Ph.D. ProgressReport — Report #3
Architedure of Datapath-Oriented Coarse-Grain Logic and Routing for FPGAs

(March 2002—March 2003

Andy Gean Ye

Abstract

As the logic capacity of FPGAs increases, they are being used to implement ever-larger applications. Large applications,
whether they are CPUSs, graphics processors, digital signal processors, or packet switching networks, typically contain a
greater amount of datapath logic, which is highly regular in structure. The efficient implementation of these highly regular
structures has become an increasingly important issue to the overall area and performance of many FPGA applications.
One promising architectural feature that can increase the area efficiency of datapath circuits implemented on FPGAs is the
coarse-grain routing resources. Previously, there has been little study on FPGA architectures containing coarse-grain rout-
ing resources, primarily because of the lack of datapath benchmarks and the lack of automated CAD tools targeting coar se-
grain routing resources. In this paper, we propose a new FPGA architecture that utilizes coar se-grain routing resources to
increase the area efficiency of datapath circuit implementations. We also propose a new routing algorithm that intelligently
uses the coarse-grain routing resources provided by the new architecture. Using this router, several other datapath-oriented
CAD toadls that we designed, and a set of datapath benchmarks that we extracted from the Pico-Java processor, we investi-
gated several variants of our proposed FPGA architecture. We found that, our architecture is the most area efficient when
40% to 50% of the total routing tracks are coarse-grain. Furthermore, our architecture consistently outperform conven-
tional FPGA architecture for implementing datapath designs. Overall, our architecture uses 9.6% less area than the conven-

tional FPGA architecture.

1. Introduction

In the past decade, we have seen a dramatic increase in the logic capacity of FPGAs. As the logic cgpacity increases,
FPGAs are being used to implement ever-larger applications. Large applications, whether they are CPUs, graphics proces-
sors, digital signal processors, or packet switching networks, typically contain a greater amount of datapath logic, which is
highly regular in structure. The dficient implementation d these highly regular structures has become an increasingly
important issue to the overall area and performance of many FPGA applications.

Previous research in [7][8][9][10][11][12][13][14][15] has shown that regularity driven synthesis, placement and routing
can be used to improve the density and speed of datapath circuits. The work in [6] also show that further area savings can be

. logic block /j switch block

| input and output
connection blocks

Figure 1: A Typical FPGA Architecture

i

Il = routing channels

(a) fine-grain (d) coarse-grain
switch block switch block
e SN
(b) fine-grain (e) coarse-grain
input connection block input connection block
v v v v
el o
eli=] af
S
Jrm Jvm Pl
(c) fine-grain (f) coarse-grain
output connection output connection
block block
® memory

Figure 2: Fine-grain Routing Resource
Topology vs. Coarse-grain Routing Resource
Topology
adchieved byincorporating datapath-specific features into regular FPGA architectures. One particularly compelling architec-
tural feature isthe coarse-grain routing resources siggested by[6]. Their basic notion was to amortize configuration kit area
aaoss multiple wires when these wires are data buses. In this paper we perform a detailed explanation o the area advantage
of anumber of variants of this architectural structure.

By way of a more complete introduction to the achitectural concept of coarse-grain routing structures, we first review
more traditional FPGA routing. Figure 1 illustrates a typical FPGA, in which logic is implemented in logic blocks
[1][3][4][5] that consist of tightly conrected look-up tables (LUTS). Logic blocks are then conrected together through dobal
routing resources composed of input connection blocks, output conrection blocks, switch blocks and routing tracks. These
routing resources are made configurable by the programmabl e switches controlled by SRAM cells. In atypica FPGA, each

reconfigurable switch is controlled by a unique set of configuration memory. We all these resources fine-grain routing

JYYYY l —
A
Y
AR

switch
blocks (b

logic cluster @ memory

|]I-I]I-I]I-I]I-I|

A
&
\S)

Figure 3: Fine vs. Coarse-Grain Routing

resources. Various fine-grain routing resources, including an input connection Hock, an output conrection block and a
switch block, are shownin Figure 2 (a), (b), and (c).

Coarse-grain routing tracks, on the other hand, are grouped together in some number M, and switches asciated with
each group are collectively controlled by a single set of configuration memory bits. The number of tracks in asingle group,
M, is called the granularity of the coarse-grain track. Figure 2 (d), (€), and (f) show the structures of various coarse-grain
routing resources including an inpu connection Hock, an output connection block, and a switch block. Each of these marse-
grain routing resources has a granularity value of two. When routing detapath circuits, coarse-grain routing tracks often can
be more dficient at connecting agroup d signals from a common source to a mmmon destination and consequently achieve
significant area savings. Figure 3 shows sich an example. Suppose that there ae four one-bit wide signalsto be connected
between a source Block A and a destination Block B. Figure 3 (a) il lustrates the use of four fine-grain routing tracks to con-
nect Block A and Block B. A total of four bits of SRAM is used in the switch bax. In Figure 3 (b), a group of four coarse-
grain tracksis used instead. Since these four coarse-grain tracks hare configuration memory, only one bit of SRAM is used.

Although coarse-grain tracks are more efficient at routing goups of signals that share a @mmon source and a common
destination, they are inefficient at routing individual signals. When a group of coarse-grain tracks are used to route a single
signal, only ore track in the group is utilized. All the other tracks are unused, and the silicon area asociated with these
tracks iswasted. An efficient FPGA architecture for datapath circuits should therefore contain a mixture of fine axd coarse-
grain routing resources, as al application circuits are likely to contain both types of signals — signals that can be routed in
groups and signals must be routed individually. For FPGAs containing both fine and coarse-grain resources, we need a
router that can dfferentiate these resources and wse the most appropriate one for a given type of nets. In this paper, we pro-
pose arouting algorithm for FPGASs containing bah coarse-grain and fine-grain routing tracks. To our knowledge thisisthe
first published coarse-grain routing algorithm for FPGAs. Using this algorithm, we investigated the question of how many
coarse-grain routing tracks shoud be included in an FPGA targeting highly regular datapath circuits in order to achieve
maximum area savings. We dso addressthe question of what is an area dficient segment length for coarse-grain routing
tracks.

The rest of this paper is divided into five sections. In Section 2, we give a complete description o a parameterized set of
coarse-grain FPGA architectures that we explore. Section 3 describes the routing algorithm. In Section 4, we describe the

experimental methodology we use to explore the achitecture variant and to compare it against more typical architectures.

LUT | ocal ;:ﬁi
LUT | routing |«
. network | ¢

cluster cluster
outputs e inputs
Figure 4: A Logic Cluster [4]
cluster super-cluster carry connections
& & /4
super-cluster {—| &= :T: :T: super-cluster

outputs

inputs

\—W#ﬂt&#—/

3 Switch Inplé:t and Out- Switch £

= Block Y put Connection Block E

= : Blocks o =
coarse-grain_ | 1 fine-grain
tracks tracks

Figure 5: Super-Cluster Topology (M=4)

ﬁ E inputs from local
routing networks

05 /| go
generating

LUT

Telely) ..
generating

*{ % *{ % LUT

Figure 6: Carry Structures (M=4)

H5HEEE
Elhofiglh

The synthesis, packing, and gdacement tools are dso described in this section. Section 5 presents experimental results for the
best percentage of coarse-grain tracks in overall routing resources and the best segment length for coarse-grain routing
tracks. We also compare the area dficiency of our proposed architecture with a standard FPGA architecture. Section 6 pe-

sents concluding remarks.

2. A Coarse-Grain Datapath FPGA Architecture

In order to utili ze the regularity of datapath circuits on coarse-grain routing resources, we need an FPGA architecture that
can easily capture the regularity of datapath circuits. Once captured, one shoud be @le to easily map this regularity infor-
mation onto coarse-grain routing resources. Very few FPGA architectures, either academic or commercial, are designed with
datapath regularity and coarse-grain routing resources in mind. As the result, we designed our own architecture (which we
will refer to as the datapath architecture in the remainder of this paper) based ona mnventional FPGA architecture (which
we will refer to as the standard VPR architecture in the remainder of this paper) described in [4]. In ou architecture, alogic

block is called a super-cluster which consists of M conventional VPR clusters. M is called the granularity of our datapath

- an input-bus
o [cuser

|
a B memory
routing=— r—T1—~Fine-grain
bus U tracks

Figure 7: Input Connection Block (M=4)

FPGA architecture. For the ease of illustration, most of our figures in this paper are drawn by setting M to be four. Each
VPR cluster contains N four-input Look-Up Tables (LUTSs). It also contains a fully connected loca routing network as
shown in Figure 4. M clusters are grouped into a super-cluster using the topology shown in Figure 5.

This logic-clustering architedure is motivated by the fact that datapath circuits often consist of many identical bit-slices
and these hit-slices are the source of signal buses — regularly structured connections that maps well onto the coarse-grain
routing resources. Using ou architecture, we implement portions of bit-slices in a datapath circuit in clusters. Then we
groupthe dusters that implement identical portions of bit-dli ces together into super-clusters. By doing so, we can maximize
the dhance of capturing detapath buses onto inter-super-cluster connections without sacrificing the utilization o loca rout-
ing retwork inside each cluster. Once captured, these buses can then be efficiently routed throughthe coarse-grain routing
resourcesin the global routing network described later in this sction.

Within each super-cluster, special connections supporting arithmetic carries are provided. The details of the arry struc-
tureis shownin Figure 6. When in the cary mode, two neighbaring LUTsin a duster are grouped together. One LUT imple-
ments the carry generation logic and the other implements the sum generation logic. The number of super-cluster inpusis
equa to the total number of cluster inputs in a given super-cluster; and the number of super-cluster outputs is equal to the
total number of cluster outputs in a given super-cluster. Each cluster input is directly connected to a super-cluster input; and
each cluster output is directly connected to a super-cluster outpt.

The global routing resources of the datapath FPGA consist of both coarse-grain routing resources with a granularity
value of M and conventional fine-grain routing resources. Each routing channel contains a fixed number of coarse-grain
routing tracks and a fixed number of fine-grain routing tracks.

Aninpu connection Hock is siown in Figure 7. The input connection block conrects super-cluster inputs to bah fine-
grain routing tracks and coarse-grain routing tracks. Super-cluster inpus to fine-grain routing track conrections are similar
to conventional cluster inpus to routing track conrections. Each input pin can be conrected to a fixed number, Fc_if, of
fine-grain routing tracks.

For each super-cluster, we group corresponding inputs of the M clusters together to form M-bit wide buses. We call these
buses input-buses. Since the granularity of the coarse-grain routing is M, the number of coarse-grain tracks is always an
even multiple of M; and coarse-grain routing tracks are grouped into M-bit wide buses. We call these buses routing-buses.
Each input-bus is connected to afixed number, Fc_ic, of routing-buses. As shown in Figure 7, when connecting an inpu-bus

to arouting-bus, we mnnect the corresponding kts of each bus together.

super-cluster

- - - - an output-bus
i i .cluster
v v :vb/
M ™, M, My @ memo
NEL i i | ry
an m : ;
routing =t
bus —)/_P". _P".

¥ o=

“_fine-grain routing

Figure 8: Output Connection Block (M=4)

pad_ratio = 4 [] super-cluster

] 1o Pad

Figure 9: Pad Ratio

An output connection Hock is shown in Figure 8. It connects super-cluster outputs to both fine-grain routing tracks and
coarse-grain routing tracks. Super-cluster outputs to fine-grain routing track conrections are similar to VPR cluster outputs
to routing track connections. Each ouput pin can be cnrected to a fixed number, Fc_of, of fine-grain routing tracks.

In each super-cluster, we group corresponding autputs of the M clusters together to form M-bit wide buses. We call these
buses output-buses. Each output-bus is connected to a fixed number, Fc_oc, of routing-buses. As shown in Figure 8, when
connecting an ouput-bus to a marse-grain routing bus, we onrect the crrespondng bits of each bus together. The pro-
grammable switchesin each bus-to-bus conrection share asingle set of configuration memory.

Asin conventional architectures, we assume all 1/O pads reside on the boundary of our datapath FPGA. We also asaime
uniformly distributed 1/0 pads as shown in Figure 9. Here the pad_ratio is the number of 1/O pads that can be fitted in the
pitch of a square super-cluster.

Asin the conventional FPGA architecture, we assume ech 1/0O pad to be bi-directional — each pad containing oreinpu
pin and ore output pin. Both input pin and ouput pin have the same connection petterns to the fine-grain and coarse-grain
routing tracks. Each pad input or output pin can be connected to afixed number, Fc_pf, of fine-grain routing tracks.

We group M 1/0O pad input pins or M 1/0O pad output pins together to form M-bit wide buses. We call the buses formed by
input pins pad-input buses and the buses formed by the output pins pad-output buses. Each pad-input or pad-output busis
connected to a fixed number, Fc_pc, of coarse-grain routing buses. Similar to the input-bus to routing-bus connections and
output-bus to routing-bus conrections, when connecting a pad-input or a pad-output bus to a routing-bus, we connect the
correspondng hts of each bus together. For pad-output buses, the programmable switches in each bus-to-bus connection

share asingle set of configuration memory.

HE THE Jé3e3e3¢@

Figure 10: Switch Block (M=4)

logic cluster A3 5
F Tlle%i%
— 0191919191019191
©source O input pin

Osink m output pin
@ memory @ routing track

(a) (b)
Figure 11: Routing Resource Graph

A switch block which resides at the intersection of all horizontal and vertical channelsis shown in Figure 10. It contains
both fine-grain routing track to fine-grain routing track conrections and coarse-grain routing track to coarse-grain routing
track connections. We assume that there ae no connections between fine-grain routing tracks and coarse-grain routing
tracks. We use the digjoint topology for fine-grain routing track conrections since thisis shown to be one of the most effi-
cient topdogy for the conventional architecture. Each fine-grain routing track can be connected to Fs_f of other fine-grain
routing tracks. We dso assume the digjoint topdogy for connections between the coarse-grain routing-buses. Each routing-
bus can be connected to Fs_c of other routing-buses. As shown in Figure 10, when connecting two routing-buses together,
we onrect the corresponding hits of each bus together. The programmable switches in each bus-to-bus conrection share a

single set of configuration memory.

3. Coarse-Grain Routing Algorithm

We designed ou routing algorithm based on the VPR timing diven router [4]. The original VPR routing algorithm only
models fine-grain routing resources. Unmodified, the algorithm cannaot be efficiently used to route FPGAS containing
coarse-grain routing resources. We enhanced the VPR algorithm in three major areas to give it the cgability of handling
coarse-grain routing resources. These three enhancements are the modification o the routing resource graph to suppat
coarse-grain routing resources, the identification o buses in the input netlist, and the new cost functions designed for
coarse-grain routing. We will briefly describe the original VPR algorithm in Section 31 The three enhancements are
described in Section 3.2, Section 3.3, and Section 3.4, respectively.

functionroute_net(i)
for each sink of net i, j
cdl expand_neighbours(i,j)
end for
endfunction

Figure 13: route_net Function

3.1Basic VPR Timing Driven Routing Algorithm

In the VPR router, routing resources are represented by a routing resource graph, which consists of nodes and edges.
Each node in the graph represents a source, a sink, alogic-block inpu pin, alogic-block output pin, an input pin of an 1/0
pad, an ouput pin of an I/O pad, or arouting track. (Note: In the standard VPR architecture, alogic block represents a dus-
ter. In aur datapath FPGA architecture, a logic block represents a super-cluster.) Each edge in the graph represents a pro-
grammable routing switch.

An example of the routing resource graph and its corresponding routing resourcesis snownin Figure 11. A standard VPR
cluster and ore of its neighbaing routing channels is shown in Figure 11(a) and a routing resource graph representing the
cluster and the routing channel is shown in Figure 11(b). This cluster containsthree 4-LUTs. These LUTs are mnrected bya
fully connected local routing network. The cluster also contains three output pins — one for each LUT — and five input
pins. There ae @ght routing tracks in the routing channel. Each output pin is connected to ore routing track, while each
inpu pin is connected to two routing tracks through programmable switches.

Each nade of the routing resource graph is asociated with a @pacity value, which is labeled oneach node in Figure
11(b). This capacity value represents the maximum number of times that a routing resource, represented by a node, can be
used in the final routing solution. For each pin or each routing track, this capacity value is one since each of these routing
resources can only be legally used once. For each source or sink node, this capacity value is a positive number whose value
depends on the equivalency of logic block output or input pins [4]. Since all three LUTS, in the figure, are connected by a
fully connected local routing network, they are logically equivalent — only one source is needed to represent all three LUTs
andthe apacity value of the sourceisthree. Also because of the fully connected local routing retwork, the five duster input
pins are logically equivalent — only ore sink is needed for all five input pins and the capacity value of the sink isfive.

The VPR router takes arouting resource graph representing atarget FPGA and a netlist of multi-terminal nets (nets with
asingle source and multiple sinks) as its inputs. This netlist represents a circuit of interconnected logic blocks. The router
then finds a feasible routing solution in the routing resource graph for each multi-terminal net. Here arouting solutionis
defined to be a ©llection d interconnected nodes and edges; furthermore, the cllection must contain the source node and
all the sink nades of a multi-terminal net. To be feasible, the occupancy value — the total number of times that a node
appears in all routing solutions — of each nade in the routing solution must be lessthan or equal to its capacity value. Oth-
erwise, the routing solution is called infeasible. A net is said to be routed, once arouting solution (either feasible or infeasi-

ble) containing the source node and all the sink nodes of the net is found.

congestion_cost(n)= b(n) x p(n) x h(n) @

loop until maximum iteration is reached
for eah node n
calculate aongestion_cost(n)
end for
rip upall previously routed net
for ead net i
for each sink of net i, j
cdculate aiticality(i,j)
end for
cal route_net (i)
end for
end loop

Figure 12: VPR Routing Algorithm

function expand_neighbours (i,j)
push i onto a priority stadk
loop
pop node, n, off the stack
for al nodes, m, conneded downstream of node, n

if (m==j) then
exit function
dse

cdculate expansion_cost(m)
push m onto the priority stack using expansion_cost
endif
end for
end loop
endfunction

Figure 14: expand_neighbours Function

Table 1: b(n) Values for Each Type of Routing Resource

Routing Resource | b(n)
Routing track 1
Cluster Output pin 1
Cluster input pin 0.95
Source 1]
Sink 0
p(n)= 1+ max(0, [occupancy (n) + 1 —capacity(n)] x pfac) @)
% 1 i=1
h(n)i= 0O h(n)i 1 + max(0, ©)
E[occupancy(n) — capacity(n)] x hfac) i>1

The VPR router solves the routing problem using an algorithm simil ar to the Pathfinder routing algorithm [4], which is
shown in Figure 12, Figure 13, and Figure 14. Thisrouting process consists of a series of iterations. At the start of each iter-
ation, VPR first assgns a congestion cost to each node, n, in the routing resource graph. As shown in Equation 1, this con-
gestion cost is a product of the base mst, b(n), the aurrent congestion cost, p(n), and the historic congestion cost, h(n). The
base a4, b(n), is a function of the routing resource type. Different routing resources are asigned different base mst values
as siownin Table 1.

The current congestion cost, p(n), is defined to be afunction d the difference between the current occupancy of the node
and the aapacity of the node as srown in Equation 2. The scaling factor, pfac, in Equation 2is called the routing schedul e of
the router. The initia value of pfac isasmall (< 0.5), so duing early iterations, the aurrent congestion o the node is a small
part of the total cost of the node. This allows each nade to be used more than its capacity allows. The value of pfac increases

by afactor of 1.5 to 2 during each routing iteration. So during the latter iterations, the aurrent congestion cost becomesa sig-

nificant factor in determining the total cost of a node. Consequently, at latter routing iterations, once anode reaches its full
capacity, it cannot be used in the routing solution o other nets.

The historic congestion cost, h(n), is an accumulation o the past congestion values; and it is defined by Equation 3 For
the first iteration, the historic congestion is set to be one. For each subsequent iteration, the difference between occupancy
and capacity is scaled by a mnstant value, hfac, and is added to the total historic congestion. The usual value of hfac is
between 0.2 and 1

criticality (i, j) = maxal—%;—;(n} of)

After assgning the congestion cost, VPR rips up al previously routed nets. This resets the occupancy value of all nodes
in the routing resource graph to be zro. Then VPR routes each net using the maze expansion agorithm. For each two-termi-
nal connection on the net, the aiticality of the cnnectionisfirst calculated using Equation 4. Herei represents the source of
atwo-terminal connection and | represents the sink of the same two-terminal conrection. As shown by Equation 4, the aiti-
cdity is avalue between zero and me inclusively. It is afunction of the slack of the connection and Dmax, the critical path
delay of the drcuit. When the total delay of a net is close to the maximum delay of the circuit, the net has avery small slack.
Consequently, its criticality is high. When the total delay of anet is much smaller than the maximum delay of the drcuit, the
net has a very large slack. Consequently its criticality is low. Both the slack and Dmax values are clculated based onthe
Elmore delay model using the delay values obtained from the previous routing iteration.

expansion_cost= [1— criticality(i,])] x
congestion_cost(n) + criticality(i, j) x delay(n) + (5)
future_expansion_cost(n)

The aiticality value is used in the alculation of the expansion cost to control the anount of effort that a router shoud
use to minimize delay over minimizing congestion. When routing a highly critical net, the router should concentrate on min-
imizing delay. When routing a lesscritical net, the router shoud concentrate on minimizing congestion instead. Equation 5
is used to calculate the expansion cost. The equation has three terms. The first term, congestion_cost(n), represents the total
congestion cost of all the node on the aurrent expansion. The second term, delay(n), represents the delay of the net upto the
expansion node. These two terms are scaled bythe criticality of the aurrent net. If the net is very critical then the delay cost
dominates. If the net is not critical then the congestion cost dominates. The third term represents the estimated future expan-
sion cost. Its calculation is described in detail in [4]. Here we estimate the remaining number of expansions that we need to
complete therouting o the entire net. The total cost of these estimated expansions are then calculated and used as the future

expansion cost.

3.2 The Routing Resource Graph for Datapath FPGA

Since each super-cluster in ou datapath FPGA contains M clusters, each with a fully connected local routing retwork,
we model a super-cluster using M source nodes and M sink hodes — one source and ore sink for each cluster. Each source

is conreded to all the output pins of its cluster and the capacity of a source is equal to the total number of LUTsin acluster.

10

super-cluster
cluster 3 cluster 2 cluster 1 cluster O

Boiby by ik oy
NIRRT,

9 source Dinput pin ®routing track
O sink M output pin

Figure 15: Super-cluster Representation

Each sink is connected to al the input pins of its cluster and the capacity of a sink is equal to the total number of cluster
inpu pins. Figure 15 shows an example of arouting resource graph representing a super-cluster containing four clusters.

Nodes in arouting resource graph are grouped into node buses. A node bus can be M sources of a super-cluster, M sinks
of asuper-cluster, M cluster inputsin an inpu-bus, M cluster outputs in an output-bus, M routing tracksin arouting bs, M
pad input pinsin apad-inpu bus or M pad ouput pinsin apad-output bus.

Edgesin arouting resource graph are similarly grouped into edge-buses. Each edge-busis asociated with aflag indicat-
ingif the M switchesin the bus dare asingle set of configuration memory. When configuration memory are shared, al M
switches must be turned onand off at the same time. To ensure correct routing, we must increment or decrement the occu-

pancy values of all the M routing tracks or M input pins connected downstream to these switches simultaneously.
3.3 ldentifying Net-busesin the Input Netlist

Each input netli st is a set of multi-terminal nets connecting a source to multiple sinks. We search throughthis input netlist

and identify net-buses. A net-busis defined to be a ©llection M netsthat have the following three properties:

1. All M nets must have sources from the same super-cluster and these M sources must be unique.

2. All M nets must contain the same number of sinks.

3. Sinks from these M nets can be grouped into groups of M with each group containing a sink from a unique net. Further-
more, al M sinksin any groupmust be in the same super-cluster and all these M sinks must be unique. (Each group of
sinksis called asink-bus.)

Netsthat do nd belong to any net-buses are called fine-grain nets.
3.4 Cost Function Design for Coarse-Grain Routing Resources

Our router not only have to balance routing delay with routing congestion, it also has to balance the use of coarse-grain
routing resources with fine-grain routing resources. Besides the traditional delay and congestion considerations, a balanced
use of coarse and fine grain routing resources is influenced by following four major factors:

1. the number of net-busesin an inpu netlist

2. the available number of coarse-grain routing tracks

3. the number of fine-grain netsin an input netlist
4

. the available number of fine-grain routing tracks

11

ABC

(a) switch pattern

ABCD ABCD
I [| NI
fine : 'f‘.‘ net-bus fine : Hnet-bus
>
r— grain
het net
(b) routing solution 1 (c) routing solution 2

Figure 16: Competition for Resources between
Fine and Coarse-grain Nets

For example, when there is alarge number of coarse-grain tracks avail able. Routing fine-grain nets on coarse-grain tracks
might be the only way to achieve alegal routing solution. On the other hand, when there are a large number of fine-grain
routing tracks, it might be beneficial to route alarge number of coarse-grain nets throughfine-grain routing tracks.

Further compli cating the issue isthe fact that several routing resources can have dual personalities— they can be onsid-
ered either as a part of the fine-grain routing resources or an extension d the carse-grain routing resources. For example, a
super-cluster input pin can be considered either as an individual input pin or a part of a super-cluster input-bus. When
aacepting an input signal from a fine-grain routing track, the pin acts as an individual input pin — it behaves like fine-grain
routing resources. When accepting an input signal from a aarse-grain routing track carrying a net-bus, the pin actsin con-
cert with three other input pins in its input-bus. This time, it behaves like coarse-grain routing resources. Other routing
resources that behave similarly include super-cluster output pins, 1/0 pad input pins, I/O pad output pins, sources, and sinks.

Because of this dual personality, fine-grain routing often competes with coarse-grain routing for resources. Figure 16(a)
shows one tile of a datapath FPGA and the switch pattern of its input and ouput connection Hocks. We assume digjoint
switch blocks for this example. As shown in Figure 16(b) and Figure 16(c), both a fine-grain net and a net in a net-bus can
use pin A to get into a super-cluster. In Figure 16(b), the fine-grain net uses pin A. Avoidingto create acongestion, only pin
B, C, and D can be used by the net-bus. To get the entire net-bus into the super-cluster, one more routing-bus segment has to
be used. In Figure 16(c), pin A is used by the net in the net-bus instead, the entire net-bus can get into the super-cluster

12

loop until maximum Iteration Is reached
for each noden
cdculate mngestion_cost(n)
end for
rip upall previously routed net
for each net i
for ead sink of net i, j
calculate aiticality(i,j)
end for
end for
for each busb
cdl route_net (b, null)
end for
for each net, i, with unrouted sinks
cdl route_net(null, i)

end for
endloop
Figure 17: Routing Algorithm for Datapath
FPGA
functionroute_net(i, b)
if (i == NULL)
IS _bus=false

foreahisink j of i
calculate criticality(i,j)
call expand_neighbours(i,j,is_bus)
elseif (b ==NULL)
is bus=true
for eath sink busc of b
for (k=0; k<with of the bus; k++)
i =kth hitof b
j =kth bitof ¢
cdculate aiticality(i,j)
end for
i =first bit of b
j=firgt bit of ¢
call expand_neighbous(i,j,is_bus)
end if
endfunction
Figure 18: route_net Function

function expand_neighbours (i j,is_bus)
pushi onto the priority stack
loop
pop node, n, off the stack
for al nodes, m, connected dowvnstream of node, n
if (m==j) then
exit function
else
calculate expansion cost based onexpansion topology
endif
end for
push m onto the priority stack using expansion_cost
endloop
end function

Figure 19: expand_neighbours Function

through pin A, B, C, and D. However, one extra fine-grain routing segment has to be used to get the fine-grain net into the
super-cluster withou causing any congestion.

The overall routing algorithm for datapath FPGA is shown in Figure 17, Figure 18, and Figure 19. To balance the use of
fine and coarse-grain routing resources, our router routes net-buses smultaneously through bah fine and coarse-grain rout-
ing tracks. We then choose the routing with the least cost. To be more specific, during each routing iteration, our router first
routes net-buses. Each net-bus is routed as a group. Our goal is to route as much net-buses through the coarse-grain routing

tracks as posdble. While routing the net-bus, we dso route the first bit of the bus through the fine-grain routing tracks. If the

13

source-expansion source-expansion

node-bus node-bus
edge-bus edge-bus
without with
SRAM SRAM
sharing L=y sharing
A\
sink-expansion sink-expansion

node-bus node-bus

@) (b) (©
@ Source-expansion node
o Sink-expansion node

Figure 20: Expansion Topology

super-cluster

EENN
Y

Figure 21: Double Connection in one bus bit

cost of routing the first bit through fine-grain routing tracks is lessthan the cost of routing the net-bus through coarse-grain
routing tracks, we route dl bits in the bus throughfine-grain routing tracks. If using the marse-grain routing tracks incurs
lower cost, coarse-grain routing tracks are then used. To encourage net-busesto use coarse-grain routing tracks, we penalize
the cost of routing the first bit of the net-bus throudh fine-grain routing tracks by a cnstant multiplication factor. We found
that a factor of 20 works well for our benchmarks.

Nets that do not belong to any buses are routed individually. Here again, we route each fine-grain net through bah fine-
grain and coarse-grain routing tracks. We compare the cost of using fine-grain and coarse-grain routing resources and
choose the option which incurs the lower cost. In the next a few paragraphs, we discuss how we calcul ate the expansion cost
for routing ret-buses.

The expansion cost is calculated based onthe topology of the expansion. There ae three different expansion topdogies
as shown Figure 20. Here the node that is the source of the expansion is labeled source-expansion node. The node that we
expand into is labeled sink-expansion nale. The first expansion topology is illustrated Figure 20(a). In the figure, the
source-expansion node and the sink-expansion nock is conrected by an edge that does not belongs to an edge-bus. In this
topdogy, Equation 5is used to calculate the expansion cost. When routing a net-bus throughthis topology, only the first bit
of the net-busisrouted.

The second expansion topology is shown in Figure 20(b). Here the source-expansion node and the sink-expansion node
are connected by an edge that belongs to an edge-bus and the switches in the edge-bus does nat share asingle set of control-
ling SRAM. We all the node-bus containing the source-expansion node the source-expansion nod-bus and the node-bus
containing the sink-expansion node the sink-expansion node-bus. When ony routing afine-grain net throughthis expansion
topdogy, we use Equation 5to calculate the expansion cost. When routing a net-bus throughthis expansion topology, we

use Equation 5 to cal culate expansion cost for each nade. The maximum cost is used as the expansion cost. It isimportant to

14

point out that, due to the dual personality of routing resources, nodesin anode-bus do na necessarily have the same conges-
tion cost at all time. An example is shown in Figure 21. Here the nodes in the node-buses represent four input pins. All four
pins are conrected to a net-bus through a coarse-grain routing hus. Pin O, however, has one more conrection. It is also con-
nected to afine-grain net through afine-grain routing track. The occupancy value of pin 0 is2 whil e the occupancy values of
pin 1, 2, and 3are 1. Since the occupancy values are different, the expansion costs are also different.

The third expansion topdogy is shown in Figure 20(c). Here the source-expansion nock and the sink-expansion nale ae
also connected by an edge that belongs to an edge-bus. The switchesin the edge-bus, however, shares a single set of control-
ling SRAM. When only routing afine-grain net through this expansion topology, we find the maximum congestion cost over
al nodes in the sink-expansion nod-bus. A modified Equation 5is then used to calculate expansion cost where the
congestion_cost(n) term is substituted by this maximum congestion cost. If we have to route anet-bus throughthe third
expansion topdogy, we use Equation 5 to calculate the expansion cost for each nock in the sink-expansion node-bus. We

then use the maximum expansion cost as the expansion cost.
4. Experimental Methodology

We performed a set of experiments to compare the area dficiency of the datapath architecture against the standard VPR

architecture. Our experiments also attempt to address the following two questions:

1. What isthe dfect of varying track length onthe aea of the datapath architecture?

2. What isthe dfect of varying the number of coarse-grain tracks on the aea of the datapath architecture?

We define the track length or the logical track length to be the number of logic dusters that a routing track expands. The
physical track length is defined to be the physical length of arouting track.

Our experiments assume that each routing channel contains two types of routing tradks — conventional fine-grain rout-
ing tracks of logic length L and coarse-grain routing tracks also of logic length L. We also assume that each type of routing
tracksis uniformly distributed across the FPGA.. For all of our experiments, we set the granularity of the datapath architec-
ture, M, to be four — each super-cluster contains four VPR clusters and coarse-grain routing tracks are grouped into four-bit
wide buses. This granularity was shown to be one of the most efficient by the study of [6]. It isalso used bythe achitecture
described in [13].

Asdiscussed in Section 2 the datapath architecture uses a digjoint switch block. We set the Fs_f and Fs_c values to be
three for al of our experiments. An Fs_f or Fs_c value of three means that at each switch point atrack is connected to three
neighbaing tracks. As shown in Figure 22, at the end of each track six switches are needed to conrect a given track to its
neighbaing tracks. At the middl e of each track, only one switch is needed to connect the track to its neighbaing track. We
also assume that al switchesin our switch blocks are buffered switches.

Figure 23 shows the CAD flow of our experiments. The 15 benchmark circuits are from the Pico-Java processor from
SUN Microsystems. Each benchmark circuit is from a datapath comporent of the Pico-Java and the benchmark set covers
all major datapath components of the processor. These circuits are synthesized into LUTs using a datapath oriented synthesis

15

/ "‘\
T

A

A

coarse-grain coarse-grain
end switch pattern middle switch pattern

ke

fine-grain fine-grain
end switch pattern middle switch pattern
Figure 22: Switch block topology

5 benchmark circuit:

Area measuremen

Figure 23: CAD Flow

Super-
cluster A

-

[1]
i
|

—] —] —] Super-
— — — — |[cluster B

— — — — | Super-

— f+—t /<t f<—/| cluster C

bit-slice 3 bit-slice 2 bit-slice 1 bit-slice 0
Figure 24: Packing

processdescribed in [16]. This synthesis processpreserves the regularity of datapath circuits while attempting to minimize
area. The output of the synthesistool consists of a netlist of bit-slices and LUTs. The bit-sli ces describe the regular datapath
logic while the L UTs describe the randam logic. The bit-slices themsel ves are netlists of LUTs. Each bit-slice isinstantiated

multiple timesto form regular datapath comporents.

The synthesized circuits are then packed into super-clusters using ou datapath-oriented packing tool, which is based on
the T-VPACK packing algorithm. Our packing toal is timing-driven. It tries to pack every four adjacent bit-slices into a
series of super-clusters. As own in Figure 24, portions of a bit-dlice are mapped into a unique cluster for each super-clus-
ter. The packer also utilizes the super-cluster level carry connections to minimize the delay of carry chains. The packed cir-

cuits are then placed using a modified VPR placement algorithm. Our placer uses simulated anneding to find the best

16

placement for each super-cluster. To achieve the best possible placement solutions, our placer aso movesindividua clusters
if these dusters do na contain any datapath componrents (clusters containing pue random-logic). The placed circuits are
then routed using the router described in Section 3

To find the effect of varying track length on the aea of the datapath architecture, we varied the logic track length to be 1,
2,4, 8, and 16 We dso considered the duster size of 2, 3, 4, 6, 8, and 10for each track length. For al experiments, we set
the percentage of coarse-grain tracks at close to 45%, since the study in [16] showed that 40%-50% of two terminal netsin
highly regular datapath circuits can be grouped into four-bit wide two-terminal buses. The physical length of awire segment
increases asthe duster sizeis increased even when the logic length of the routing track is kept constant. We account for this
increase in physical length by linearly scding routing track buffers with the square root of the super-cluster area. This is
shown to generate goodarea and delay resultsin [4]. For the achitectures with the sasme duster size but different logic seg-
ment length, we keep the track buffer size to be mnstant. Thisis also shown to generate goodarea and celay resultsin [4].

To find the dfect of varying the number of coarse-grain tracks on the aea of the datapath architecture, we performed
routing wsing several variants of the datapath architecture, each with adifferent number of coarse-grain tracks. For all of our
experiments, we fixed the logical track length to be two for both coarse-grain and fine-grain tracks. We dso fix the cluster
size, N, to be four. A track length of two and a duster size of four are shown to generate the best area result by the experi-
ment addressing question 1. For each architecture, we fix the total number of coarse-grain tracksthat can be used and let the
router search for the minimum number of fine-grain tracks that is needed to complete the routing. The number of fixed
coarse-grain routing buses that we aconsidered for each benchmark circuit isfrom 0 to 20 inclusively.

Finally to compare the area efficiency of a standard VPR architecture with ou datapath-oriented FPGA architecture, we
set the duster size, N, to be four for both the standard VPR architecture and ou datapath-oriented FPGA. Again we use a
fully buffered global routing architecture for both the standard VPR architedure and our datapath-oriented FPGA. We var-
ied several design parametersincluding L (the logic track length), Fc_input (the number of tracks that a duster input can be
connected to), Fc_pad (the number of tracks that a pad 1/O pin can be mnnected to), and Fc_ouput (the number of tracks
that a duster output can be mnnected to) to find a set of design parameters that generate the best area result for the standard
VPR architecture.

For our datapath-oriented architecture, we set the logic track length, L, to be two and the number of coarse-grain tracks to
be zero. We varied the design parameters Fc_if, Fc_pf, and Fc_of to find a combination of these three parameters that is the
most area efficient. We then assume the same set of Fc_if, Fc_pf, and Fc_of will generate the most area efficient results for
any percentage of coarse-grain tracks, when Fc_ic, Fc_pc, and Fc_oc are set to be equal to Fc_if, Fc_pf, and Fc_of, respec-
tively. Fixing Fc_if, Fc_pf, Fc_of, Fc_ic, Fc_pc, and Fc_oc, we varied the number of coarse-grain tracks to find the most

area dficient number of coarse-grain routing tracks for the datapath architecture.

17

A circuitareain
minimum transistor
area (x10°%)

16
. track length
B cluster size =2 B cluster size = 3

B cluster size =4 B cluster size = 6
B cluster size =8 O cluster size = 10

Figure 25: area vs. logical track length

A circuit area in
minimum transistor
area (x10°%)

4>
0% 0%- 10%- 20%- 30%- 40%- 50%- 60%- % of coarse
10% 20% 30% 40% 50% 60% 70% grain tracks

Figure 26: % of Coarse-Grain Tracks vs. Area

5. Experimental Results

Figure 25 shows circuit implementation area vs. logical track length for the datapath architecture. The x-axis represents
the logical track length and the y-axis represents the drcuit implementation area. We measured the drcuit implementation
area in terms of minimum transistor count as described in [4]. As sown by the figure, for each track length, we @mnsider
various cluster sizesof 2, 3, 4, 6, 8, and 1Q The average aea acrossfifteen benchmark circuitsisthen plotted for each track
length and cluster size mmbination. For track length of one and four, cluster size of six has the lowest implementation area.
For track length of two, cluster size of four has the lowest implementation area. For track length of eight, cluster size of four
and eight has the lowest implementation area. Finally for track length of sixteen, cluster size of eight has the lowest imple-
mentation area. For all cluster sizes the best area result is achieved when the logical track length is two. Furthermore, the
best datapath architecture has atrack length of two and a cluster size of four.

Figure 26 shows the total area vs. the percentage of total tracks that are aarse-grain in the datapath FPGA routing. We
also measured the area in terms of minimum transistor count as described in [4]. For each benchmark circuit, we collected

the aea results from a series of datapath architectures as described in Section 4 We then classfy these architectures into

18

A circuit areain
minimum transistor
area (x10%)

111 1.13

4>
0% 0%- 10%- 20%- 30%- 40%- 50%- 60%- % Of coarse
10% 20% 30% 40% 50% 60% 70% grain tracks

Figure 27: % of Coarse-Grain Tracks vs.
Routing Area

eight groups based on the percentage of total tracks that are marse-grain. The percentile ranges are (0%, 0%], (0%, 10%)],
(10%, 20%)], (20%, 30%)], (30%, 40%)], (40%, 50%)], (50%, 60%], or (60%, 70%).

Within each region, we first obtain the minimum area obtainable by each circuit. We then average these minimum area
values across 15 benchmark circuits. The average areais then plotted against each percentile range as shown in Figure 26.
From the graph, we can see that, initially, as the number of coarse-grain tracks increases, the total area required to imple-
ment the benchmark set also increases. This area increase continues until the number of coarse-grain tracks reaches 20% of
the total number of tracks. Then the aeadecreases and reaches its minimum when the number of coarse-grain tracks is
between 30% to 50% of the total track count. Then total areaincreases again as the percentage of coarse-grain tracks contin-
ues to increase.

Aswe start to add coarse-grain tracks into ou routing fabric, we are differentiating ou routing resources into two types.
This differentiation reduces the routing flexibility and accournts for theinitial increasein total area. Asthe number of coarse-
grain tracks isincreased to the 20% range, the benefit of coarse-grain tracks gartsto ouweigh the inflexibility in routing. As
the result, the total area required decreases until it reaches its minimum when coarse-grain tracks account for between 30%
to 50% of the total tracks. When we further increase the number of coarse-grain tracks, the number of coarse-grain tracks
provided bythe architecture starts to exceed the number of coarse-grain tracksrequired by the drcuits. The router then starts
to excessively use coarse-grain tracks for fine-grain routing. This reduces the efficiency of the datapath architecture and is
resporsible for the increase in area when more than 50% of the tracks are aarse-grain.

Overall, the best areais achieved when coarse-grain tracks account for 30% to 50% of the total tracks. At the 40% to 50%
region, our benchmark circuits uses 6% less area as compared with architectures with no coarse-grain tracks. This result
confirms with the observationin [16] that around 48% of two terminal netsin our datapath benchmarks can be grouped into
4-bit wide buses.

Since al of our area savings come from routing, it is instructive to just look at the routing area done. Thisis down in
Figure 27. The graph shows that when the marse-grain tracks account for 40% to 50% of the total number of tracks, the
routing areais 9% smaller than architectures with no coarse-grain routing tracks.

Finally, Figure 28 shows the same results presented in Figure 26 with area normalized against the best standard VPR
architecture. All coarse-grain architectures performed better than the best standard VPR architecture. When coarse-grain

19

A circuit area
(normalized %)

L
0% 0%- 10%- 20%- 30%- 40%- 50%- 60%- % of coarse
10% 20% 30% 40% 50% 60% 70% grain tracks

Figure 28: % of Coarse-Grain Tracks vs.
Normalized Area

routing tracks consist of 40% to 50% of the total routing tracks, the total area of the datapath architecture is 9.6% smaller
than the best standard VPR architecture.

6. Conclusion and Future Work

In this paper we proposed a datapath-oriented FPGA architecture with coarse-grain routing tracks. We aso proposed a
routing algorithm for this FPGA. We use the new router along with the datapath-oriented synthesis, packing, and placement
toolsto investigate the dfects of coarse-grain routing tracks on FPGA areafor highly regular datapath circuits.

We foundthat, for granularity of four, segment length of two givesthe best area results for cluster size of 2, 3, 4, 6, 8, and
10. In order to achieve the best arearesults, 40% to 50% of the total routing tracks hould be marse-grain. Furthermore, for
cluster size of four, the best datapath architecture is 9.6% small er than the best standard VPR architecture.

Datapath-oriented FPGA architecturesis an interesting and largely un-exploited field in FPGA design. Much work needs
to be done in the aea of benchmarks, FPGA architectures, and CAD todls. First of al, more and larger benchmarks are
needed. These benchmarks sioud conformed to a set of standards in describing regularity, so the CAD tools can easily pre-
serve and exploit the regularity information. Secondy, more work needs to be done in architectural design. This work only
exploited the benefits of sharing SRAM amount global routing tracks. Newer architectures can exploit the idea of sharing
configuration SRAM amount LUTs and several cluster level local routing networks. Current work also isolates the fine-
grain routing tracks from the coarse-grain routing tracks. More advanced switch block architectures that allow signalsto be
routed from fine-grain routing tracks to coarse-grain routing tracks and vice versawould be interesting to exploit. Animme-
diate follow up to this work would be to fully exploit the efect of varying M using alarge set of benchmarks. Finally, many
work needs to be dore in terms of CAD todls. More intelligent synthesis, packing, placement, and routing tools would fur-

ther enhance the aea dficiency of datapath FPGAs.

References

[1] Altera Datasheet, Altera, 2002.
[2] Pico-JavaProcesor Design Documentation, Sun Microsystems Inc., 1999.

20

[3] Xilinx Datasheet, Xilinx, 2002

[4] V.Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer Academic Publishers,
1999,

[5] S.Brown, R. Francis, J. Rose, Z. Vranesic, Field-Programmable Gate Arrays, Kluwer Academic Publishers, 1992

[6] D.Cherepacha, D. Lewis, “DP-FPGA: an FPGA architecture optimized for datapaths’, Proceedings of Ninth Interna-
tional Conference on VLS| Design, Pages 329-343, 19%.

[7] T.J. Callahan, P. Chong, A. DeHon, J. Wawrzynek, “Fast modue mapping and dacement for datapathsin FPGAS",
Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, Pages
123-132, 1998.

[8] M.R. Corazao, M. A. Khalaf, M. Potkonjak, J. M. Rabaey, “ Performance optimization using template mapping for
datapath-intensive high-level synthesis’, IEEE Transactions on Computer-Aided Design o Integrated Circuits and Sys-
tems, Pages 877-88, August 1996.

[9] A.Koch,“Structured design implementation — astrategy for implementing regular datapaths on FPGAS’, Proceealings
of the 1996 ACM Fourth International Symposium on Field Programmable Gate Arrays, Pages 151-157, 199%.

[10] A. Koch, “Modue compactionin FPGA-based regular datapaths’, Proceedings of the 33rd Design Automation Confer-
ence, Pages 471-476, 1996.

[11] T. Kutzschebauch, L. Stok, “Regularity driven logic synthesis’, Proceedings of IEEE/ACM International Conference
on Computer Aided Design, Pages 439446, 2000.

[12] T. Kutzschebauch, “ Efficient logic optimization wsing regularity extraction”, Proceedings of 2000International Confer-
ence on Computer Design, Pages 487—-4SB, 2000

[13] A. Marshall, J. Vuillemin, B. Hutchings, “A reconfigurable aithmetic aray for multimedia gplications’, Proceedings
of the 1999ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, Pages 135-143 Feb-
ruary 1999.

[14] A. R. Naseer, M. Balakrishnan, A. Kumar, “FAST: FPGA targeted RTL structure synthesis technique’, Proceedings of
the Seventh International Conference on VLS| Design, Pages 21-24, 1994

[15] A. R. Naseer, M. Balakrishnan, A. Kumar, “Direct mapping d RTL structures onto LUT-based FPGAS’, |EEE Transac-
tions on Computer-Aided Design o I ntegrated Circuits and Systems, Pages 624—&1, July 1998.

[16] A. Ye, J. Rose, D. Lewis, “ Synthesizing datapath circuits for FPGAs with emphasis on area minimization”, |EEE Inter-
national Conference on Field-Programmable Techndogy, Pages 219-227, December 2002

21

