fact that,

in many circuits, the number of CMS tracks has reached saturation. In saturation, further

increases in the number of CMS tracks will not reduce the number of f ine-grain tracks since

there are always nets that can never been routed through the CMS tracks (due to the limited

connectivity of the CMS routing resources as described in Chapter 3).

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
0

10

20

30

40

50

60

70

80

90

100

#CMS Tracks

#Tracks

#CMS Tracks

#Fine-Grain Tracks

Total Number of Tracks

Figure 6.9: Track Coun t vs. #CMS Tracks per Channel

145

6.7.3 Routing Area Results

The arithmetic average of the total area consumed by routing resources for each circuit is

shown in Figure 6.10. The area is measured in terms of the minimum-width transistor area

[Betz99a], which is described in detail i n Chapter 2. In the figure, the X-axis is the number of

CMS routing tracks specified by the investigation. The Y-axis is the area measured in mini-

mum-width transistor area.

As shown, the graph can be divided into three regions. In the first region, where the

architectures contain between 0 to 28 CMS tracks per channel, the routing area actuall y gets

worse with the increased number of CMS tracks. This increase in area is due to the fact that the

area eff iciency of the CMS tracks is outweighed by the extremely small number of routing

buses and the increased diversity in routing resources as explained in more detail in Chapter 8.

In the second region, as the number of CMS tracks is further increased, the routing area

starts to decrease. At between 32 to 64 CMS tracks per channel, the routing area becomes

smaller than the routing area of the architecture that contains no CMS tracks. Finall y, in region

three, as the number of CMS tracks reaches saturation, the routing area again starts to increase

Minimum-Width Transistor Area (x106)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
1.00

1.03

1.06

1.09

1.12

1.15

1.18

1.21

1.24

1.27

Routing Area in

#CMS Tracks

Figure 6.10: Area vs. #CMS Tracks

146

and becomes larger than the routing area of the architecture that contains no CMS routing

tracks.

6.7.4 Routing Performance Results

The geometric average of the portion of critical path delay that is consumed by the rout-

ing resources for each circuit is shown in Figure 6.11. In the figure, the X-axis represents the

number of CMS routing tracks specified in the investigation. The Y-axis represents the delay

measured in nanoseconds. As shown, there are some speed penalties associated with using the

CMS tracks for a majority of architectures. For 4, 8, 12, 40, 44, 60, and 64 CMS routing tracks

per channel, however, the performance of these architectures are comparable to the architec-

ture containing no CMS tracks.

6.8 Conclusions and Future Work

This chapter has described a new kind of routing algorithm that is designed specifically

for the MB-FPGA architecture. The algorithm is able to balance the use of CMS and fine-grain

routing resources to achieve maximum area savings over a wide range of datapath circuits.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4
Critical Path Delay Due to Routing (ns)

#CMS Tracks

Figure 6.11: Delay vs. #CMS Tracks

147

The algorithm also is capable of optimizing the routing delays of time-critical connections and

achieves good performance results.

Future research should improve upon the timing performance of the router. The goal

should be to achieve consistently optimal routing delays regardless of the number of CMS

routing tracks in each routing channel.

148

149

7 The Regularity of Datapath Circuits

7.1 Introduction

This chapter uses an experimental approach to investigate the effect of the granularity of

the MB-FPGA architecture on the regularity of its circuit implementations. Granularity, as

defined in Chapter 3, is equal to the number of clusters in a super-cluster or the number of

CMS routing tracks in a routing bus. Regularity is a function of the number of identical bit-

sli ces and buses in a circuit. The experiment consists of synthesizing and packing a set of data-

path circuits onto several variants of the MB-FPGA architecture. Regularity is then measured

over a range of granularity values, using the synthesis and packing algorithms described in

Chapter 4 and 5 respectively.

Recall that the MB-FPGA architecture uses groups of CMS routing tracks, called routing

buses, to route groups of signals, called buses, from their common source to their common

sink super-clusters. When there is enough regularity, it is often preferable to have high granu-

larity — wide routing buses — since in wide routing buses the configuration memory area can

be amortized over a greater number of tracks, resulting in higher area efficiency. Too high a

granularity value, however, can cause an over-supply of routing tracks in each routing bus,

resulting in unused tracks and lower area eff iciency. As a result, knowing the detailed relation-

ship between the granularity and the regularity is essential in designing an area-efficient MB-

FPGA architecture.

The MB-FPGA super-cluster introduced in Chapter 3 is used in the packing experiments

conducted in this chapter. Figure 7.1 reproduces an overview of the super-cluster architecture

for ease of reference. The super-cluster shown in the figure has a granularity value of M since

it contains M clusters; and each cluster contains several BLEs, cluster inputs, and cluster out-

150

puts. The number of cluster outputs is always equal to the number of BLEs that it contains.

The granularity of the super-cluster can be altered by changing the number of clusters; and

individual cluster capacity can also be changed by varying the number of BLEs and the num-

ber of inputs per cluster.

By definition, regularity can be measured using two distinct metrics, including the logic

regularity, which measures the number of identical bit-slices in a datapath circuit, and the net

regularity, which measures the number of buses in the same circuit. The specific questions

concerning datapath regularity that are answered in this chapter include: what is the effect of

the MB-FPGA granularity on the amount of logic regularity that can be captured by the syn-

thesis and packing tools? and what is the effect of the MB-FPGA granularity on the amount of

net regularity that can be captured? Section 7.4.1 and Section 7.4.2 define logic and net regu-

larity in more detail and propose ways of measuring these regularity values. They also show

that small granularity values of 2 and 4 are the best for capturing both types of regularity infor-

mation.

This chapter is organized as follows: Section 7.2 presents assumptions that are made

about the architecture of MB-FPGA; Section 7.3 describes the experimental procedure; the

Cluster Cluster Cluster

Cluster
Outputs

Cluster
Outputs

Cluster
Outputs

Cluster
Inputs

Cluster
Inputs

Cluster
Inputs

Carry
Inputs

Carry
Outputs

Super-Cluster
Outputs

Super-Cluster
Inputs

Carry
Network

Figure 7.1: Super-Cluster with M Clusters

Carry
Network

151

experimental results are presented in Section 7.4; and concluding remarks appear in Section

7.5.

7.2 MB-FPGA Architectural Assumptions

The MB-FPGA super-cluster architecture, used by the CNG packing algorithm, can be

completely specified by four architectural parameters, including M, the granularity of the

architecture, K, the number of inputs that each LUT contains, N, the number of BLEs in each

cluster, and I, the number of cluster inputs. In this work, these values are selected based on the

results of several previous studies on conventional FPGAs; and the same values are also used

in the architectural study presented later in Chapter 8.

Throughout the experiments, K is set to be 4 since it has been shown that 4-LUTs are one

of the most eff icient LUT sizes [Rose90] [Ahme00] and this LUT size is also used in many

commercial FPGAs [Alte02] [Xili 02]. N and I are set to be 4 and 10 respectively since this

combination was shown to be one of the most efficient by [Betz97b] [Betz98] [Betz99a] and is

also used by many previous FPGA studies [Ahme00] [Betz99a] [Betz99b] [Lemi01] [Marq99]

[Marq00a] [Marq00b] [Sank99]. Finally, M is the variable of the investigation and is varied

from 2 to 32 for each experiment.

7.3 Experimental Procedure

The CAD flow used in the experiments is shown in Figure 7.2. As shown, the fifteen

benchmark circuits from the Pico-Java processor [Sun99] are first synthesized by the EMC

datapath-oriented synthesis algorithm into LUTs and DFFs. The synthesis process preserves

the regularity of datapath circuits according to a given value of M. Using the preserved regu-

larity, the CNG packing algorithm packs the synthesized circuits into a set of MB-FPGA

super-clusters, again with respect to M. After packing, the logic regularity and the net regular-

152

ity of each circuit are measured. Finally, the CAD flow is invoked multiple times until all con-

cerned values of M are investigated.

7.4 Experimental Results

This section first investigates the effect of granularity on logic regularity. Then the effect

of granularity on net regularity is examined. Note that the various aspects of the benchmark

circuits used in these experiments are summarized in previous chapters in Table 4.1, Table 5.1,

and Table 6.1.

7.4.1 Effect of Granularity on Logic Regularity

After packing, datapath circuits are transformed into netlists of interconnected super-

clusters. The logic regularity of these netlists, which is defined as the amount of logic that

exists as datapath, can be measured by counting the number of identical BLEs in each super-

cluster. More precisely, each super-cluster after packing can be divided into disjoint sets of

BLEs. Each set, called a datapath component, has the following three properties:

Figure 7.2: CAD Flow

15 B enchm ark C ircu its

Synthesis
(EMC Chap 4)

Packing
(CNG Chap 5)

Logic and Net
Regularity

Measurement

M

153

1. Each BLE in the set is from an unique cluster that is different from the clusters of all the

other BLEs in the set.

2. All BLEs in the set are configured to perform the same logic function.

3. The set contains as much BLEs as property 1 and 2 allows.

An example of datapath components is shown in Figure 7.3. In the figure, there is a super-clus-

ter that contains four clusters; and each cluster contains four BLEs. The BLEs are configured

to perform one of the six possible logic functions labeled as A, B, C, D, E, and F. As shown,

the super-cluster can be divided into eight distinct datapath components based on the proper-

ties above. Four of the datapath components contain more than one BLE each and is indicated

by unique shades in the figure. The remaining four datapath components contain one BLE

each and are configured as function C, B, E, and F, respectively.

The datapath components can be classified according to their width, which is equal to the

number of BLEs in each component. By definition, for a given MB-FPGA architecture, the

maximum possible width of a datapath component is equal to M — the granularity of the

architecture; and one-bit wide datapath components represent irregular logic.

Table 7.1 lists the percentage of BLEs that are in each width of datapath components as a

function of the MB-FPGA granularity that was imposed during synthesis. Each percentage

value is calculated by first summing the total number of BLEs in all datapath components of a

given width over all the 15 benchmark circuits. Then the sum is divided by the total number of

A A A A
BBB

B
C
D DE

FC CC

Sup er-C lus ter

C lus ter

B LE

C lus ter C lus ter C lus ter

Figure 7.3: Dividing A Super-Cluster into Datapath Compon ents

154

BLEs in the benchmarks. Each column of the table corresponds to a different value of M. Each

row corresponds to a different width of datapath components. Note that for each value of M

represented in a given column, there are only M different widths of datapath components. The

remaining rows in the column are labeled as n.a. and shaded in dark gray. Finall y, cells that

contain values that are less than one percent are shaded in li ght gray in the table.

DP
Width

M — MB-FPGA Granularity Imposed in Synthesis

2 4 8 12 16 20 24 28 32

1 9.4% 9.9% 10% 11% 11% 12% 12% 13% 13%

2 91% 0.31% 0.051% 0.0% 0.049% 0.0% 0.0% 0.12% 0.049%

3 n.a. 0.23% 0.076% 0.075% 0.037% 0.074% 0.037% 0.0% 0.037%

4 n.a. 90% 7.0% 7.4% 6.1% 6.1% 6.6% 12% 5.9%

5 n.a. n.a. 0.13% 0.12% 0.0% 0.0% 0.12% 0.64% 0.0%

6 n.a. n.a. 0.49% 0.48% 0.15% 0.15% 0.48% 0.32% 0.15%

7 n.a. n.a. 0.35% 0.0% 0.26% 0.17% 0.0% 0.094% 0.086%

8 n.a. n.a. 82% 27% 14% 16% 27% 15% 14%

9 n.a. n.a. n.a. 1.0% 0.0% 0.22% 1.0% 0.0% 0.0%

10 n.a. n.a. n.a. 0.25% 0.0% 0.56% 0.25% 0.0% 0.0%

11 n.a. n.a. n.a. 0.55% 0.14% 0.0% 0.14% 0.15% 0.0%

12 n.a. n.a. n.a. 52% 2.0% 19% 0.074% 0.0% 0.074%

13 n.a. n.a. n.a. n.a. 0.32% 1.5% 0.0% 0.0% 0.0%

14 n.a. n.a. n.a. n.a. 0.95% 0.35% 0.0% 0.0% 0.0%

15 n.a. n.a. n.a. n.a. 0.19% 0.19% 0.19% 0.0% 0.18%

16 n.a. n.a. n.a. n.a. 64% 2.7% 2.9% 2.6% 2.7%

17 n.a. n.a. n.a. n.a. n.a. 0.0% 0.0% 0.0% 0.0%

18 n.a. n.a. n.a. n.a. n.a. 0.0% 0.0% 0.0% 0.0%

19 n.a. n.a. n.a. n.a. n.a. 0.24% 0.0% 0.26% 0.0%

20 n.a. n.a. n.a. n.a. n.a. 41% 1.1% 1.2% 1.1%

21 n.a. n.a. n.a. n.a. n.a. n.a. 0.0% 0.0% 0.0%

22 n.a. n.a. n.a. n.a. n.a. n.a. 0.0% 0.0% 0.0%

23 n.a. n.a. n.a. n.a. n.a. n.a. 0.85% 0.62% 0.57%

24 n.a. n.a. n.a. n.a. n.a. n.a. 47% 0.48% 0.44%

25 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.0% 0.0%

26 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.0% 0.0%

27 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.36% 0.33%

28 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 52% 4.1%

29 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.71%

30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.0%

31 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.0%

32 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 54%

Table 7.1: % of BLEs Contained in Each Width o f Datapath Compon ents

155

The key conclusion to be drawn from Table 7.1 is that as indicate by the cells shaded in

light gray, many entries in the table contain values that are less than one percent. As a result,

for each M, a majority of BLEs is concentrated in only a small number of datapath widths. To

il lustrate this point further, the diversity of datapath component widths is analyzed in more

detail next; the analysis is followed by an examination of the logic contained in the maximum

width datapath components and in irregular logic; and finally the inherent regularity distribu-

tion of the benchmarks is analyzed; and architectural conclusions are drawn based on the

results of logic regularity.

7.4.1.1 Diversity of Datapath Widths

Figure 7.4 is a plot of the diversity of datapath component widths versus granularity. The

X-axis of the figure represents the granularity of the architecture, M. The Y-axis represents the

number of distinct widths of datapath components. The figure contains four curves. The top

curve represents the maximum possible number of datapath component widths for each granu-

larity value. The remaining three curves represent the number of distinct widths of datapath

components that contain more than 1%, 10%, and 40% of the total number of BLEs, respec-

tively. As ill ustrated, as the minimum percentage value is increased from 1% to 40%, the

diversity of the datapath components is reduced dramaticall y. For M = 32, for example, there

are eight distinct widths of datapath components that contain more than 1% of the total num-

ber of BLEs, while only three distinct widths of datapath components contain more than 10%

of the total number of BLEs. Finall y, for each granularity, only one distinct width of datapath

component contains more than 40% of the total number of BLEs. Note that the datapath com-

ponent widths that contain more than 40% of the total number of BLEs are highlighted in bold

prints in Table 7.1. The table clearly shows that, for a given value of M, the datapath compo-

156

nent width that contains more than 40% of the total number of BLEs is always equal to the

maximum possible datapath component width of the given granularity.

7.4.1.2 Maximum Width Datapath Components and Irregular Log ic

The percentage of BLEs in these maximum width datapath components are plotted in

Figure 7.5, where the X-axis represents the granularity values and the Y-axis represents the

percentage values. Note that most of the percentage values are much larger than 40%. For M =

2 to 8, the number of BLEs that exist in maximum width datapath components is between 82%

and 91%. For the rest of the granularity values, excluding M = 20, the percentage values

remain at the 50% to 60% range. Finally, using data from Table 7.1, Figure 7.6 plots the per-

centage of BLEs in irregular logic versus the granularity of the architecture. It shows that over

all granularity values, less than 15% of the total number of BLEs are in irregular logic.

Note that there is a quite large variation for the percentage of BLEs captured in the max-

imum width datapath components — 91% for M = 2 versus 41% for M = 20. To explain this

variance, it is instructive to measure the inherent regularity distribution — the distribution of

2 4 8 12 16 20 24 28 32

0

4

8

12

16

20

24

28

32
Maximum Number of Types

>10% Types

>1% Types

>40% Types

Number of Unique

Granularity (M)
Figure 7.4: Datapath Compon ent Types Containing a Minimum % of BLEs

Datapath Component Types

157

BLEs among the various widths of datapath components in the original circuit specifications

— of these circuits.

2 4 8 12 16 20 24 28 32
40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%
% of BLEs in Maximum Width Datapath Components

Granularity (M)

Figure 7.5: % of BLEs in Maximum Width Datapath Compon ents

2 4 8 12 16 20 24 28 32
9%

9.5%

10%

10.5%

11%

11.5%

12%

12.5%

13%

13.5%

Granularity (M)

% of BLEs in Irregular Logic

Figure 7.6: % of BLEs in Irregu lar Log ic vs. M

158

7.4.1.3 Inherent Regularity Distribution

Since the widest datapath in the benchmark circuits is 32 bits wide, the distribution of

BLEs among datapath components at M = 32 closely resembles the inherent regularity distri-

bution of these circuits. The detailed distribution of BLEs for M = 32 are restated in Table 7.2.

It shows that, for M = 32, 13% of BLEs are in irregular logic. Furthermore, for the remaining

datapath component widths, 83% of BLEs are in the six largest categories, including M = 32,

8, 4, 28, 16, and 30, of datapath components. The rest of the datapath components collectively

only contain a fraction (around 4%) of the total number of BLEs.

Ranking
Datapath

Comp.
Width

Percentage
of BLEs in
Dp. Comp.

Ranking
Datapath

Comp.
Width

Percentage
of BLEs in
Dp. Comp.

1 32 54% 17 2 0.049%

2 8 14% 18 3 0.037%

3 1 13% 19 5 0%

4 4 5.9% 20 9 0%

5 28 4.1% 21 10 0%

6 16 2.7% 22 11 0%

7 30 2.0% 23 13 0%

8 20 1.1% 24 14 0%

9 29 0.71% 25 17 0%

10 23 0.57% 26 18 0%

11 24 0.44% 27 19 0%

12 27 0.33% 28 21 0%

13 15 0.18% 29 22 0%

14 6 0.15% 30 25 0%

15 7 0.086% 31 26 0%

16 12 0.074% 32 31 0%

Table 7.2: Distribu tion o f BLEs for M = 32

159

More interestingly, 32, 8, 4, 28, 16, and 30 are all evenly divisible by two, and except 30,

all these numbers are evenly divisible by four. This characteristic explains why such a large

amount (91%) of BLEs are in 2-bit wide datapath components when M is equal to 2 and

equally large amount (90%) of BLEs are in 4-bit wide datapath components when M is equal

to 4. It also helps to explain the distribution of BLEs for other granularity values. For example,

when M is equal to 8, the largest two groups of datapath components are 8-bit wide and 4-bit

wide since 8, 16, and 32 are all evenly divisible by eight and four, and the reminder of 28

divided by 8 is equal to four.

7.4.1.4 Architectural Conclusions

These distribution characteristics of BLEs among datapath components suggest that by

using architectures with a granularity value of two or four, one can maximize the number of

BLEs captured in the widest available datapath components in these architectures. Further-

more, at these granularity values, logic regularity is concentrated in only one width. Other

granularity values have more complex distributions of BLEs among datapath components.

This characteristic contributes to the high percentage of maximum-width buses captured by

the CAD flow when M is equal to 2 or 4 as shown in Section 7.4.2. Capturing more maximum-

width buses is especiall y desirable for MB-FPGA since the CMS routing tracks are the most

efficient when they are used to route maximum-width buses. Note that the best granularity val-

ues for capturing datapath regularity is likely to increase proportionall y as the maximum width

of the datapath applications is increased.

7.4.2 Effect of Granularity on Net Regularity

After packing, net regularity, which is defined as the amount of nets that exist in datap-

ath, can be measures by counting the number of nets that share common source and sink super-

160

clusters with other nets. More precisely, the net regularity is measured by classifying all two-

terminal connections that contain one super-cluster output pin and one super-cluster input pin

in a circuit into a variety of buses. Each two-terminal connection is called a inter-super-cluster

two-terminal connection; and each bus is defined to be a group of two-terminal connections

that connect two or three super-clusters together with the following five properties:

1. One super-cluster is the source of all the two-terminal connections in the group; and the

remaining super-cluster(s) are the sink(s).

2. Each two-terminal connection in the group has a unique source cluster that is different

from the source clusters of all the other two-terminal connections in the group.

3. Each two-terminal connection in the group has a unique sink cluster that is different from

the sink clusters of all the other two-terminal connections in the group.

4. All two-terminal connections in the group must have the same amount of shift as defined

shortly below in Section 7.4.2.1.

5. The bus contains as much two-terminal connections as it is allowed by property 1 to 4.

The number of two-terminal connections in a bus is called the width of the bus; and an

example bus is shown in Figure 7.7. There are three super-clusters in the figure — each with a

granularity value of four. These super-clusters are connected together by three two-terminal

connections to form a single 3-bit wide bus.

1

Figure 7.7: A 2-bit wide bus with on e-bit shift for M = 4

2 3 4

Sou rce S uper-C lus te rInd ex

C lus ter

1 2 3 4

S ink Supe r-C luster

1 2 3 4

S ink S uper-C lus ter

161

7.4.2.1 Shift Definition

Buses of the same width are further classified by the amount of shift that each of their

two-terminal connections possesses. To determine the amount of shift, each cluster in a super-

cluster is first assigned with a unique index number from 1 to M, where M is the granularity of

the architecture. The shift of a two-terminal connection is defined to be the difference, d,

between the index of the sink cluster and the index of the source cluster if the d is positi ve. If

the d is negative, the shift is defined to be the d + M. Each two-terminal connection shown in

Figure 7.7 has a shift value of one, so the bus shown in the figure also has a shift value of one.

By definition, the maximum possible width of a bus is M — the granularity of the MB-FPGA

architecture; the maximum amount of shift that a bus can have is M - 1; and finall y one-bit

wide buses represent irregular nets.

The measurement of net regularity as defined above can be used to understand two of the

most important questions with regards to MB-FPGA:

1. How many inter-super-cluster two-terminal connections can be grouped into buses and

consequently can be eff iciently routed through the CMS routing tracks of MB-FPGA?

2. Should the MB-FPGA connection blocks have the capabilit y of shifting buses by 1 to M -

1 bits?

Note that the second question arises from the architectural differences between the MB-FPGA

and the DP-FPGA [Cher96] architecture. Recall that, as described in Chapter 2, the DP-FPGA

architecture contains special hardware resources called shift blocks, which can perform arith-

metic shift operations while routing a group of two-terminal connections. On the other hand,

the routing architecture of MB-FPGA, described in Chapter 3, does not contain any hardware

support for shift operations. The data presented in this section measure the effect of excluding

162

these dedicated shift operations from MB-FPGA and provides some insights on the actual

effectiveness of these dedicated shift hardware resources.

7.4.2.2 Net Regularity Results

Table 7.3 shows the percentage of inter-super-cluster two-terminal connections that exist

in each type of buses for the granularity value of 12. The percentage value is calculated by first

summing the total number of inter-super-cluster two-terminal connections in a given type of

buses over the 15 benchmark circuits. The sum is then divided by the total number of inter-

super-cluster two-terminal connections that exist in these benchmark circuits. Each row of the

table corresponds to a fixed bus width; while each column of the table corresponds to a fixed

amount of shift. Each entry lists the percentage of two-terminal connections that are in the

buses with the corresponding width and shift. Again values that are less than 1% are shaded in

light gray. The key conclusion to be drawn from this table is that a majority of the bus types

contains only a very small amount of inter-super-cluster two-terminal connections; and the

same is true for all the other granularity values other than M = 12, whose data are presented in

detail in Appendix A.

As shown by the data presented in these tables, M has several important effects on the

types and the widths of buses obtained by the CAD flow. In particular, the effect of M on irreg-

ular two-terminal connections and the most populous bus types are analyzed below. The anal-

ysis is followed by several architectural conclusions.

7.4.2.3 Effect of M on Irregular Two-Terminal Connections

Figure 7.8 plots the percentage of irregular inter-super-cluster two-terminal connections

as a function of granularity. The X-axis is the granularity; and the Y-axis is the number of

irregular two-terminal connections as the percentage of the total number of inter-super-cluster

163

two-terminal connections in the benchmark circuits. As shown by the plot, this percentage

value remains quite constant across a wide range of granularity values. In particular, the irreg-

ular two-terminal connections always consist of 20% to 27% of the total number of two-termi-

nal connections.

Bus
Width

Shift

0 1 2 3 4 5 6 7 8 9 10 11

1 2.1% 1.7% 1.8% 2.0% 2.2% 2.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4%

2 0.80% 1.2% 1.2% 0.96% 0.82% 0.79% 0.98% 0.77% 0.92% 0.79% 0.82% 0.65%

3 0.27% 0.48% 0.29% 0.27% 0.29% 0.28% 0.22% 0.13% 0.27% 0.30% 0.18% 0.21%

4 3.0% 0.066% 0.053% 0.066% 1.7% 0.092% 0.16% 0.16% 1.7% 0.013% 0.066% 0.12%

5 0.050% 0.017% 0.033% 0.033% 0.38% 0.017% 0.0% 0.066% 0.083% 0.017% 0.0% 0.017%

6 0.28% 0.0% 0.079% 0.0% 0.32% 0.020% 0.20% 0.0% 0.020% 0.040% 0.040% 0.020%

7 0.069% 0.21% 0.0% 0.0% 0.046% 0.12% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 14% 0.11% 0.0% 0.0% 0.69% 0.0% 0.0% 0.0% 1.1% 0.026% 0.053% 0.18%

9 0.62% 0.059% 0.030% 0.030% 0.089% 0.059% 0.0% 0.030% 0.030% 0.059% 0.030% 0.089%

10 0.43% 0.0% 0.0% 0.0% 0.0% 0.033% 0.066% 0.033% 0.033% 0.066% 0.36% 0.033%

11 0.33% 0.11% 0.036% 0.036% 0.036% 0.073% 0.0% 0.0% 0.036% 0.036% 0.22% 0.40%

12 27% 1.3% 0.24% 0.12% 0.75% 0.12% 0.36% 0.040% 0.75% 0.040% 0.48% 0.36%

Table 7.3: % of Inter-Super-Cluster Two-Terminal Conn ections Contained in
Each Type of Buses for M = 12

2 4 8 12 16 20 24 28 32
15 %

17%

19%

21%

23%

25%

27%

29%

31%

G ranu larity (M)

% o f Irreg u la r Tw o-Term ina l C onn ections

Figure 7.8: % of Irregu lar Two-Terminal Conn ections vs. M

U pper L im it = 27%

Low er L im it = 20%

164

7.4.2.4 Effect of M on the Most Popu lous Bus Types

Figure 7.9 plots the percentage of two-terminal connections in the three bus types that

contain the most amount of inter-super-cluster two-terminal connections as a function of gran-

ularity, M. The top curve represents the bus type that contains the most amount of two-termi-

nal connections; and the bottom curve represents the bus type that contains the third most

amount of two-terminal connections. The exact types of these buses are labeled beside each

data point by a pair of integers indicating the width and the shift of the bus. The figure shows

that, for all granularity values, the most populous bus type (the bus type that contains the most

amount of inter-super-cluster two-terminal connections) is always M-bit wide and non-shift-

ing. The percentage of two-terminal connections in these M-bit wide non-shifting buses

decreases quite significantly as M is increased from 2 to 20. The number recovers slightly as

M is further increased to 32. The second most populous bus type usuall y is significantly

smaller than the most populous type. It usually is also non-shifting. The majority of the

remainder bus types usuall y contain a very small percentage of the total number of two-termi-

nal connections each. For example, when M is equal to 12, 12-bit wide non-shifting buses are

the most populous bus type and consist of 27% of the total number of two-terminal connec-

tions. The second most populous bus type is 8-bit wide non-shifting buses, which consist of

14% of the total number of two-terminal connections. The third most populous bus type con-

tains just slightly less than 3% of the total number of two-terminal connections.

7.4.2.5 Architectural Conclusions

The above observations can guide us to choose the appropriate types of routing resources

for various CMS architectures. First of all, if there is only one type of connection between the

CMS routing tracks and the super-clusters in the architecture, the best choice is M-bit wide

non-shifting connections. Secondly, it is likely that regardless of granularity, 20% to 27% of

165

the routing resources should be fine-grain. Furthermore, since the MB-FPGA architecture only

has one type of CMS routing tracks — CMS routing tracks of width M, many small buses are

routed through fine-grain routing resources. This further increases the demand for fine-grain

routing resources. Finall y, due to the small amount of M-bit wide and near M-bit wide shifting

buses, M-bit wide shift blocks, like those used in the original DP-FPGA architecture [Cher96],

wil l not be cost effective for datapath architectures.

7.5 Summary and Conclusions

This chapter has explored the relationship between the granularity of the MB-FPGA

architecture and the regularity preserved by the datapath-oriented CAD flow. The principle

conclusions are that regardless of granularity, a majority of BLEs reside in datapath compo-

nents with only a small number of datapath widths. Furthermore, a great number of BLEs exist

in the widest possible datapath components. The inherent regularity along with the net regular-

ity indicates that the granularity values of 2 and 4 are the best for area. Finall y, regardless of

2 4 8 12 16 20 24 28 32
0 %

6 %

12 %

18 %

24 %

30 %

36 %

42 %

48 %

54 %

60 %
1st

2 nd
3 rd

Figure 7.9: The Most Popu lous Bus Types for Each Granu larity

(2 ,0)

(1 ,0)
(2 ,1)

(4 ,0)

(1 ,0)
(1 ,3)

(8 ,0)

(1 ,7)
(1 ,5)

(12 ,0)

(8 ,0)

(4 ,0)

(16 ,0)

(8 ,0)
(8 ,8)

(20 ,0)

(12 ,0)

(8 ,0)

(24 ,0)

(8 ,0)
(8 ,16)

(28 ,0)

(8 ,0)
(8 ,8)

(32 ,0)

(8 ,0)
(8 ,24)

G ranu larity

% o f tw o-te rm ina l conne ctions

166

granularity, it is likely that 20% to 27% of the MB-FPGA routing tracks should be fine-grain;

and M-bit wide shift blocks will not be cost effective for the MB-FPGA architecture.

167

8 The Area Efficiency of MB-FPGA

8.1 Introduction

In this chapter, an experimental approach is used to investigate the effect of the CMS

routing capacity of the MB-FPGA architecture on its area eff iciency. CMS routing capacity is

a measure of the routing capabili ty of the CMS routing tracks, and is a function of the granu-

larity of the architecture and the quantity of CMS routing tracks in each routing channel. Area

efficiency is defined to be the maximum amount of logic that can be implemented in a given

amount of area. The experiments consist of implementing a set of circuits on several variants

of the MB-FPGA architecture that have different granularity values and varying amounts of

CMS routing tracks. The area eff iciency is measured over this spectrum of architectures, using

the synthesis, packing, and routing algorithms described in Chapter 4, Chapter 5, and Chapter

6, respectively. The effect of these architectures on the resulting speed of the circuits is also

measured.

As discussed in Chapter 1, a carefull y designed CMS routing architecture can signifi-

cantly improve the area-efficiency of datapath-oriented FPGAs for arithmetic-intensive appli-

cations. During the design process, it is important to match the CMS routing capacity with the

routing demands of typical arithmetic-intensive appli cations. High capacity results in an

FPGA that can accommodate all coarse-grain routing demands in CMS routing tracks, but the

area eff iciency suffers if CMS routing tracks are also used to route fine-grain nets or buses of

lesser width. Low capacity, on the other hand, forces wide buses onto routing tracks of lower

granularity values, resulting in unrealized area savings.

The datapath-oriented FPGA architecture that will be studied in this chapter is the MB-

FPGA model that was introduced in Chapter 3. Figure 8.1 reproduces the overview of the MB-

168

FPGA architecture, for ease of reference. The architecture shown in the figure has two fine-

grain routing tracks and four CMS routing tracks per routing channel. The four CMS tracks are

grouped into a single routing bus so the granularity of the architecture is four. Recall that the

MB-FPGA design requires the number of clusters in each super-cluster to be equal to the num-

ber of CMS routing tracks in a routing bus; consequently, there are four clusters in each of the

super-clusters shown in the figure. The CMS routing capacity of the MB-FPGA architecture

can be altered by changing the number of CMS routing tracks in each routing channel or

simultaneously changing the width of the routing buses and the number of clusters in each

super-cluster. The relative capacity of CMS routing as compared to fine-grain routing can also

be changed by increasing or decreasing the number of fine-grain routing tracks in each routing

channel.

The specific questions concerning the CMS routing resources of MB-FPGA that are

answered in this chapter include:

C CC

C CC

C C

C C

C C

S

S

S

S

Cluster Super-Cluster
Fine-Grain Routing Track

CMS Routing Track

Figure 8.1: The MB-FPGA Architecture

Connection Block Switch BlockC S

169

1. What is the effect of the granularity of the MB-FPGA architecture on its area efficiency?

2. What is the effect of the amount of CMS routing tracks on the area efficiency of the MB-

FPGA architecture?

3. How does the MB-FPGA architecture compare against conventional FPGA architectures?

Section 8.5.1 shows that the granularity values of 2 and 4 are the best for area. Section

8.5.2 shows that, in order to achieve good area results, nearly half of the routing tracks in each

routing channel should be CMS tracks for a wide range of granularity values. Finally, Section

8.5.3 shows that, comparing to the conventional architecture [Betz99a] described in Chapter 2,

the MB-FPGA architecture is nearly 10% more area eff icient for implementing datapath cir-

cuits.

This chapter is organized as follows: Section 8.2 reviews the MB-FPGA architecture and

li sts architectural parameters involved in this study; Section 8.3 describes the experiment pro-

cedure; the limitations of this work are discussed in Section 8.4; Section 8.5 presents experi-

mental results and explanations; and concluding remarks appear in Section 8.6.

8.2 MB-FPGA Architectural Assumptions

The set of potential FPGA architectures is an extremely large design space. For example,

22 architectural parameters are needed to completely describe the MB-FPGA architecture pre-

sented in Chapter 3. Conventional architectures can be characterized using fewer design

parameters since they only contain fine-grain resources. Nevertheless, fourteen architectural

parameters are still needed the to completely characterize the conventional FPGA architecture

described in Chapter 2. In addition to the architectural parameters, one also has to specify the

size of each type of transistor in order to get meaningful area and speed measurements.

This combination of parameters creates a design space that is too large to be explored

completely. The study conducted in this chapter uses a more intelligent exploration strategy

170

where many of these parameters are set to be know good values from previous FPGA studies.

Care is also taken in the parameter selection process to ensure a fair comparison between the

MB-FPGA architecture and the conventional FPGA architecture.

In the remainder of this section, the architectural parameters involved in this study are

first summarized and defined. Then the selected values of each parameter are presented and

justified. Finally, the transistor sizing issues are discussed in detail .

8.2.1 A Summary of Architectural Parameters

The 22 architectural parameters that completely define the MB-FPGA architecture are

li sted in Table 8.1. The first column shows the classification of the architectural parameters;

and column 2 lists the symbols that will be used in this chapter to reference each of these

parameters. As shown by the table, the parameters can be classified into five categories. The

first category, routing capacity parameters, contains three members, M, Wf, and Wc. These

parameters characterize the routing capacity of the fine-grain and the CMS routing tracks in

each routing channel of the MB-FPGA architecture. The second category, super-cluster

parameters, contains four members, K, N, I, and Tp. Along with M, these parameters com-

pletely define the structure of the MB-FPGA super-clusters. The third and the fourth category,

connection block and switch block parameters, contain seven members each. They define the

complete structures of the connection blocks and the switch blocks, respectively. Finall y the

pad_ratio parameter defines the I/O block characteristics of the MB-FPGA architecture.

 Class. Symb.
Conv.
FPGA

Definition

Routing
Capacity

Parameters

M no the granularity of the architecture

Wf yes the number of fine-grain routing tracks in a routing
channel

Wc no the number of CMS routing tracks in a routing channel

Table 8.1: MB-FPGA Architectural Parameters

171

Super-
Cluster

Parameters

K yes LUT size — the number of inputs that a LUT has

N yes the number of BLEs per cluster
I yes the number of cluster inputs per cluster

Tp yes the topology of the physical placement of super-cluster
inputs and outputs

Connec-
tion Block
Parameters

Fc_if yes the number of fine-grain routing tracks that a super-
cluster input connects to as a percentage of Wf

Fc_ic no the number of routing buses that a super-cluster input
bus connects to as a percentage of Wc/M

Fc_of yes the number of fine-grain routing tracks that a super-
cluster output connects to as a percentage of Wf

Fc_oc no the number of routing buses that a super-cluster output
bus connects to as a percentage of Wc/M

Fc_pf yes the number of fine-grain routing tracks that an I/O
block input/output pin connects to as a percentage of
Wf

Fc_pc no the number of routing buses that an pad-input/pad-out-
put bus connects to as a percentage of Wc/M

TI yes the topology of the physical placement of isolation
buffers

Switch
Block

Parameters

Ts yes the switch block topology

Fs_f yes the fine-grain flexibil ity of the switch blocks — the
number of f ine-grain tracks that each fine-grain track
connects to in a switch block

Fs_c no the CMS flexibilit y of the switch blocks — the number
of routing buses that a routing bus connects to in a
switch block

Lf yes the length of a fine-grain routing track

Lc no the length of a CMS routing track

Sf yes the type of f ine-grain routing switches that connect
fine-grain routing tracks to each other in a switch block

Sc no the type of CMS routing switches that connect routing
buses to each other in a switch block

I/O Block
Parameter

pad_ratio yes MB-FPGA: the number of I/O blocks residing on one
side of a super-cluster
conventional FPGA: the number of I/O blocks residing
on one side of a cluster

 Class. Symb.
Conv.
FPGA

Definition

Table 8.1: MB-FPGA Architectural Parameters

172

The 14 architectural parameters that describe the conventional FPGA architecture pre-

sented in Chapter 2 is a subset of the 22 parameters listed in Table 8.1. Column 3 of the table

indicates if a parameter li sted in Table 8.1 also can be used to describe the conventional FPGA

architecture. The definition of each parameter is given in column 4. These definitions are self

explanatory when Chapter 2 and Chapter 3 are referenced for the conventional FPGA and the

MB-FPGA architectures, respectively.

8.2.2 Parameter Values

The values used for each parameter are li sted in Table 8.2, where the classification and

the symbol of each parameter are listed in column 1 and 2, respectively. As shown by column

3, all 22 parameters are involved in the investigation of question 1 and 2. M, Wf, and Wc are

the variables of the investigation. K is set to be 4 since it has been shown that 4-LUTs are one

of the most eff icient LUT sizes [Rose90] [Ahme00] and this LUT size is also used in many

commercial FPGAs [Alte02] [Xili 02]. N and I are set to be 4 and 10 respectively since this

combination was shown to be one of the most efficient by [Betz97b] [Betz98] [Betz99a] and is

used in many previous FPGA studies [Ahme00] [Betz99a] [Betz99b] [Lemi01] [Marq99]

[Marq00a] [Marq00b] [Sank99]. Tp and TI are discussed in detail in Section 8.2.2.1 and Sec-

tion 8.2.2.2, respectively.

For the remaining parameters, both Fc_ic and Fc_if are set to be 0.50; and Fc_oc and

Fc_of are set to be 0.25. These values were found to generate good area results by the study

done in [Betz99a] for fine-grain routing resources. Due to the lack of studies on Fc_pf, both

Fc_pc and Fc_pf are set to be 1.00 as it is done in [Betz99a] for fine-grain routing tracks. To

minimize the impact of not using the best values for Fc_pc and Fc_pf, the area of the input and

output connection blocks of the I/O blocks are excluded from the total area count. This exclu-

173

sion simulates the real-life design practices of keeping both datapath and its control logic on

the same chip in order to reduce the total number of chip-level I/Os.

The disjoint switch block topology [Hsei90] with Fs_f and Fs_c set to be three is used for

both the fine-grain track connections and the CMS routing bus connections since this is one of

the most efficient and widely used topologies for conventional FPGAs. A fully buffered global

routing architecture is also assumed — all switches in the switch blocks are buffered switches

— since buffered switches are widely used in many current commercial FPGAs [Lewi03]

Class. Param.
Val. for Q1 &

Q2

Val. for Q3

 MB-FPGA Conv. FPGA

Routing
Capacity

Parameters

M variable 4 n.a.

Wf variable variable variable

Wc variable variable n.a.

Super-
Cluster

Parameters

K 4 4 4

N 4 4 4
I 10 10 10

Tp see Sec. 8.2.2.1 see Sec. 8.2.2.1 see Sec. 8.2.2.1

Connec-
tion Block
Parameters

Fc_if 0.5 best best
Fc_ic 0.5 equal to Fc_if n.a.

Fc_of 0.25 best best
Fc_oc 0.25 equal to Fc_oc n.a.

Fc_pf 1.0 best best
Fc_pc 1.0 equal to Fc_pf n.a.

TI see Sec. 8.2.2.2 see Sec. 8.2.2.2 see Sec. 8.2.2.2

Switch
Block

Parameters

Ts disjoint disjoint disjoint

Fs_f 3 3 3
Fs_c 3 3 n.a.

Lf 2 best best

Lc 2 equal to L f n.a.

Sf bi-directional
buffered

bi-directional
buffered

bi-directional
buffered

Sc bi-directional
buffered

bi-directional
buffered

n.a.

I/O Block
Parameters

pad_ratio core-limited core-limited core-limited

Table 8.2: Values for Architectural Parameters

174

[Alte02] [Xili 02]. The track length is measured in terms of the number of super-clusters that a

routing track passes before it is interrupted by a switch. It is set to be two for both the CMS

and the fine-grain routing tracks. The track length of two along with the cluster size of four

were found to generate good area results in [Betz99a] for conventional FPGAs. Finally, the

pad_ratio is assumed to be suff iciently high so all benchmarks are core-limited — the mini-

mum area required to implemented each benchmark is bounded by the area of the logic and

routing resources needed instead of the area required to implement the I/O blocks of the

benchmark.

The investigation of question 3 requires the definition of two sets of independent archi-

tectural parameters. One set describes the MB-FPGA architecture and is shown in column 4 of

Table 8.2. The other set describes the conventional FPGA architecture and is shown in column

5. For MB-FPGA, Wf and Wc are the variables of the investigation. M is set to be 4 since it is

shown to be one of the most area efficient granularity values by the results of question 1. K is

again set to be 4; and again all benchmarks are assumed to be core-limited.

The rest of the parameters can be classified into two groups — one group describes the

topological features of the architecture and the other group consists of single numerical values.

The topological parameters, including Tp, TI, Ts, Fs_f, Fs_c, Sf, and Sc, are set to be the same

values as the ones used in the investigation of question 1 and 2. Two of the numerical parame-

ters, N and I, describe the super-cluster structure; and they are also set to be the same values as

the ones used to address question 1 and 2.

The remaining parameters describe the MB-FPGA routing architecture. As shown in

Table 8.2, it is assumed that the architectural parameters that describe the CMS routing

resources are always equal to their corresponding parameters that describe the fine-grain rout-

ing resources. Since the routing resources usuall y consume the majority of FPGA area, these

175

f ine-grain parameters, including Fc_of, Fc_if, Fc_pf, and L f, are systematically searched to

ensure that the best possible area results are obtained for the MB-FPGA architecture. These

experimentally determined values wil l be presented in detail in Section 8.5.3.

To fairly compare the area efficiency of the conventional architecture with the MB-

FPGA architecture, the corresponding numerical parameters of the conventional architecture,

including Fc_of, Fc_if, Fc_pf, and L f, are also systematically searched to find a set of values

that generate the best area. These experimentall y determined values wil l be presented in detail

in Section 8.5.3. Finally, for the conventional architecture, all benchmark circuits are assumed

to be core-limited; and all other parameters to are set to be the most area efficient values based

on the results of the previous studies, which are summarized for question 1 and 2.

8.2.2.1 Physical Placement of Super-Cluster Inputs and Outputs

In Table 8.2, Tp represents the distribution topology of the input and output pins for an

MB-FPGA super-cluster or a conventional FPGA cluster. For the conventional FPGA, the

cluster inputs and outputs are assumed to be uniformly distributed around the perimeter of

each logic cluster similar to the distribution topology used in [Betz99a] [Betz01]. This distri-

bution topology takes the advantage of the logical equivalency among the cluster inputs or

outputs [Betz99a]. An example of the distribution topology is shown in Figure 8.2. Here each

number represents either a cluster input or a cluster output.

The MB-FPGA uses a similar distribution topology for the super-cluster inputs and out-

puts. However, instead of uniformly distributing cluster inputs or cluster outputs, the input

buses or output buses are uniformly distributed. For the MB-FPGA architecture, each number

in Figure 8.2 represents an input/output bus instead of an individual cluster input/output.

176

Again this uniform distribution topology takes the advantage of the logical equivalency among

input buses or output buses when carry chains are not used.

8.2.2.2 Physical Placement of Isolation Buffers

In Table 8.2, TI represents the physical placement of the isolation buffers in either the

MB-FPGA architecture or the conventional FPGA architecture. Recall that the function of the

isolation buffers is to electrically isolate the routing tracks from the input connection blocks.

For the conventional FPGA architecture, each routing track has one isolation buffer for each

cluster position that it passes [Betz99a]. An example is shown in Figure 8.3 where an X indi-

cates the presence of an isolation buffer. In the figure, the conventional FPGA consists of 16

clusters, 5 horizontal routing channels, and 5 vertical routing channels. There is one routing

track in each routing channel; and these tracks are labeled x1 to x5 and y1 to y5. In total, there

are 40 isolation buffers in the figure. In general, the total number of isolation buffers, C, in a

conventional architecture can be determined by the following formula:

 ,

where W is the number of routing tracks in each routing channel. X is the number of rows of

clusters; and Y is the number of columns of clusters.

1 2 3

(a) Physical Placement of

1

3

4 2

(b) Physical Placement of
10 Cluster Inputs or 4 Cluster Outputs or

Figure 8.2: Tp for FPGA Architectures with N = 4 and I = 10

4

5

6
8 7

9

10 Cluster/
Super-
Cluster

Cluster/
Super-
Cluster

Super-Cluster Input Buses Super-Cluster Output Buses

C W X Y 1+()× X 1+() Y×+()×=

177

For the MB-FPGA architecture, electricall y, it is also suff icient to place only one isola-

tion buffer for every super-cluster position that a routing track passes. However, this topology

gives the MB-FPGA architecture an unfair area advantage since it needs only half of the isola-

tion buffers as compared with an equivalent conventional FPGA architecture. This unfairness

is ill ustrated by Figure 8.4, which is a transformation of Figure 8.3. The conventional architec-

ture in Figure 8.3 is transformed into the MB-FPGA architecture shown in Figure 8.4 by rear-

ranging the routing tracks and the clusters. In Figure 8.4, every four clusters are grouped into a

super-cluster. As shown, only 20 isolation buffers are needed for the new architecture. In gen-

eral, the total number of isolation buffers, C’ , needed in the transformed MB-FPGA architec-

ture is determined by the formula:

Cluster ClusterCluster Cluster

Cluster ClusterCluster Cluster

Cluster ClusterCluster Cluster

Cluster ClusterCluster Cluster

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5

Figure 8.3: Isolation Buffer Topo logy for Conventional FPGA

178

.

Since isolation buffers do not influence the overall routing capacity of the FPGAs, this

reduction in isolation buffers would unfairly advantage the MB-FPGA architecture in area

measurements. Throughout this study, extra isolation buffers are added to the MB-FPGA

architecture to cancel this unfair advantage. For the MB-FPGA architecture shown in Figure

8.4, two isolation buffers, instead of one, are counted for every super-cluster position that a

track passes. Note that the adjusted isolation buffer placement slightly disadvantages the MB-

FPGA architecture if all routing channels in Figure 8.4 contain two routing tracks.

Cluster ClusterCluster Cluster

Cluster ClusterCluster Cluster

Cluster ClusterCluster Cluster

Cluster ClusterCluster Cluster

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5

Figure 8.4: Equ ivalent MB-FPGA Architecture

C′ W
X Y 1+()×

M
--------------------------- X 1+() Y×

M
---------------------------+

 ×=
C

M
---------------=

179

8.2.3 Transistor Sizing

Each type of transistor used in the experiments is sized according to the methodology

laid out in [Betz99a] based on the TSMC 0.18 process. Both the MB-FPGA architecture

and the conventional FPGA architecture use the same transistor sizes for the same transistor

types.

In particular, for configuration memory, each of the six transistors in an SRAM cell is

sized to be minimum width; and each tri-state buffer in a buffered switch is sized to have a

drive strength that is five times of the minimum drive strength. Note that the difference

between the SRAM size and the tri-state buffer size is one of the major factors in determining

the effectiveness of configuration memory sharing in increasing area eff iciency. Unlike the

current study, none of the previous studies [Cher96] [Leij03] have detailed enough models to

take this sizing effect into account.

8.3 Experimental Procedure

This section describes the experimental procedure that is used to investigate the MB-

FPGA routing architecture. The CAD flow used throughout this investigation is shown in Fig-

ure 8.5(a). Its input consists of f ifteen benchmark circuits from the Pico-Java processor from

SUN Microsystems [Sun99]. The benchmark set covers all major datapath components of the

processor. These circuits are synthesized into LUTs using the EMC datapath-oriented synthe-

sis process described in Chapter 4. This synthesis process preserves the regularity of datapath

circuits while attempting to minimize area.

The synthesized circuits are then packed into super-clusters using the CNG datapath-ori-

ented packing algorithm as described in Chapter 5. The packing tool tries to pack adjacent bit-

µm

180

sli ces into a series of super-clusters. The packer also utilizes the super-cluster level carry con-

nections to minimize the delay of carry chains. The packed circuits are then placed using a

placement algorithm modified from the VPR placer [Betz99a] as described in Section 6.2. The

algorithm moves super-clusters as a basic unit if they contain grouped bit-sli ces. Otherwise,

non-datapath clusters are optimized individuall y. The placed circuits are then routed using the

CGR datapath-oriented router described in Chapter 6, which is modified to eff iciently use the

CMS routing resources. Using a set of specially designed cost functions, the router tries to bal-

ance the use of the fine-grain routing resources with the use of the CMS routing resources

based on congestion and the goal of timing optimization.

The area results used to address question 1, 2, and 3 are measured at the end of the CAD

flow. There are two options for averaging the area results across the fifteen benchmark cir-

cuits. They are the geometric averaging method, which weights each circuit equall y regardless

Figure 8.5: CAD Flows

15 B enchm ark C ircu its

A rea M easurem ent

15 Benchmark Circuits

Synthesis
(EMC Chap 4)

Packing
(CNG Chap 5)

Placement
(Section 6.3)

Routing
(CGR Chap 6)

Area Measurement

Synthesis
(Best Flat)

Placement
(VPR)

Routing
(VPR)

Packing
(T-VPack)

(a) C A D F low fo r th e M B -F P G A (b) C AD F low fo r A Conventiona l
F PG A A rch itec tu reArch itec tu re

181

of its size, and the arithmetic averaging method, which gives proportionally more weight to

larger circuits. For this study, the arithmetic averaging method is used, so the results contain a

higher percentage of contribution from the larger benchmark circuits in the benchmark suite.

Figure 8.5(b) shows the flow used for the conventional FPGA architecture, whose area

results are used in comparison with the MB-FPGA architecture to address question 3. For this

flow the best available flat synthesis results of Chapter 4 is used instead of the regularity pre-

serving datapath synthesis. The T-VPack algorithm is used for packing; and the VPR tools

[Betz99a] are used for placement and routing.

8.4 Limitations of this work

This section discusses the effects of the architectural assumptions and the experimental

procedure on the accuracy and the impli cation of the results that are presented later in this

chapter.

 The models that have been used for the MB-FPGA and the conventional FPGA architec-

tures are highly realistic. As a result, each model contains a large amount of architectural

parameters. Because of this high degree of parameterization, it is impossible to obtain the best

architectures through a full exploration of the design spaces. Instead, the values of many archi-

tectural parameters are selected based on previous studies on conventional FPGA architectures

as practical time limits preclude complete explorations. For the MB-FPGA architecture, these

are only “best-guessed” values since the MB-FPGA contains several significant differences

from the previous conventional FPGA architectures.

The benchmarks used in this study are all regular datapath circuits. The effectiveness of

the architecture in implementing irregular control logic is not examined. Furthermore, since

the benchmarks are mainly 32-bit wide datapath circuits, the effectiveness of the MB-FPGA

architecture in implementing wider datapath circuits can only be inferred from these results.

182

Finally, as all other empirical studies, the accuracy of the results that are presented in this

chapter depends on the quality of the CAD tools employed in the investigation — the results

reflect what is achievable by the current state-of-the-art tools; and future results might vary

with the development of the CAD technology.

8.5 Experimental Results

The experimental results that are presented here are based on the fifteen benchmark cir-

cuits used in the verification experiments from Chapter 4 through Chapter 6. Various aspects

of these circuits were described in Table 4.1, Table 5.1, and Table 6.1. Furthermore, their regu-

larity was quantified and analyzed in detail in Chapter 7. In this section, these circuits are used

to investigate the effect of M and Wc on the area efficiency of MB-FPGA. They are also used

to compare the area efficiency of the MB-FPGA architecture against the conventional FPGA

architecture.

8.5.1 Effect of Granularity on Area Efficiency

While Chapter 7 indirectly investigates the architectural implications of granularity

through its effect on logic and net regularity, the direct effect of granularity on the area effi-

ciency of MB-FPGA is examined here. Note that this examination is based on the set of

parameters li sted in column three of Table 8.2; and in order to separate out the effect of granu-

larity on coarse-grain logic from its effect on coarse-grain routing, MB-FPGA architectures

containing only fine-grain routing tracks are first investigated. Then CMS routing tracks are

added to these architectures to full y explore the effect of granularity on MB-FPGA.

183

8.5.1.1 MB-FPGA Architectures wi th No CMS Routing Tracks

Figure 8.6 plots the average area required to implement the benchmark circuits versus M

for MB-FPGA architectures that contain no CMS routing tracks. The X-axis represents the

granularity values. The Y-axis represents the average area; and it is measured using the equiv-

alent minimum-width transistor area model as described in [Betz99a]. As shown, the granular-

ity values of 2 and 4 consume the least area. As the granularity value is increased beyond 4,

the average area required increases significantly.

The primary cause of this increase is due to the large demand for routing created by

increased super-cluster capacities, which is a consequence of the high granularity values. As

the granularity value is increased, the logic capacity of the super-clusters increases proportion-

ally. For example, for a 32-bit wide architecture, there are 128 look-up tables, 320 inputs and

128 outputs per super-cluster. Such large super-clusters need to be served by very wide routing

channels; and in wide routing channels, each super-cluster input is connected to many routing

tracks. This results in a very large input connection block. Similarly, the size of the output con-

2 4 8 12 16 20 24 28 32

1.60

1.76

1.92

2.08

2.24

2.40

2.56

2.72

2.88

3.04

3.20
M in im um -W id th Trans is to r A rea (x10 6)

G ranu larity (M)

Figure 8.6: Total Area vs. M with No CMS Routing Tracks

95% Increase in A rea

184

nection blocks also increases significantly as the routing channels get wider. It is observed,

through our experiments, that this area increase cannot be countered by simply reducing the

values of Fc_if and/or Fc_of. (For example, no further area savings can be achieved by reduc-

ing Fc_of to less than 0.25, which is the most area efficient Fc_of value for N = 4 [Betz99a].)

As a result, the area consumed by the global routing resources is significantly increased as M

is increased.

Note that the cause of this area increase is very different from a similar scenario

described in [Betz99a]. In [Betz99a], for the conventional FPGA architecture, the area that

required to implement a set of benchmark circuits increases as the cluster size, N, is increased.

The cause of this area inflation, however, is due to the quadratic increase in area consumed by

the local routing resources inside the clusters.

In the current experiment, the local routing resource area consumed by each super-cluster

increases only li nearly with respect to the granularity value, M, since N and I are fixed at 4 and

10, respectively. As a result, the logic area — the total area consumed by the super-clusters —

remains relatively constant. Figure 8.7 plots this logic area versus M averaged over the bench-

marks. The figure shows that the average logic area increases only by 13% as M is increased

from 2 to 32. In contrast, in Figure 8.6, the average total area (the logic area plus the global

routing area) is increased by 95% over the same range of granularity values.

8.5.1.2 MB-FPGA Architectures wi th CMS Routing Tracks

Figure 8.8 plots the average area required to implement each benchmark circuit versus M

for MB-FPGA architectures with CMS routing tracks. The X-axis is M; and the Y-axis is the

minimum-width transistor area. The plot contains two curves. The top curve represents the

MB-FPGA architectures with no CMS routing tracks and is the same curve that was shown in

Figure 8.6. The bottom curve represents the most area eff icient MB-FPGA architectures that

185

contain CMS routing tracks. The percentage of CMS routing tracks in each routing channel,

which is calculated by the formula , is also labeled beside each data point on the bot-

tom curve.

2 4 8 12 16 20 24 28 32
4.5

4 .6

4 .7

4 .8

4 .9

5 .0

5 .1

5 .2

5 .3

5 .4

G ranu larity (M)

M in im um -W id th Trans is to r A rea (x10 5)

Figure 8.7: Log ic Area vs. M with No CMS Routing Tracks

13% Increase in A rea

Wc

Wc Wf+

2 4 8 12 16 20 24 28 32

1.60

1.76

1.92

2.08

2.24

2.40

2.56

2.72

2.88

3.04

3.20
M in im um -W id th Trans is to r A rea (x10 6)

G ranu larity (M)

Figure 8.8: Area vs. M with CMS Routing Tracks

1.44

B est M B -FP G A
w ith C M S R o utin g
Tracks

M B -FP G A w ithout
C M S R outing
Tra cks

60% 55 %

50%

40%

60%

25%

50%

50%

55%

186

As shown, for all granularity values, CMS routing tracks can be effectively used to

increase the area efficiency of MB-FPGA. For example, when M is equal to 2, the best archi-

tecture with CMS routing tracks is 5.6% smaller than the architecture with no CMS routing

tracks. When M is equal to 4, the best architecture with CMS routing tracks is 11% smaller

than the architecture with no CMS routing tracks. Overall, the most area eff icient MB-FPGA

architecture, shown in Figure 8.8, has a granularity value of 4 and contains a CMS track count

that is equal to 55% of the total number of tracks in each routing channel.

8.5.2 Effect of Proportion o f CMS Tracks on Area Efficiency

Figure 8.9 plots the average area consumed by each benchmark circuits against the per-

centage of CMS routing tracks in each routing channel. The X-axis represents the percentage

of CMS routing tracks per channel. The Y-axis represents the area. There are 9 curves in the

figure; and each curve represents an MB-FPGA architecture with a fixed granularity value of

M. An X marks the location of the minimum area on each curve. As shown, except M = 20, the

most area eff icient proportion of CMS routing tracks remains relatively constant at between

40% to 60% range for all granularity values. (Note that for M = 20, less CMS routing tracks

are needed since, as discussed in Chapter 7, relative small amount of logic and net regularity

are captured by the CAD flow at this granularity.)

This relative consistency of the best proportion of CMS routing tracks can be explained

by the percentage, P, of inter-super-cluster two-terminal connections that can be grouped into

M-bit wide buses after packing. These connections can be most eff iciently routed through the

CMS routing tracks. For each granularity value in the graph, P is marked by an O. The graph

shows that the most area eff icient percentage of CMS routing tracks is around P + 10% for

smaller granularity values of 2, 4, and 8, and around P + 30% for larger granularity values of

16, 24, 28, and 32. Interestingly, at smaller granularity values, more two-terminal connections

187

are captured in buses by the CAD flow, so P already is a quite large number. For larger granu-

larity values, however, fewer connections are captured in buses; and P is relatively small.

The main reason for the most area efficient percentage value to deviate more from P at

larger granulariti es is that, at high granularity values, the configuration memory area is amor-

tized among a greater number of CMS routing tracks. As a result, the cost per track for the

CMS routing tracks decreases as the granularity value is increased. This reduction in cost war-

rants the increased use of CMS routing tracks relative to P.

8.5.3 MB-FPGA Versus Conventional FPGA

This section compares the MB-FPGA architecture against the conventional FPGA archi-

tecture by measuring the average area required to implement the benchmark circuits on each

of the architectures. Two sets of experiments were performed. The first set of experiments

determines the most area efficient values for the numerical parameters describing the routing

architectures. Using these values, the second set of experiments measures the area, as well as

0% 10% 20 % 30 % 40 % 50 % 60% 7 0% 80% 9 0%
1.40

1.58

1.76

1.94

2.12

2.30

2.48

2.66

2.84

3.02

3.20
M in im um -W id th Trans is to r A rea (x10 6)

W c /(W f+ W c)

M = 32
M = 28
M = 24
M = 20
M = 16
M = 12
M = 8
M = 4
M = 2

Figure 8.9: Area vs. Propo rtion o f CMS Tracks

188

the performance, of the benchmark circuits implemented on the two architectures. Each set of

these experiments is described in turn.

8.5.3.1 Parameter Results

The first set of experiments systematically searches four numerical parameters, including

Fc_of, Fc_if, Fc_pf, and L f. A divide-and-conquer approach is used to reduce the number of

searches required to explore this four dimensional design space. First, the most area efficient

value of Fc_of is determined. Then the best values for Fc_if and Fc_pf are determined using an

iterative approach. Finall y, the most area efficient value of L f is determined experimentall y. To

further reduce the number of searches, only the MB-FPGA architectures that contain no CMS

routing tracks are considered in most of the experiments. It is assumed that these results are

generall y true across all MB-FPGA architectures.

Fc_of

As it is described in [Betz99a], for the conventional FPGA architecture, the most area

efficient values for Fc_of is equal to . Using the same set of experiments, it is found that the

same formula applies to the MB-FPGA architecture containing no CMS routing tracks.

Fc_if and Fc_pf

An iterative approach is used to determine the most area efficient values for Fc_if and

Fc_pf using the MB-FPGA architecture without CMS routing tracks. For iteration 1, the Fc_pf

is set to be 1.00. Figure 8.10 plots the average area consumed by the routing resources against

Fc_if in implementing the benchmark circuits. The X-axis in the figure represents Fc_if. The

Y-axis represents the area. As shown, the best area is generated when Fc_if is equal to 0.5.

1
N

189

In the second iteration, Fc_if is set to be 0.5, which is the most area eff icient value in iter-

ation 1. Fc_pf is plotted against the routing area as shown in Figure 8.11. As shown, the best

area is achieved when Fc_pf is equal to 0.2. Finall y in the third iteration, Fc_pf is set to be 0.2;

and Figure 8.12 plots the average routing area against Fc_if. The best area is achieved when

Fc_if is equal to 0.4. Subsequent iterations confirm that the most area efficient values for

Fc_pf and Fc_if is equal to 0.2 and 0.4, respectively. Finall y, using the same set of experi-

ments, the most area eff icient values of Fc_pf and Fc_if are determined to be 0.5 and 0.4,

respectively, for the conventional FPGA architecture.

1.3 2

1.3 3

1.3 4

1.3 5

1.3 6

1.3 7
M in im um -W id th Trans is to r A rea (x10 6)

0 .3 0 .35 0.4 0 .45 0 .5 0 .55 0.6

Fc_ if

Figure 8.10: Iteration 1: Routing Area vs. Fc_if for Fc_pf = 1.00

M in im um -W id th Trans is to r A rea (x10 6)

1 .13

1.15

1.17

1.19

1.21

1.23

0.1 0 .2 0 .3 0 .4 0 .5 0 .6
F c_ pf

Figure 8.11: Iteration 2: Routing Area vs. Fc_pf for Fc_if = 0.5

190

Lf

Figure 8.13 is a plot of the average area required to implement the benchmark circuits

versus the track length, L f. Here, the track length is measured in terms of the logical track

length, which is equal to the number of super-clusters that a track spans. It is assumed that

50% of the tracks in the MB-FPGA architecture are CMS; and Lc is always equal to L f. The X-

axis in the figure represents Lf, which ranges from 1 to 16. The Y-axis represents the area.

There are 4 curves in the figure. Each curve represents an unique cluster size, N, including 2,

4, 8, and 10. For these cluster sizes, I is set to be 4, 10, 18, and 22, respectively. These values

of I are shown to generate good area results for their corresponding cluster sizes [Betz99a]. As

shown, the cluster size of 4 and the track length of 2 are the best architectural choice for the

MB-FPGA architecture. Furthermore, the track length of 2 is always the most area efficient

across all cluster sizes. Finally, using the same experiment, the best L f value for the conven-

tional FPGA architecture is determined also to be 2.

M in im um -W id th Trans is to r A rea (x10 6)

Fc_ if
1 .09

1.29

1.49

1.69

1.89

2 .09

2.29

0.1 0 .2 0 .3 0 .4 0 .45

Figure 8.12: Iteration 3: Routing Area vs. Fc_if for Fc_pf = 0.2

0 .05 0.15 0 .25 0.35

191

8.5.3.2 Area and Performance Results

After obtaining the best possible architectural parameters for MB-FPGA, a set of experi-

ments were performed by repeatedly invoking the CGR router over a range of values for Wc

and Wf. For each invocation a fixed value of Wc is first chosen from the range of 0 to 80 in

increments of 4. Then the router is instructed to search for the minimum value of Wf that is

needed to successfully route each of the benchmark circuits. The resulting MB-FPGA archi-

tectures are then classified into eight groups based on the percentage of total tracks that are

CMS tracks. The percentile ranges are (0%, 0%], (0%, 10%], (10%, 20%], (20%, 30%], (30%,

40%], (40%, 50%], (50%, 60%], and (60%, 70%]. Within each region, the minimum area

obtainable by each circuit is first recorded. These minimum area values are then averaged

across the fifteen benchmark circuits. The area again is measured in terms of the number of

equivalent minimum-width transistor area as described in [Betz99a]. The arithmetic average

of the area values is then plotted against each percentile range.

Figure 8.14 is a graph of the total area versus the percentage of routing tracks that are

CMS tracks in the MB-FPGA routing architecture. The figure shows that when there are only

a small percentage of CMS routing tracks, the implementation area of circuits on MB-FPGA

Figure 8.13: Area vs. Log ical Track Length

C ircu it A rea in
M in im um -W id th N = 2

N = 4

N = 8

N = 10

2.20

2.00

1.80

1.60
1 2 4 16

L f

8

Trans is to r A rea (x10 6)

192

actually increases with the increased number of CMS routing tracks. There are two main

causes of this initial increase in area. First when there are few CMS routing tracks, not all logic

block input pins can be connected to all l ogic block output pins through CMS routing. This

limitation dramaticall y reduces the usefulness of the CMS routing resources, hence resulting

in increased area. A secondary cause is that as the CMS routing tracks are added to the routing

fabric, routing resources are differentiated into two types. This differentiation reduces the rout-

ing flexibility and also accounts for the rise in area.

As the number of CMS routing tracks is increased to the 20% range, enough logic block

pins can be connected to each other through the CMS routing tracks; and the benefit of CMS

routing tracks starts to outweigh the decreased flexibility in routing. As a result, the total area

required decreases until it reaches the minimum when CMS routing tracks account for

between 40% to 50% of the total number of routing tracks. When the number of CMS tracks is

further increased, the number of CMS routing tracks provided by the architecture starts to

exceed the number of CMS routing tracks required by the circuits. The router then is forced to

use CMS routing tracks to implement fine-grain routing. This reduces the efficiency of the

MB-FPGA architecture past the 50% point.

Figure 8.14: Area vs. Percentage of CMS Tracks

C ircu it A rea in M in im um -W id th
Tran sisto r A rea (x106)

1 .60

1.50

1.40

1 00.0%

95.0%

90.0%
% of C M S Tracks0% 0% -

10%
10% -
20%

20% -
30%

3 0% -
4 0%

40% -
50%

50% -
60%

60% -
70%

N orm alized
C ircu it A rea

193

Overall , the best area is achieved when CMS routing tracks account for 40% to 50% of

the total number of routing tracks, where the benchmark circuits use 6% less area comparing

to architectures with no CMS routing tracks. It is interesting to note that even though 90% of

LUTs in the benchmark circuits belong to four-bit wide datapath components, only 40% to

50% of CMS routing tracks are needed. It is because many datapath components are not only

connected by buses but also by a substantial amount of non-bus control signals, indicating that

even highly regular circuits need many fine-grain routing tracks.

The right hand axis of Figure 8.14 also shows the area data normalized against the area of

the best conventional FPGA architecture. All MB-FPGA architectures performed better than

the best conventional architecture, where the 100% point represents the area of the conven-

tional architecture when implementing the same circuits. Even with no CMS routing tracks,

the MB-FPGA architecture is 3.6% smaller due to the more eff icient datapath-oriented place-

ment and routing. Overall the best MB-FPGA architecture is 9.6% smaller than the best stan-

dard architecture.

108.0%

108.6%

109.2%

109.8%

110.4%

111.0%

111.6%

112.2%

112.8%

113.4%

114.0%

0% 0% -
10%

10% -
20%

20% -
30%

30% -
40%

40% -
50%

50% -
60%

60% -
70%

N orm alized D e la y

% o f C M S Tracks

Figure 8.15: Normalized Delay vs. Percentage of CMS Tracks

194

Finally, Figure 8.15 plots the geometric average of circuit delay against the proportion of

CMS routing tracks. The delay is normali zed against the delay of the same circuits imple-

mented on the conventional FPGA architecture. Note that, here, the delay of the carry chain is

assumed to be the same as the delay of the local routing network. As shown the MB-FPGA

implementation is around 9% to 13% slower than the conventional FPGA implementation.

However, if the carry chains are much faster than the local routing network, this speed penalty

might be significantly reduced if not completely eliminated.

8.6 Summary and Conclusions

This chapter has explored the relationship between the capacity of CMS routing

resources and the area efficiency of MB-FPGA. The principle conclusions are that the granu-

larity value of 4 has the best area result. Furthermore, to achieve the best area results, 40% to

50% of the total number of routing tracks should be CMS routing tracks despite the fact that,

in the benchmark circuits, over 90% of LUTs are in regular datapath components. Finally, for

cluster size of four, the best MB-FPGA architecture is 9.6% smaller than the best conventional

architecture. The best architecture, however, has a potential speed penalty of 9.2%. Note that

the area saving is much less than the 50% savings predicated by the DP-FPGA study [Cher96].

The results suggest that in order for the configuration memory sharing technique to be an

effective methodology in achieving significant area savings, the configuration memory area in

the target FPGA architectures must be significantly greater than the area of the switch that they

control. The case of using configuration memory sharing architectures for appli cations with

significantly more regularity and wider datapath than the benchmarks used in this study is

more compelling but remains to be proven in a future study.

195

9 Conclusions

9.1 Thesis Summary

The main focus of this thesis has been the study of datapath-oriented FPGA architectures

with regard to the effect of multi-bit logic and CMS routing resources on their area efficiency.

The study’s purpose has been to determine the most appropriate amount of CMS routing

resources that can be used in FPGAs in order to minimize the implementation area of real

datapath circuits under real modern CAD flows.

To this end, the first major in-depth study is conducted on the amount of datapath regu-

larity that can be actuall y translated into area savings through configuration memory sharing.

The study found that when detailed implementation issues are taken into account, the actual

achievable area savings can be significant less than the previous estimations. The configura-

tion memory sharing FPGA architecture, the MB-FPGA architecture, used in this study is only

about 10% more area efficient than a comparable conventional and widely studied FPGA

architecture in implementing datapath circuits. Furthermore, this increase in area eff iciency

has a potential speed penalty of around 10%.

In particular, the studies conducted in this thesis found that when transistors are properly

sized, the SRAM size relative to the tri-state buffer size in a buffered switch is not significant

enough to generate significant area savings as predicated by previous studies, which do not

have detailed enough models to take the transistor sizing effect into account. Furthermore, the

study on datapath regularity found that net regularity does not necessaril y correspond to logic

regularity. For example, for the benchmarks used in this study, 90% of the logic belongs to 4-

bit wide datapath components; only around 50% of the nets, however, belongs to 4-bit wide

buses.

196

The results suggest that in order for the configuration memory sharing technique to be an

effective methodology in achieving significant area savings the configuration memory area in

the target FPGA architectures must be significantly greater than the area of the switch that they

control. Note that for both the conventional FPGA and the MB-FPGA architecture, SRAM

composed of minimum width transistors are found to be sufficient. This SRAM size as com-

pared to the size of a reasonably sized tri-state buffer is not significant enough to generate

good area savings.

The case of using configuration memory sharing architectures for applications with sig-

nificantly more regularity and wider datapath than the benchmarks used in this study is more

compell ing but remains to be proven in a future study. Finall y, the study found that the config-

uration memory-sharing scheme stil l can be used to significantly reduce the amount of config-

uration memory used to control an FPGA and remains to be a promising technology in

appli cations where such an effect is desired.

The research has been carried out using an experimental approach. For the experimental

study, a new FPGA architecture called the Multi-Bit FPGA (MB-FPGA) has been developed.

The architecture contains both multi-bit logic and CMS routing resources. It is also highly

parameterized and closely resembles the cluster-based architectures that have been widely

used in many academic studies and state-of-the-art commercial FPGAs. This close resem-

blance along with high parameterization enables a direct comparison between the area effi-

ciency of the MB-FPGA architecture and the area efficiency of a conventional FPGA

architecture that was widely used in many previous studies.

During the study, new types of synthesis, packing, and routing algorithms, specially

designed to preserve and utili ze datapath regularity, have been used to measure the effect of

CMS routing resources on the area efficiency of the MB-FPGA architecture. The results of the

197

work in this thesis provide new insights into the design of FPGA architectures that utili ze

multi-bit logic and CMS routing resources. The thesis also provides an in-depth study on the

design and the construction of datapath-oriented CAD tools and proposes a method of system-

atically characterizing and quantifying datapath regularity.

9.2 Thesis Contributions

This dissertation makes the following detailed contributions:

In Chapter 3, the MB-FPGA architecture was described. It is the first datapath-oriented

FPGA architecture that contains a completely specified global and detailed routing architec-

ture. The MB-FPGA organizes its logic resources into super-clusters, which can be used to

capture the intra-bit-sli ce connections into inter-super-cluster buses. These buses are then

routed through the global routing resources, which employs configuration memory sharing in

order to reduce the area overhead of transporting buses across the architecture. The global

routing resources also contain a mixture of f ine-grain and CMS routing tracks in each routing

channel, resulting in a homogenous architecture that is capable of implementing both large

datapath circuits and small non-datapath circuits.

In Chapter 4, the Enhanced Module Compaction (EMC) datapath-oriented synthesis

algorithm was described. It is the first published algorithm that preserves user-specified regu-

larity information in datapath circuits while achieving an area-efficiency that is comparable to

the conventional flat synthesis techniques. EMC employs two word-level optimization tech-

niques and several bit-slice I/O optimizations to enhance the area eff iciency of the original

module compaction algorithm. Furthermore, unlike the original module compaction algo-

rithm, the EMC algorithm does not rely on the results of any placement tools. EMC has been

used to obtain excellent synthesis results, especially in terms of area-eff iciency and datapath

regularity preservation, for realistic datapath circuits implemented on FPGAs.

198

The Coarse-grain Node Graph (CNG) packing algorithm for MB-FPGA was developed

in Chapter 5. It is the first published FPGA packing algorithm that preserves the regularity of

datapath circuits throughout the packing process. CNG employs specially designed cost func-

tions that take into account datapath regularity as well as performance and area efficiency dur-

ing packing. CNG has been used to obtain excellent packing results for reali stic datapath

circuits implemented on the MB-FPGA architecture.

The Coarse-Grain Resource (CGR) routing algorithm for MB-FPGA was described in

Chapter 6. It is the first published FPGA routing algorithm that accommodates CMS routing

resources, which share configuration memory, as well as conventional fine-grain routing

resources. The accommodation is achieved by a set of specially designed cost functions that

balance the demands on each type of routing resources with their availabil ity. The cost func-

tions also allow the optimization of FPGA routing area and routing delay. CGR has been used

to obtain excellent routing results for reali stic datapath circuits implemented on the MB-FPGA

architecture.

Chapter 7 determines appropriate values for several MB-FPGA architectural parameters

through an analytical approach. It formally characterizes and measures datapath regularity in

terms of two parameters — the logic regularity and the net regularity. Using the regularity

information, the granularity values of 2 and 4 are determined to be good values for the effi-

cient implementation of datapath circuits on MB-FPGA. It also shows that, for good area effi-

ciency, the number of fine-grain routing tracks should be at least 20% to 27% of the total

number of routing tracks. Finally, it shows that the M-bit wide shift blocks employed in the

DP-FPGA architecture are li kely to be inefficient in area.

Chapter 8 gives the results of an experimental study of the effects of CMS routing

resources on the area efficiency of the MB-FPGA architecture. This study is the first of its

199

kind for FPGAs that contain CMS routing resources. The principle conclusions reached are

that for the best area efficiency, 40% to 50% of the routing tracks in the MB-FPGA architec-

ture should be CMS routing tracks. This is true even for highly regular datapath circuits that

have over 90% of LUTs in regular datapath components. Also it shows that the granularity

value of 4 gives the best area results for the MB-FPGA architecture when implementing 32-bit

wide datapath circuits. Finally, the results show that the best MB-FPGA architecture is 9.6%

smaller than the best conventional FPGA architecture. This area saving is much smaller than

the savings predicated by the DP-FPGA study; and the best architecture has a worst case speed

penalty of 9.2%.

9.3 Suggestions for Future Research

The MB-FPGA architecture can be used as a research vehicle to investigate into the vari-

ous questions regarding multi-bit logic and CMS routing resources, including:

1. Can configuration memory sharing be effectively used in super-clusters to further

increase the area eff iciency of the MB-FPGA architecture? Currently there is no shar-

ing of configuration memory inside the super-clusters. However, since, as described in

Chapter 3, in order to capture intra-bit-sli ce connections into inter-super-cluster buses,

identical LUT configurations are often kept inside a single super-clusters and each of

these identical LUTs are implemented in unique clusters, configuration memory shar-

ing across clusters might be able to reduce the implementation area of the super-clus-

ters. The sharing need not to be implemented for all logic and local routing resources;

instead, it might be most beneficial to only share configuration memory for only a per-

centage of these resources. Research needs to be done to find the best proportion of

configuration memory sharing resources in a super-cluster. The CNG packing algo-

rithm also has to be modified accordingly to accommodate this architectural change.

200

2. Is there any benefit to adding programmable connections between the CMS routing

tracks and the fine-grain routing tracks inside the MB-FPGA switch blocks? Cur-

rently, it is assumed that inside each MB-FPGA switch block, there is no connectivity

between a CMS track and a fine-grain track. Adding such connectivity, however,

might increase routing flexibilit y by allowing buses to be dispersed into individual

signals and vice versa — individual signals to be grouped into buses. The benefit of

such added functionali ty is unclear and warrants further research.

3. Will there be any benefit in having different track lengths for the CMS routing tracks

and the fine-grain routing tracks? Buses and individual signals might have different

routing requirements. Having different track lengths for these two types of tracks

might improve the overall performance of the MB-FPGA architecture and warrants

further research.

Several improvements can also be made to the MB-FPGA CAD tools including:

1. Fully automate the two word-level optimizations described in Chapter 4.

2. For the datapath-oriented routing algorithm, future research should improve upon the

timing performance of the router. The goal should be to achieve consistently good

routing delays regardless of the number of CMS routing tracks in each routing chan-

nel.

Finally, according to [Tuan03], configuration memory consumes significant amount

(around 38%) of the total FPGA leakage power. Configuration memory sharing allows the

programmable resources to share configuration memory; therefore, reduces the total amount

of configuration memory required to implement datapath circuits. It is possible that datapath-

oriented architectures like the MB-FPGA architecture wil l have much lower leakage power

consumption than conventional FPGAs — making it more suitable for implementing mobile

201

appli cations, which often are arithmetic and datapath intensive. This area warrants further

research.

202

203

Append ix A: Net Regularity Distribution

This appendix lists the net regularity distribution for the granularity values of 2, 4, 8, 12,

16, 20, 24, 28, and 32. It supplements the discussion presented in Section 7.5.2. Each section

li sts the net regularity distribution for a specific granularity value. Each row of the table corre-

sponds to a fixed bus width. Each column of the table corresponds to a fixed amount of shift.

Each entry of the table li sts the percentage of two-terminal connections that are in the buses

with the corresponding width and shift. Entries that are less than 1% are shaded in light gray.

A.1 MB-FPGA Architectural Granularity = 2

A.2 MB-FPGA Architectural Granularity = 4

A.3 MB-FPGA Architectural Granularity = 8

Bus
Width

Shift

0 1

1 16% 11%

2 59% 14%

Table A.1: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 2

Bus
Width

Shift

0 1 2 3

1 6.9% 5.5% 5.7% 6.5%

2 2.0% 3.4% 3.0% 2.3%

3 0.79% 1.2% 1.2% 0.80%

4 54% 2.8% 2.2% 1.5%

Table A.2: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 4

204

A.4 MB-FPGA Architectural Granularity = 12

A.5 MB-FPGA Architectural Granularity = 16

Bus
Width

Shift

0 1 2 3 4 5 6 7

1 3.0% 2.7% 2.9% 2.8% 3.1% 3.2% 3.1% 3.3%

2 1.5% 1.6% 1.3% 1.2% 1.2% 1.1% 1.4% 1.1%

3 0.48% 0.68% 0.48% 0.54% 0.50% 0.58% 0.39% 0.56%

4 2.3% 0.29% 0.35% 0.41% 1.5% 0.16% 0.20% 0.16%

5 0.083% 0.033% 0.050% 0.13% 0.33% 0.083% 0.050% 0.017%

6 0.54% 0.020% 0.20% 0.0% 0.080% 0.10% 0.34% 0.060%

7 0.23% 0.61% 0.023% 0.023% 0.070% 0.047% 0.070% 0.14%

8 47% 1.6% 0.59% 0.13% 2.1% 0.19% 0.80% 0.75%

Table A.3: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 8

Bus
Width

Shift

0 1 2 3 4 5 6 7 8 9 10 11

1 2.1% 1.7% 1.8% 2.0% 2.2% 2.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4%

2 0.80% 1.2% 1.2% 0.96% 0.82% 0.79% 0.98% 0.77% 0.92% 0.79% 0.82% 0.65%

3 0.27% 0.48% 0.29% 0.27% 0.29% 0.28% 0.22% 0.13% 0.27% 0.30% 0.18% 0.21%

4 3.0% 0.066% 0.053% 0.066% 1.7% 0.092% 0.16% 0.16% 1.7% 0.013% 0.066% 0.12%

5 0.050% 0.017% 0.033% 0.033% 0.38% 0.017% 0.0% 0.066% 0.083% 0.017% 0.0% 0.017%

6 0.28% 0.0% 0.079% 0.0% 0.32% 0.020% 0.20% 0.0% 0.020% 0.040% 0.040% 0.020%

7 0.069% 0.21% 0.0% 0.0% 0.046% 0.12% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 14% 0.11% 0.0% 0.0% 0.69% 0.0% 0.0% 0.0% 1.1% 0.026% 0.053% 0.18%

9 0.62% 0.059% 0.030% 0.030% 0.089% 0.059% 0.0% 0.030% 0.030% 0.059% 0.030% 0.089%

10 0.43% 0.0% 0.0% 0.0% 0.0% 0.033% 0.066% 0.033% 0.033% 0.066% 0.36% 0.033%

11 0.33% 0.11% 0.036% 0.036% 0.036% 0.073% 0.0% 0.0% 0.036% 0.036% 0.22% 0.40%

12 27% 1.3% 0.24% 0.12% 0.75% 0.12% 0.36% 0.040% 0.75% 0.040% 0.48% 0.36%

Table A.4: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 12

205

Bus
Width

Shift

0 1 2 3 4 5 6 7

1 1.2% 1.1% 1.3% 1.3% 1.4% 1.4% 1.4% 1.4%

2 0.82% 0.87% 0.70% 0.67% 0.64% 0.69% 0.66% 0.73%

3 0.40% 0.41% 0.35% 0.41% 0.29% 0.32% 0.35% 0.39%

4 1.0% 0.19% 0.22% 0.20% 0.70% 0.19% 0.16% 0.079%

5 0.083% 0.12% 0.033% 0.050% 0.26% 0.033% 0.017% 0.050%

6 0.10% 0.020% 0.10% 0.0% 0.040% 0.060% 0.0% 0.020%

7 0.046% 0.0% 0.0% 0.0% 0.046% 0.046% 0.023% 0.0%

8 4.4% 0.0% 0.0% 0.053% 0.42% 0.0% 0.0% 0.0%

9 0.089% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.033% 0.0% 0.0% 0.0% 0.033% 0.0% 0.10% 0.0%

11 0.073% 0.15% 0.0% 0.0% 0.0% 0.036% 0.0% 0.0%

12 0.60% 0.0% 0.040% 0.0% 0.32% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.043% 0.0% 0.0% 0.0% 0.0%

14 0.97% 0.046% 0.14% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.25% 0.89% 0.0% 0.0% 0.0% 0.050% 0.0% 0.0%

16 34% 0.79% 0.21% 0.11% 0.32% 0.11% 0.21% 0.11%

Table A.5: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 16 – Part 1 of 2

Bus
Width

Shift

8 9 10 11 12 13 14 15

1 1.4% 1.4% 1.4% 1.4% 1.3% 1.3% 1.3% 1.4%

2 0.73% 0.58% 0.62% 0.67% 0.77% 0.75% 0.81% 0.72%

3 0.25% 0.34% 0.32% 0.36% 0.34% 0.43% 0.28% 0.29%

4 0.52% 0.079% 0.11% 0.12% 0.87% 0.15% 0.19% 0.21%

5 0.083% 0.033% 0.050% 0.066% 0.066% 0.050% 0.050% 0.050%

6 0.020% 0.020% 0.079% 0.020% 0.060% 0.060% 0.020% 0.0%

7 0.0% 0.046% 0.0% 0.0% 0.046% 0.0% 0.0% 0.0%

8 2.2% 0.026% 0.11% 0.026% 0.13% 0.0% 0.0% 0.053%

9 0.45% 0.030% 0.0% 0.0% 0.0% 0.0% 0.060% 0.0%

10 0.10% 0.033% 0.033% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.11% 0.036% 0.073% 0.0% 0.073% 0.0% 0.0% 0.0%

12 0.040% 0.0% 0.0% 0.0% 0.20% 0.0% 0.040% 0.040%

13 0.0% 0.043% 0.0% 0.0% 0.043% 0.086% 0.086% 0.086%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.046% 0.51% 0.046%

15 0.050% 0.10% 0.0% 0.0% 0.050% 0.0% 0.10% 0.40%

16 2.8% 0.0% 0.32% 0.0% 0.64% 0.0% 0.26% 0.42%

Table A.6: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 16 – Part 2 of 2

206

A.6 MB-FPGA Architectural Granularity = 20

Bus
Width

Shift

0 1 2 3 4 5 6 7 8 9

1 1.1% 1.1% 1.2% 1.1% 1.2% 1.2% 1.3% 1.2% 1.2% 1.3%

2 0.54% 0.63% 0.58% 0.54% 0.50% 0.69% 0.65% 0.72% 0.70% 0.77%

3 0.36% 0.27% 0.29% 0.30% 0.29% 0.25% 0.26% 0.17% 0.24% 0.20%

4 1.6% 0.13% 0.17% 0.13% 1.0% 0.067% 0.11% 0.094% 0.52% 0.054%

5 0.067% 0.033% 0.017% 0.033% 0.28% 0.050% 0.0% 0.084% 0.10% 0.0%

6 0.10% 0.080% 0.040% 0.020% 0.12% 0.0% 0.020% 0.0% 0.080% 0.0%

7 0.094% 0.023% 0.0% 0.0% 0.070% 0.070% 0.047% 0.023% 0.023% 0.023%

8 3.0% 0.0% 0.080% 0.080% 0.62% 0.0% 0.027% 0.0% 2.5% 0.054%

9 0.060% 0.0% 0.0% 0.030% 0.060% 0.0% 0.0% 0.030% 0.33% 0.060%

10 0.23% 0.0% 0.067% 0.0% 0.0% 0.0% 0.033% 0.0% 0.13% 0.0%

11 0.074% 0.51% 0.0% 0.0% 0.0% 0.037% 0.0% 0.0% 0.037% 0.037%

12 8.6% 0.12% 0.040% 0.040% 0.24% 0.0% 0.0% 0.0% 0.24% 0.040%

13 0.74% 0.0% 0.0% 0.0% 0.0% 0.043% 0.0% 0.087% 0.0% 0.0%

14 0.14% 0.0% 0.0% 0.0% 0.0% 0.0% 0.047% 0.0% 0.0% 0.0%

15 0.10% 0.15% 0.0% 0.0% 0.0% 0.0% 0.0% 0.050% 0.0% 0.0%

16 1.9% 0.054% 0.0% 0.0% 0.054% 0.0% 0.0% 0.0% 0.11% 0.0%

17 0.0% 0.0% 0.0% 0.057% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

18 0.24% 0.0% 0.12% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

19 0.19% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20 19% 0.54% 0.13% 0.13% 0.40% 0.067% 0.13% 0.0% 0.20% 0.0%

Table A.7: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 20 – Part 1 of 2

207

Bus
Width

Shift

10 11 12 13 14 15 16 17 18 19

1 1.3% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.1% 1.1% 1.2%

2 0.66% 0.68% 0.61% 0.56% 0.60% 0.64% 0.53% 0.58% 0.58% 0.47%

3 0.23% 0.16% 0.25% 0.29% 0.22% 0.26% 0.28% 0.21% 0.22% 0.29%

4 0.013% 0.094% 0.72% 0.040% 0.067% 0.027% 1.0% 0.16% 0.094% 0.12%

5 0.0% 0.067% 0.10% 0.033% 0.0% 0.084% 0.050% 0.0% 0.033% 0.017%

6 0.060% 0.0% 0.10% 0.0% 0.060% 0.0% 0.020% 0.020% 0.020% 0.040%

7 0.0% 0.0% 0.023% 0.070% 0.0% 0.023% 0.0% 0.0% 0.047% 0.047%

8 0.0% 0.080% 2.6% 0.054% 0.054% 0.0% 0.35% 0.027% 0.0% 0.0%

9 0.0% 0.0% 0.24% 0.0% 0.0% 0.030% 0.090% 0.0% 0.030% 0.030%

10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.033% 0.033%

11 0.0% 0.0% 0.037% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.0% 0.0% 0.12% 0.0% 0.12% 0.080% 0.040% 0.0% 0.080% 0.12%

13 0.0% 0.0% 0.087% 0.043% 0.0% 0.0% 0.0% 0.043% 0.043% 0.0%

14 0.0% 0.0% 0.047% 0.047% 0.28% 0.0% 0.047% 0.0% 0.0% 0.047%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.10%

16 0.0% 0.0% 0.21% 0.054% 0.0% 0.0% 0.21% 0.0% 0.054% 0.0%

17 0.0% 0.0% 0.0% 0.057% 0.0% 0.0% 0.057% 0.057% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.48% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.064% 0.064% 0.19% 0.44%

20 0.067% 0.0% 0.60% 0.0% 0.0% 0.0% 0.067% 0.0% 0.0% 0.13%

Table A.8: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 20 – Part 2 of 2

208

A.7 MB-FPGA Architectural Granularity = 24

Bus
Width

Shift

0 1 2 3 4 5 6 7 8 9 10 11

1 0.78% 0.81% 0.89% 0.90% 0.89% 0.94% 1.0% 0.99% 0.94% 0.98% 0.91% 0.96%

2 0.61% 0.60% 0.55% 0.52% 0.53% 0.45% 0.50% 0.46% 0.49% 0.35% 0.48% 0.46%

3 0.30% 0.38% 0.29% 0.23% 0.21% 0.25% 0.19% 0.28% 0.25% 0.33% 0.24% 0.24%

4 0.49% 0.082% 0.15% 0.11% 0.44% 0.15% 0.22% 0.14% 0.52% 0.15% 0.14% 0.10%

5 0.10% 0.051% 0.068% 0.085% 0.12% 0.085% 0.068% 0.0% 0.017% 0.034% 0.068% 0.017%

6 0.12% 0.0% 0.041% 0.020% 0.020% 0.020% 0.0% 0.020% 0.16% 0.020% 0.061% 0.0%

7 0.071% 0.071% 0.0% 0.024% 0.024% 0.0% 0.0% 0.024% 0.024% 0.19% 0.0% 0.0%

8 5.6% 0.11% 0.0% 0.027% 0.16% 0.027% 0.0% 0.082% 3.3% 0.11% 0.0% 0.0%

9 0.55% 0.031% 0.0% 0.0% 0.061% 0.0% 0.0% 0.0% 0.37% 0.061% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.10% 0.034% 0.034% 0.0%

11 0.11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.12% 0.0% 0.0% 0.0% 0.041% 0.0% 0.0% 0.0% 0.082% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.048% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.048% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 2.0% 0.16% 0.0% 0.0% 0.0% 0.0% 0.0% 0.11% 1.5% 0.0% 0.0% 0.0%

17 0.058% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.058% 0.058% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.12% 0.0% 0.0% 0.0% 0.0% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.065%

20 0.48% 0.0% 0.0% 0.0% 0.34% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

21 0.0% 0.0% 0.0% 0.14% 0.0% 0.0% 0.0% 0.071% 0.0% 0.0% 0.0% 0.0%

22 0.37% 0.0% 0.15% 0.0% 0.0% 0.075% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

23 0.23% 0.55% 0.078% 0.0% 0.0% 0.0% 0.0% 0.0% 0.078% 0.0% 0.0% 0.0%

24 23% 0.24% 0.0% 0.0% 0.082% 0.0% 0.082% 0.0% 0.082% 0.0% 0.0% 0.0%

Table A.9: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 24 – Part 1 of 2

209

Bus
Width

Shift

12 13 14 15 16 17 18 19 20 21 22 23

1 0.89% 1.0% 0.92% 0.99% 0.93% 0.95% 0.92% 0.94% 0.95% 0.94% 0.93% 0.95%

2 0.55% 0.46% 0.50% 0.48% 0.55% 0.55% 0.57% 0.55% 0.48% 0.54% 0.54% 0.51%

3 0.16% 0.22% 0.25% 0.23% 0.23% 0.18% 0.19% 0.22% 0.33% 0.24% 0.22% 0.30%

4 0.52% 0.15% 0.15% 0.041% 0.34% 0.068% 0.12% 0.11% 0.56% 0.18% 0.19% 0.15%

5 0.085% 0.0% 0.068% 0.034% 0.017% 0.034% 0.017% 0.085% 0.034% 0.017% 0.017% 0.017%

6 0.0% 0.0% 0.041% 0.061% 0.10% 0.020% 0.10% 0.0% 0.041% 0.041% 0.020% 0.0%

7 0.048% 0.024% 0.024% 0.0% 0.0% 0.048% 0.024% 0.0% 0.024% 0.0% 0.0% 0.0%

8 0.22% 0.027% 0.054% 0.16% 3.7% 0.082% 0.054% 0.0% 0.22% 0.0% 0.027% 0.027%

9 0.0% 0.0% 0.0% 0.15% 0.21% 0.0% 0.0% 0.031% 0.0% 0.0% 0.031% 0.0%

10 0.034% 0.0% 0.0% 0.0% 0.10% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.037% 0.0% 0.0% 0.0% 0.0% 0.0% 0.075% 0.0%

12 0.41% 0.0% 0.0% 0.0% 0.082% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

13 0.13% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.044% 0.0% 0.0%

14 0.0% 0.048% 0.0% 0.0% 0.048% 0.0% 0.048% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.10%

16 0.16% 0.0% 0.0% 0.054% 0.82% 0.0% 0.16% 0.0% 0.0% 0.0% 0.0% 0.0%

17 0.0% 0.0% 0.0% 0.0% 0.17% 0.17% 0.12% 0.0% 0.0% 0.058% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.061% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.065% 0.0% 0.0% 0.0% 0.0% 0.065% 0.0% 0.0%

20 0.0% 0.0% 0.0% 0.0% 0.068% 0.0% 0.0% 0.0% 0.20% 0.0% 0.0% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.90% 0.0%

23 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.078% 0.63%

24 0.0% 0.0% 0.0% 0.0% 0.49% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.082%

Table A.10: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 24 – Part 2 of 2

210

A.8 MB-FPGA Architectural Granularity = 28

Bus
Width

Shift

0 1 2 3 4 5 6 7 8 9 10 11

1 0.69% 0.69% 0.75% 0.72% 0.75% 0.81% 0.80% 0.83% 0.82% 0.84% 0.84% 0.85%

2 0.44% 0.36% 0.38% 0.43% 0.39% 0.48% 0.40% 0.39% 0.33% 0.36% 0.42% 0.46%

3 0.25% 0.36% 0.26% 0.30% 0.19% 0.14% 0.24% 0.24% 0.21% 0.16% 0.15% 0.20%

4 1.8% 0.19% 0.19% 0.16% 0.82% 0.13% 0.12% 0.16% 0.92% 0.19% 0.073% 0.15%

5 0.26% 0.073% 0.073% 0.13% 0.16% 0.16% 0.055% 0.091% 0.11% 0.018% 0.055% 0.018%

6 0.15% 0.13% 0.088% 0.0% 0.066% 0.022% 0.022% 0.0% 0.066% 0.022% 0.0% 0.022%

7 0.0% 0.0% 0.0% 0.0% 0.026% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 2.4% 0.0% 0.0% 0.029% 0.15% 0.0% 0.0% 0.0% 2.0% 0.029% 0.0% 0.0%

9 0.10% 0.0% 0.033% 0.0% 0.033% 0.0% 0.0% 0.0% 0.033% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.036% 0.0% 0.036% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.13% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.044% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 1.6% 0.18% 0.0% 0.058% 0.0% 0.0% 0.0% 0.12% 0.23% 0.0% 0.0% 0.0%

17 0.062% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

18 0.066% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.066% 0.0%

19 0.069% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20 0.51% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.22% 0.0% 0.0% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.08% 0.24% 0.0% 0.0% 0.0% 0.0% 0.0%

23 0.25% 0.0% 0.084% 0.084% 0.17% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

24 0.35% 0.0% 0.0% 0.0% 0.088% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

25 0.0% 0.0% 0.0% 0.091% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

26 0.38% 0.0% 0.095% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

27 0.20% 0.59% 0.10% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

28 25% 0.41% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table A.11: % of Inter-Super-Cluster Conn ections Contained in Each Type of
Buses for M = 28 – Part 1 of 3

211

Bus
Width

Shift

12 13 14 15 16 17 18 19 20 21 22 23

1 0.81% 0.90% 0.89% 0.86% 0.82% 0.85% 0.80% 0.78% 0.69% 0.78% 0.83% 0.84%

2 0.41% 0.45% 0.41% 0.46% 0.50% 0.40% 0.46% 0.31% 0.36% 0.35% 0.32% 0.35%

3 0.18% 0.20% 0.25% 0.25% 0.16% 0.19% 0.16% 0.21% 0.26% 0.32% 0.33% 0.22%

4 0.73% 0.058% 0.13% 0.088% 0.80% 0.058% 0.088% 0.23% 0.72% 0.19% 0.18% 0.36%

5 0.055% 0.091% 0.055% 0.11% 0.055% 0.055% 0.091% 0.073% 0.15% 0.091% 0.018% 0.091%

6 0.022% 0.0% 0.0% 0.0% 0.022% 0.066% 0.0% 0.022% 0.022% 0.0% 0.022% 0.022%

7 0.0% 0.0% 0.0% 0.0% 0.051% 0.051% 0.026% 0.0% 0.051% 0.026% 0.0% 0.0%

8 0.85% 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 0.0% 1.6% 0.029% 0.029% 0.0%

9 0.16% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.20% 0.0% 0.0% 0.0%

10 0.036% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.073% 0.0% 0.0% 0.0%

11 0.080% 0.0% 0.0% 0.040% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.13% 0.0% 0.0% 0.0% 0.18% 0.0% 0.0% 0.0% 0.044% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.10% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 0.41% 0.0% 0.0% 0.0% 0.12% 0.0% 0.0% 0.0% 0.12% 0.058% 0.058% 0.0%

17 0.0% 0.0% 0.0% 0.0% 0.062% 0.062% 0.0% 0.0% 0.062% 0.062% 0.062% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.066% 0.0% 0.0%

19 0.069% 0.0% 0.0% 0.0% 0.069% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20 0.15% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.29% 0.0% 0.15% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.15% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

23 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

24 0.088% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

25 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

26 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

27 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

28 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table A.12: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 28 – Part 2 of 3

212

Bus
Width

Shift

24 25 26 27

1 0.74% 0.87% 0.80% 0.72%

2 0.44% 0.32% 0.45% 0.42%

3 0.31% 0.30% 0.19% 0.22%

4 1.1% 0.26% 0.23% 0.19%

5 0.13% 0.018% 0.091% 0.073%

6 0.044% 0.0% 0.0% 0.022%

7 0.0% 0.026% 0.0% 0.026%

8 0.15% 0.029% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0%

12 0.044% 0.0% 0.0% 0.0%

13 0.0% 0.047% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.055%

16 0.0% 0.058% 0.0% 0.0%

17 0.0% 0.0% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0%

19 0.0% 0.069% 0.0% 0.069%

20 0.0% 0.0% 0.0% 0.0%

21 0.0% 0.0% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0%

23 0.25% 0.0% 0.17% 0.0%

24 0.088% 0.0% 0.0% 0.0%

25 0.0% 0.0% 0.18% 0.0%

26 0.0% 0.0% 0.76% 0.19%

27 0.0% 0.0% 0.0% 0.39%

28 0.0% 0.0% 0.0% 0.0%

Table A.13: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 28 – Part 3 of 3

213

A.9 MB-FPGA Architectural Granularity = 32

Bus
Width

Shift

0 1 2 3 4 5 6 7 8 9 10 11

1 0.53% 0.55% 0.57% 0.63% 0.59% 0.60% 0.65% 0.64% 0.61% 0.69% 0.62% 0.66%

2 0.42% 0.45% 0.39% 0.35% 0.36% 0.42% 0.30% 0.31% 0.34% 0.31% 0.39% 0.40%

3 0.21% 0.17% 0.21% 0.18% 0.22% 0.18% 0.23% 0.18% 0.17% 0.21% 0.21% 0.16%

4 0.47% 0.15% 0.19% 0.20% 0.44% 0.20% 0.20% 0.24% 0.31% 0.13% 0.16% 0.11%

5 0.084% 0.10% 0.034% 0.067% 0.084% 0.017% 0.017% 0.051% 0.034% 0.034% 0.017% 0.067%

6 0.040% 0.040% 0.0% 0.020% 0.040% 0.061% 0.020% 0.0% 0.061% 0.040% 0.020% 0.0%

7 0.047% 0.024% 0.0% 0.0% 0.047% 0.0% 0.047% 0.047% 0.024% 0.0% 0.0% 0.0%

8 1.6% 0.0% 0.054% 0.054% 0.13% 0.027% 0.027% 0.027% 0.92% 0.027% 0.0% 0.027%

9 0.12% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.21% 0.0% 0.0% 0.0%

10 0.03% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.10% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.037% 0.0% 0.0% 0.0%

12 0.20% 0.0% 0.0% 0.0% 0.040% 0.0% 0.0% 0.0% 0.040% 0.0% 0.040% 0.0%

13 0.044% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.047% 0.0% 0.047% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.10% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 0.97% 0.054% 0.0% 0.0% 0.0% 0.0% 0.0% 0.054% 0.65% 0.0% 0.11% 0.0%

17 0.11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

19 0.13% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20 0.40% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.074% 0.0% 0.0% 0.0% 0.0% 0.074% 0.0%

23 0.16% 0.0% 0.0% 0.0% 0.078% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

24 0.16% 0.0% 0.081% 0.081% 0.0% 0.0% 0.0% 0.0% 0.40% 0.0% 0.0% 0.0%

25 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.168% 0.0% 0.0% 0.0%

26 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.18% 0.0% 0.0% 0.0% 0.0% 0.0%

27 0.091% 0.18% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

28 1.4% 0.094% 0.0% 0.0% 0.47% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

29 0.0% 0.0% 0.0% 0.098% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

30 1.5% 0.10% 0.30% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

31 0.31% 0.42% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

32 29% 0.11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.11% 0.0% 0.0% 0.0%

Table A.14: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 32 – Part 1 of 3

214

Bus
Width

Shift

12 13 14 15 16 17 18 19 20 21 22 23

1 0.69% 0.70% 0.68% 0.70% 0.68% 0.71% 0.64% 0.64% 0.63% 0.70% 0.69% 0.63%

2 0.38% 0.36% 0.36% 0.37% 0.34% 0.41% 0.43% 0.37% 0.36% 0.32% 0.33% 0.41%

3 0.18% 0.11% 0.17% 0.19% 0.17% 0.12% 0.16% 0.15% 0.23% 0.14% 0.18% 0.14%

4 0.36% 0.13% 0.12% 0.081% 0.26% 0.081% 0.094% 0.094% 0.30% 0.12% 0.081% 0.081%

5 0.067% 0.017% 0.0% 0.034% 0.017% 0.034% 0.017% 0.034% 0.10% 0.034% 0.051% 0.067%

6 0.0% 0.020% 0.0% 0.0% 0.040% 0.0% 0.0% 0.020% 0.040% 0.040% 0.0% 0.061%

7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 0.027% 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0% 0.27% 0.0% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.0% 0.061% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.037% 0.0% 0.0%

12 0.040% 0.0% 0.0% 0.0% 0.040% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.044% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.051% 0.051% 0.051% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

16 0.16% 0.0% 0.0% 0.0% 1.08% 0.054% 0.054% 0.054% 0.0% 0.0% 0.0% 0.054%

17 0.0% 0.0% 0.0% 0.057% 0.11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.13% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20 0.27% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.071% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

23 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

24 0.0% 0.0% 0.0% 0.0% 0.40% 0.0% 0.0% 0.0% 0.081% 0.0% 0.0% 0.0%

25 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

26 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

27 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.091% 0.0% 0.0% 0.0%

28 0.28% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.094% 0.0% 0.0% 0.0%

29 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

31 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

32 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.11% 0.0% 0.0% 0.0%

Table A.15: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 32 – Part 2 of 3

215

Bus
Width

Shift

24 25 26 27 28 29 30 31

1 0.62% 0.66% 0.67% 0.65% 0.64% 0.61% 0.58% 0.55%

2 0.34% 0.32% 0.31% 0.35% 0.32% 0.36% 0.40% 0.43%

3 0.20% 0.22% 0.18% 0.20% 0.29% 0.26% 0.19% 0.17%

4 0.40% 0.054% 0.12% 0.067% 0.34% 0.094% 0.15% 0.15%

5 0.084% 0.017% 0.051% 0.034% 0.067% 0.10% 0.051% 0.067%

6 0.020% 0.040% 0.0% 0.0% 0.020% 0.0% 0.061% 0.0%

7 0.0% 0.0% 0.0% 0.0% 0.024% 0.024% 0.0% 0.0%

8 1.6% 0.0% 0.0% 0.0% 0.13% 0.0% 0.0% 0.0%

9 0.12% 0.030% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.034% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.0% 0.0% 0.0% 0.0% 0.040% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.0% 0.044% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.051%

16 0.27% 0.11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

17 0.0% 0.057% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

18 0.061% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.0% 0.13% 0.0% 0.0%

20 0.067% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

21 0.0% 0.071% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

23 0.0% 0.0% 0.0% 0.0% 0.078% 0.0% 0.16% 0.0%

24 0.32% 0.081% 0.32% 0.0% 0.081% 0.0% 0.081% 0.0%

25 0.084% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

26 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.088% 0.088%

27 0.0% 0.0% 0.0% 0.0% 0.091% 0.0% 0.091% 0.0%

28 0.0% 0.0% 0.0% 0.0% 0.19% 0.0% 0.0% 0.094%

29 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.10%

30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.40% 0.0%

31 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.21%

32 0.22% 0.0% 0.0% 0.0% 0.11% 0.0% 0.22% 0.11%

Table A.16: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 32 – Part 3 of 3

216

217

References

[Ahme00]
E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size on Deep-Submicron FPGA
Performance and Density,” Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, February 2000, pp.3–12.

[Also00]
A. Alsolaim, J. Starzyk J. Becker, and M. Glesner, “Architecture and Application of a
Dynamicall y Reconfigurable Hardware Array for Future Mobile Communication Sys-
tems,” Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April 2000, pp.205–214.

[Alte02]
Altera Data Sheet, Altera, 2002.

[Betz97a]
V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research,” Proceedings of the International Workshop on Field-Programmable Logic and
Applications, 1997, pp.213–222.

[Betz97b]
V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Eff iciency vs. Input
Sharing and Size,” Proceedings of the IEEE Custom Integrated Circuits Conference,
1997, pp.551–554.

[Betz98]
V. Betz and J. Rose, “How Much Logic Should Go in an FPGA Logic Block?” , IEEE
Design and Test Magazine, Spring 1998, pp.10–15.

[Betz99a]
V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs,
February 1999, Kluwer Academic Publi shers.

[Betz99b]
V. Betz and J. Rose, “FPGA Routing Architecture: Segmentation and Buffering to Opti-
mize Speed and Density,” Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, February 1999, pp.59–68.

[Betz00]
V. Betz and J. Rose, “Automatic Generation of FPGA Routing Architectures from High-
Level Descriptions,” Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, February 2000, pp.175–184.

[Betz01]
V. Betz, J. Rose, and A. Marquardt, “VPR: A Placement and Routing Tool for FPGA
Research,” Software Publication at http://www.eecg.utoronto.ca/~vaughn/vpr/vpr.html,
University of Toronto, 2001.

218

[Bitt96]
R. Bittner, P. Athanas, and M. Musgrove, “Colt: An Experiment in Wormhole Run-Time
Reconfiguration,” Proceedings of the Conference on High-Speed Computing, Digital Sig-
nal Processing, and Filtering Using reconfigurable Logic, 1996.

[Bozo01]
E. Bozorgzadeh, S. Memik, and M. Sarrafzadeh, “RPack: Routabil ity-Driven Packing for
Cluster-Based FPGAs,” Proceedings of the Conference on Asia-South Pacific Design
Automation Conference, January 2001, pp.629–634.

[Brow92a]
S. Brown, “Routing Algorithms and Architectures for Field-Programmable Gate Arrays,”
Ph.D. Dissertation, University of Toronto, 1992.

[Brow92b]
S. Brown, J. Rose, and Z. Vranesic, “A Detailed Router for Field-Programmable Gate
Arrays,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, May 1992, pp.620–628.

[Call98]
T. Callahan, P. Chong, A. DeHon, and J. Wawrzynek, “Fast Module Mapping and Place-
ment for Datapaths in FPGAs,” Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, 1998, pp.123–132.

[Cart86]
W. Carter, K. Duong, R. Freeman, H. Hsieh, J. Ja, J. Mahoney, L. Ngo, and S. Sze, “A
User Programmable Reconfigurable Logic Array,” Proceedings of the IEEE Custom Inte-
grated Circuits Conference, 1986, pp.233–235.

[Chan00]
P. Chan and M. Schlag, “New Parallelization and Convergence Results for NC: A Negoti-
ation-Based FPGA Router,” Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 2000, pp.165–174

[Chen92]
D. Chen and J. Rabaey, “A Reconfigurable Multiprocessor IC for Rapid Prototyping of
Algorithmic-Specific High-Speed DSP Data Paths,” IEEE Journal of Solid-State Circuits,
December 1992, pp.1895–1904.

[Chen03]
D. Chen, J. Cong, and Y. Fan, “Low-Power High-Level Synthesis for FPGA Architec-
tures,” Proceedings of the International Symposium on Low Power Electronics and
Design, August 2003, pp.134–139.

[Cher94]
D. Cherepacha and D. Lewis, “A Datapath Oriented Architecture for FPGAs,” Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
1994.

[Cher96]
D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA Architecture Optimized for Datap-
aths,” VLSI Design, 1996, pp.329–343.

219

[Cher97]
D. Cherepacha, M.A.Sc. Thesis, University of Toronto, 1997.

[Cong03]
J. Cong, M. Romesis, and M. Xie, “Optimality and Stabili ty Study of Timing-driven
Placement Algorithms,” Proceedings of the International Conference on Computer Aided
Design, November 2003, pp.472–478.

[Cora96]
M. Corazao, M. Khalaf, M. Potkonjak, and J. Rabaey, “Performance Optimization Using
Template Mapping for Datapath-Intensive High-Level Synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1996, pp.877–888.

[Ebel95]
C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placement and Routing Tools for the
Triptych FPGA,” IEEE Transactions on VLSI Systems, December 1995, pp.473–482.

[Ebel96]
C. Ebeling, D. Cronquist, P. Franklin, and C. Fisher, “RaPiD A Configurable Computing
Architecture for Compute-Intensive Applications,” Proceedings of the International
Workshop on Field-Programmable Logic and Applications, 1996.

[Elmo48]
W.C. Elmore, “The Transient Response of Damped Linear Network with Particular
Regard to Wideband Ampli fier,” Journal of Applied Physics, 19, pp.55–63, 1948.

[Gold00]
S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench: a
reconfigurable architecture and compiler,” IEEE Computer, April 2000, pp.70–77.

[Hama02]
C. Hamacher, Z. Vranesic, and S. Zaky, Computer Organization, 5th Edition, 2002,
McGraw-Hil l.

[Harr02]
I. Harris and R. Tessier, “Testing and Diagnosis of Interconnect Faults in Cluster-Based
FPGA Architectures,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, November 2002, pp.1337–1343.

[Haus97]
J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Coproces-
sor,” Proceedings of the IEEE Symposium of Field-Programmable Custom Computing
Machines, April 1997, pages 24–33.

[Hsei90]
H. Hseih, et al, “Third-Generation Architecture Boosts Speed and Density of Field-Pro-
grammable Gate Arrays,” Proceedings of the IEEE Custom Integrated Circuits Confer-
ence, 1990, pp.31.2.1–31.2.7.

[Katz94]
R. Katz, Contemporary Logic Design, 1994, The Benjamin/Cummings Publi shing Com-
pany.

220

[Kirk83]
S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by Simulated Annealing,” Science,
May 13, 1983, pp.671–680.

[Koch96a]
A. Koch, “Structured Design Implementation — A Strategy for Implementing Regular
Datapaths on FPGAs,” Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 1996, pp.151–157.

[Koch96b]
A. Koch, “Module Compaction in FPGA-based Regular Datapaths,” Proceedings of the
Design Automation Conference, 1996, pp.471–476.

[Kore02]
I. Koren, Computer Arithmetic Algorithms, 2002, A K Peters.

[Kutz00a]
T. Kutzschebauch and L. Stok, “Regularity Driven Logic Synthesis,” Proceedings of the
IEEE/ACM International Conference on Computer Aided Design, 2000, pp.439–446.

[Kutz00b]
T. Kutzschebauch, “Efficient Logic Optimization Using Regularity Extraction,” Proceed-
ings of the International Conference on Computer Design, 2000, pp.487–493.

[Lee61]
C. Lee, “An Algorithm for Path Connections and its Appli cations,” IRE Transactions on
Electronic Computing, Vol. 10, 1961, pp.346–365.

[Leij03]
K. Leijten-Nowak and J. van Meerbergen, “An FPGA architecture with enhanced datapath
functionali ty,” Proceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2003, pp.195–204.

[Lemi97]
G. Lemieux, S. Brown, D. Vranesic, “On Two-Step Routing for FPGAs,” ACM Sympo-
sium on Physical Design, 1997, pp.60–66.

[Lemi01]
G. Lemieux and D. Lewis, “Using Sparse Crossbars within LUT Clusters,” Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2001,
pp.59–68.

[Lemi02]
G. Lemieux and D. Lewis, “analytical Framework for Switch Block Design,” Proceedings
of the Conference on Field-Programmable Logic and Appli cations, 2002, pp.122–131.

[Leve03]
P. Leventis, M. Chan, M. Chan, D. Lewis, B. Nouban, G. Powell, B. Vest, M. Wong, R.
Xia, and J. Costello, “Cyclone: A Low-Cost, High-Performance FPGA,” Proceedings of
the IEEE Custom Integrated Circuits Conference, 2003.

221

[Lewi03]
D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C. McClin-
tock, B. Pedersen, G. Powell , S. Reddy, C. Wysocki, R. Cliff, and J. Rose, “The Stratix
Routing and Logic Architecture,” Proceedings of the ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, February 2003, pp.15–20.

[Li03]
F. Li, D. Chen, L. He, and J. Cong, “Architecture Evaluation for Power-Efficient FPGAs,”
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, February 2003, pp.175–184.

[Lin03]
J. Lin, A. Jagannathan, and J. Cong, “Placement-Driven Technology Mapping For LUT-
Based FPGAs,” Proceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, February 2003, pp.121–126.

[Marq99]
A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density,” Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, February 1999, pp.37–46.

[Marq00a]
A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Placement for FPGAs,” Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Feb-
ruary 2000, pp.203–213.

[Marq00b]
A. Marquardt, V. Betz, and J. Rose, “Speed and Area Tradeoffs in Cluster-Based FPGA
Architectures,” IEEE Transactions on VLSI Systems, February 2000, pp.84–93.

[Mars99]
A. Marshall , T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A reconfig-
urable arithmetic array for multimedia applications,” Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 1999, pp.135–143.

[Masu99]
M. Masud and S. Wil ton, “A New Switch Block for Segmented FPGAs,” Proceedings of
the International Workshop on Field Programmable Logic and Appli cations, August
1999, pp.274–281.

[Mirs96]
E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources,” Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, April 1996,
pp.157–166.

[Nase94]
A. Naseer, M. Balakrishnan, and A. Kumar, “FAST: FPGA Targeted RTL Structure Syn-
thesis Technique,” Proceedings of the International Conference on VLSI Design, 1994,
pp.21–24.

222

[Nase98]
A. Naseer, M. Balakrishnan, and A. Kumar, “Direct Mapping of RTL Structures onto
LUT-Based FPGAs,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, July 1998, pp.624–631.

[Okam96]
T. Okamoto and J. Cong, “Buffered Steiner Tree Construction with Wire Sizing for Inter-
connect Layout Optimization,” Proceedings of the IEEE/ACM International Conference
on Computer Aided Design, 1996, pp.44–49.

[Quar03]
Quartus II Manual, Altera Corp., 2003.

[Rose90]
J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of Field-Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency,” IEEE Journal of
Solid-State Circuits, October 1990, pp.1217–1225.

[Sank99]
Y. Sankar and J. Rose, “Trading Quality for Compile Time: Ultra-Fast Placement for
FPGAs,” Proceedings of the ACM/SIGDA International Symposium on Field Programma-
ble Gate Arrays, February 1999, pp.157–166.

[Sech85]
C. Sechen and A. Sangiovanni-Vincentelli , “The TimberWolf Placement and Routing
Package,” IEEE Journal of Solid-State Circuits, April 1985, pp.510–522.

[Sech86]
C. Sechen and A. Sangiovanni-Vincentelli , “TimberWolf3.2: A New Standard Cell Place-
ment and Global Routing Package,” Proceedings of the Design Automation Conference,
1986, pp.432–439.

[Sech87]
C. Sechen and K. Lee, “An Improved Simulated Annealing Algorithm for Row-Based
Placement,” Proceedings of the IEEE/ACM International Conference on Computer Aided
Design, 1987, pp.478–481.

[Sun95]
W. Sun and C. Sechen, “Eff icient and Effective Placement for Very Large Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, March 1995,
pp.349–359.

[Sun99]
Pico-Java Processor Design Documentation, 1999, Sun Microsystems.

[Swar95]
W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell Circuits,”
Proceedings of the Design Automation Conference, 1995, pp.211–215.

[Swar98]
J. Swartz, V. Betz and J. Rose, ̀ `A Fast Routabil ity-Driven Router for FPGAs,'' Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
1998, pp.140–149.

223

[Syno99]
Synopsys Design Compiler Manual, Synopsys Inc., 1999.

[Synp03]
Synpli fy Pro Manual, Synpli city Inc., 2003.

[Taka98]
T. Miyamori and K. Olukotun, “REMARC: Reconfigurable Multimedia Array Coproces-
sor,” Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April 1998.

[Tess02]
R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Transactions on Design Auto-
mation of Electronic Systems, April 2002, pp.284–305.

[Tuan03]
T. Tuan and B. Lai, “Leakage Power Analysis of a 90nm FPGA,” Proceedings of the IEEE
Custom Integrated Circuit Conference, November 2003, pp.57–60.

[Varg99]
G. Varghese, H. Zhang, and J. Rabaey, “Design of a Low Energy FPGA,” Proceedings of
the International Symposium on Low Power Electronics and Design, 1999, pp.188–193.

[Wain97]
E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring It All to Software:
Raw Machines,” IEEE Computer, September 1997, pp.86–93.

[West92]
N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective,
2nd Edition, 2002, Addison Wesley Longman.

[Wilt97]
S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with
Embedded Memories,” Ph.D. Dissertation, University of Toronto, 1997.

[Xili 02]
Xil inx Data sheet, Xil inx Inc., 2002.

[Ye97]
A. Ye, “Microelectronics Bridge Camp Project: A 16-bit CPU,” Technical Report, Univer-
sity of Toronto, Summer 1997.

[Ye99a]
A. Ye and D. Lewis, “Procedural Texture Mapping on FPGAs,” Proceedings of the ACM/
SIGDA International Symposium on Field Programmable Gate Arrays, February 1999,
pp.112–120.

[Ye99b]
A. Ye, “Procedural Texture Mapping on FPGAs,” M.A.Sc. Thesis, University of Toronto,
June 1999.

224

[Yeun93]
A. Yeung and J. Rabaey, “A Reconfigurable Data Driven Multi-Processor Architecture for
Rapid Prototyping of High Throughput DSP Algorithms,” Proceedings of the HICCS
Conference, January 1993, pp.169–178.

