
1

Ph.D. Annual Monitoring Report

by Andy Gean Ye

1. Introduction

This report reviews my Ph.D. research for the academic year 2000–2001. Our research is in the 

area of FPGA architectures for datapath applications. In particular, the goal is to increase FPGA 

logic density by utili zing datapath regularity in the application circuits. Our research methodology 

is empirical. We use custom CAD tools and benchmark circuits to evaluate various architectural 

alternatives. At the start of the year, we proposed a basic datapath FPGA architecture. During the 

year, we created a synthesis tool and a packing tool that synthesizes and packs VHDL and Verilog 

circuits into the proposed architecture. We created a benchmark suite of fifteen datapath circuits. 

We also made architectural improvements based on empirical results. 

We found that current synthesis tools produce much higher Look Up Table (LUT) count when 

configured to preserve datapath regularity and hierarchy. In many cases, the LUT count inflation 

can be as much as 50% compared with regular flat compile modes, which do not preserve datap-

ath regularity. We augmented a conventional synthesis tool (Synopsys Design Compiler) to reduce 

this LUT count inflation. When compared with the conventional tool operating on a flat circuit 

(not configured to employ hierarchy), the augmented, hierarchy-retained, approach has an average 

LUT count inflation of only 3%.

We also designed a packing tool that packs the synthesis tool output into the clusters of our pro-

posed architecture. In terms of Basic Logic Element (BLE) utili zation, our tool is almost as good 

as regular packing tools packing LUTs into comparable regular FPGA clusters.

We found that after packing there still i s a high degree of regularity in the fifteen benchmark cir-

cuits. In particular, the majority of signals in these circuits can be classified into two types — 

buses and controls. Around 48% of two terminal nets can be grouped into 4 bit wide buses and 

about 35% of two terminal nets are from high fan out control signals. There is lit tle overlap 

between these two types of signals.

The rest of this report is divided into six sections. Section 2 discusses the project motivation and 



2

experiment methodology. Section 3 describes the proposed datapath FPGA architecture. Section 4 

and Section 5 describes the synthesis and packing tools respectively. Section 6 presents experi-

ment results. The conclusion and future work are presented in Section 7.

2. Project Motivation and Experiment Methodology

In this thesis, we investigate FPGA architectures specialized for datapath applications. In recent 

years, the capacity of FPGAs has been continuously increasing. With this increased capacity, 

more and more datapath applications are implemented on FPGAs. Nowadays, it has become feasi-

ble to implement an entire CPU or graphic processor on a single FPGA. Except for dedicated 

carry logic, however, the majority of the current commercial FPGAs include lit tle support for 

datapath applications. We feel that there are two major areas where this increase in datapath logic 

can be utili zed to improve FPGA logic density and performance.

First, current commercial CAD tools do not efficiently use the regularity of datapath applications. 

Datapath designs are typically flattened into a single level of flat logic and go through the same 

synthesis process as random logic circuits. The alternative method of structural synthesis, which 

keeps the bit-level hierarchy intact, is not well supported by commercial or academic tools.

In structural synthesis, one does not arbitrarily flatten a datapath design. Instead, the synthesizer 

keeps track of the regularity of datapath applications. This regularity information is then passed 

down to the subsequent stages in the CAD flow. In current commercial tools, structural synthesis 

often results in much higher LUT count than flat synthesis. This inflation in LUT count has 

become a strong dis-incentive for using structural synthesis, and is detrimental to the overall effi-

ciency of any datapath FPGA architecture that utili zes datapath regularity.

Previous research, [1] [2], has shown that the regularity of datapath applications can be used to 

increase the placement and routing density of their FPGA implementations. Furthermore, the 

work in [3] has shown that under appropriate optimization techniques structural synthesis of data-

path circuits can be as efficient as flat synthesis in terms of standard cell literal count. But these 

capabiliti es have not yet been implemented in today’s commercial tools. In this thesis, we create 

CAD tools that can structurally synthesize datapath circuits into LUTs in order to make efficient 

use of the proposed datapath architecture; furthermore, we use various techniques to ensure that 



3

our structural synthesis approaches the efficiency of flat synthesis.

Second, commercial FPGA architectures do not fully take advantage of the regularity of datapath 

applications. Especially the technique of configuration memory sharing is not widely used to 

achieve area saving. In a regular FPGA architecture, reconfigurable resources are independently 

controlled by their own configuration memory. In a configuration memory sharing architecture, 

on the other hand, a group of reconfigurable resources share a single set of configuration memory 

[4]. By sharing configuration memory, all members in the group behave identically. The work in 

[4] studied configuration memory sharing in FPGAs based on regular single LUT clusters. The 

effect of configuration memory sharing on routing was estimated. In this thesis, we proposed a 

new configuration memory sharing scheme for FPGAs based on multi -LUT clusters. Routing 

architecture will also be studied in detail, where actual place and route tools will be designed for 

the new architecture.

Experiment Methodology
We use an empirical methodology to evaluate the efficiency of our proposed FPGA architecture. 

First, we collect a suite of datapath intensive applications to be used as benchmarks. These bench-

marks are then converted into a consistent hierarchical description in either Verilog or VHDL for-

mat as specified by our datapath-oriented CAD flow. Currently, our benchmark set consists of 

fifteen datapath circuits from the Pico-Java processor [7]. We are planning to convert and add 

more circuits including DSPs, ASICs and other CPUs to our benchmark suite in the coming year. 

Then, we use the datapath-oriented CAD flow, designed as part of this thesis to synthesize, pack, 

place, and route these benchmarks into the proposed FPGA architecture. Data are then collected 

for choosing the best architectural alternative and comparing the proposed architecture with the 

traditional architectures. In the past year, we have completed the synthesis and packing tools. 

These tools are described in detail l ater in the report.

3. Features of the Datapath FPGA Architecture

This section briefly describes the datapath FPGA architecture that we are currently investigating. 

All features except the datapath control signal distribution network are described in more detail in 

[5]. Throughout our architectural work, we assume the basic building blocks of our datapath 



4

FPGAs are BLEs as shown in Figure 1. Each BLE consists of a single LUT and a single D type 

Flip Flop (DFF). This basic building block is widely used in many academic studies including [6].

This section is divided into three subsections. Subsection 1 describes the clustering strategy of our 

architecture. Subsection 2 describes how configuration memory sharing is used to route bus sig-

nals. Finally, Subsection 3 describes how high fan out control signals are distributed in our pro-

posed architecture.

Clusters and Subclusters
BLEs are grouped into two levels of clustering hierarchies. We call the top level clusters, and the 

lower level subclusters. A subcluster is shown in Figure 2. Each subcluster consists of N BLEs 

with I subcluster inputs and N subcluster outputs. I and N are parameters that we will use our 

empirical methodology to explore. Each BLE output is connected to a corresponding subcluster 

output. Each BLE input is fully connected to all subcluster inputs and subcluster outputs through 

a subcluster local routing network.

A single cluster consists of m subclusters. Since datapath circuits usually consist of identical bit 

slices, a single cluster can be used to implement an m bit wide datapath circuit with N or less 

LUTs per slice. For larger datapath circuits, we decompose them into smaller datapath circuits 

each of which can be implemented by a single cluster. When implementing random logic circuits, 

each subcluster behaves as a regular FPGA cluster as defined in [6]. Clusters are used in conjunc-

tion with the bus routing and the control signal distribution networks to efficiently implement 

datapath circuits. A cluster is shown in Figure 3.

LUT D
F

F

output

Inputs M
U

X

Clock M
M — Configuration 

Figure 1: A Basic Logic Element (BLE)



5

Coarse Grain Routing Channels
Our FPGA routing architecture contains two types of routing channels — coarse grain routing 

channels and fine grain routing channels. Coarse grain routing channels are designed to route bus 

signals. Tracks in a coarse grain routing channel are grouped into m bit wide buses. m is equal to 

the number of subclusters in a cluster. Within each routing bus, corresponding switches on distinct 

tracks share the same configuration memory. By sharing configuration memory, coarse grain rout-

ing channels can route bus signals in less area than regular fine grain routing channels, and this is 

one of the area savings that we anticipate to achieve with the datapath architecture.

Not all signals in datapath circuits can be grouped into buses. For example, random logic signals 

from control logic can rarely be grouped into buses. It is inefficient to use a wide routing bus for 

BLE

BLE

BLE

BLE

Local 
Routing 
Network

OutputsInputs

Figure 2: A Subcluster

Sub-
cluster

Sub-
cluster

Sub-
cluster

Sub-
cluster

Routing 
Tracks

Switch 
Box

Cluster
Routing 
Tracks

Figure 3: A Cluster



6

just a single bit signal. For these signals, we include regular routing resources in our routing archi-

tecture. We call these routing resources fine grain routing channels. We wil l study the optimal 

proportion of the two types of routing resources in this thesis. A cluster with one coarse grain 

routing bus and one fine grain routing track is ill ustrated in the Figure 4.

Figure 4 also ill ustrates how cluster outputs are connected to coarse grain routing buses. When 

connecting to a coarse grain routing bus, each subcluster output only connects to one distinct rout-

ing track. As usual the connection is configurable through a routing switch; however, all connec-

tions share the same configuration memory. The input connections to coarse grain routing buses 

are similar and are il lustrated in Figure 5. 

Also shown in Figure 4 and Figure 5 are the regular output and input connections to fine grain 

routing tracks, respectively. When connecting to fine grain routing tracks, each subcluster behaves 

as a regular FPGA cluster. The connection boxes between subclusters and the fine grain routing 

tracks are similar to the connection boxes in a regular FPGA architecture [5]. 

In Figure 5, signals c1, c2, c3, and c4 are from a control input connection, which is not shown in 

Sub-
cluster

Sub-
cluster

Sub-
cluster

Sub-
cluster

Cluster

M

M

M M M M
M

Coarse Grain 
Routing Tracks

Fine Grain 
Routing Track

S
w

it
ch

 B
ox

Figure 4: Coarse Grain Routing



7

the figure. Control input connections are discussed in detail i n the next subsection.

Special Control Signal Distribution Network
Although control signals only constitute a small percentage of total nets in datapath circuits, they 

are usually high fan out and constitute a large percentage of two terminal nets in datapath applica-

tions. We find almost as many two terminal control nets as two terminal bus nets in our bench-

mark set. Section 6 presents this data in detail. 

A typical control signal is generated by random logic (non-datapath) and used in several bit slices. 

Due to the regularity of datapath circuits, a control signal typically fans out to a group of identical 

bit slices. This regularity can be potentially used to increase the efficiency of control signal rout-

ing networks.

Coarse Grain 
Routing Tracks

Fine Grain 
Routing Track

Sub-
cluster

Sub-
cluster

Sub-
cluster

Sub-
cluster

Cluster

d1, d2, d3, d4 — datapath input connections from coarse grain routing buses

r1, r2, r3, r4 — regular inputs connections from fine grain routing tracks

d1 d2
r1 r2

d3 d4r3 r4

M

c1 c2 c3 c4

c1, c2, c3, c4 — control input connections from fine grain routing tracks

Coarse Grain 
Routing Tracks

Fine Grain 
Routing Track

M

M M M M

Figure 5: Input Connection Boxes



8

In our routing architecture, we route control signals through the fine grain routing tracks. Special 

control input connection boxes shown in Figure 6 are designed to efficiently distribute control sig-

nals in clusters. The connection box selects a track from the fine grain routing channel and distrib-

utes this signal to all subclusters in a cluster. When a control input connection box is used, it 

functions as m regular fine grain input connection boxes. As with coarse grain routing channels, 

we anticipate area savings from this architectural feature.

4. Datapath-Oriented Structural Synthesis

Our proposed FPGA architecture requires synthesis tools that preserve datapath regularity. In our 

datapath-oriented structural synthesis, this is achieved by keeping bit slice descriptions in their 

own hierarchy. Similar to the methodology used in [3], optimization steps that will destroy the 

regularity of datapath circuits are not performed. 

The synthesis CAD flow is ill ustrated in Figure 7. This flow takes HDL (Hardware Description 

Language) specifications as inputs. The datapaths must be specified by instantiating components 

from our predefined library called Datapath Component Library. The HDL descriptions are then 

optimized and mapped into LUTs and DFFs through a three stage iterative optimization process, 

Figure 6: Control Signal Distribution

Sub-
cluster

Sub-
cluster

Sub-
cluster

Sub-
cluster

Cluster

d1 d2
r1 r2

d3 d4r3 r4

M

M Control Input 
Connection Box

c1 c2 c3 c4

d1, d2, d3, d4 — datapath input connections from coarse grain routing buses
r1, r2, r3, r4 — regular inputs connections from fine grain routing tracks

c1, c2, c3, c4 — control input connections from fine grain routing tracks

Fine Grain 
Routing Tracks



9

which uses our own structural optimization algorithm in stage two, Structural Optimization, and 

the Synopsys Design Compiler in the other two stages, Initial Synopsys Compile and Final Synop-

sys Compile. Two iterations are currently used. The final output of the CAD flow is in VHDL and 

is labeled Final Structural VHDL Description in Figure 7. It is discussed in detail i n Section 5.

For every benchmark, we compare the final LUT count of our structural synthesis with the LUT 

count of f lat Synopsys compile (flatten compile). We flat compile the initial structural HDL 

description and the optimized structural VHDL descriptions from all two iterations. These flat 

compile sample points are shown in shaded ovals in Figure 7. One is labeled Initial Structural 

HDL Description; the other labeled Optimized Structural VHDL Description. The best flat com-

pile result is used in comparison with our structural compile results.

The rest of this section describes the synthesis CAD flow in detail. It is divided into three subsec-

tions. The datapath component library is discussed in Subsection 1. The Synopsys Design Com-

piler configuration is discussed in Subsection 2; and finally our structural optimization algorithm 

is discussed in Subsection 3.

Datapath Component Library
The datapath component library is written in Verilog. It contains fundamental datapath building 

blocks including multiplexors, adders/subtractions, shifters, comparators, and registers. 

To capture the structure of a datapath component, we use a two level hierarchy which consists of 

bit slices and datapath components. Each bit slice is described behaviorally in its own Verilog 

module. Each datapath component is also described by a Verilog module. Inside the datapath 

component modules, corresponding bit slices are instantiated multiple times based on datapath 

width. Datapath component modules also contain behavior descriptions of all l ogic that is not part 

of bit slices.

Synopsys Design Compiler Configuration
Synopsys Design Compiler is a powerful and versatile synthesis tool. It can read several popular 

HDL description languages and apply various optimization methods. It does not, however, effec-

tively deal with the trade off between optimization and datapath preservation. The most effective 

optimization methods in Synopsys, flatten compile and uniquify compile, destroy either design 



10

hierarchy or datapath regularity. The third compile option, set dont touch compile, on the other 

hand, can be used to preserve datapath hierarchy and regularity, but it does not perform optimiza-

tion across hierarchical boundaries. As the result, set dont touch compile is much less effective 

Datapath Component Library

Initial Synopsys Compile

Structural Optimization

Final Synopsys Compile

Un-optimized Structural 
VHDL Description

Optimized Structural 
VHDL Description

Final Structural VHDL Description

i ++
i == 2 ?

Initial Structural 
HDL Description

No

Yes

Figure 7: Overall Flow of the Synthesis Tool

i = 0



11

than the other two compile options [8]. 

In order to balance the trade off between optimization and datapath preservation, we use the three 

stage synthesis process as shown in Figure 7. The initial Synopsys compile stage uses the set dont 

touch compile method. It maps the HDL description into LUTs and DFFs. Before each compile, 

we set the dont touch attribute for each bit slice module and each datapath component module. 

The output of this stage has a three level hierarchy as shown in Figure 8. These three levels cap-

ture the bit slices, the datapath components and the overall design description, respectively.

Since the initial Synopsys compile does not optimize across hierarchy boundaries, the LUT count 

of its output can be as high as 1.5 times of the best Synopsys flat synthesis. In the structural opti-

mization stage we attempt to reduce the LUT count by performing logic optimization across hier-

archy boundaries. Using our own structural optimization algorithm, we selectively perform 

optimizations that are across hierarchy boundaries, but still preserve datapath regularity. The algo-

rithm used in the structural optimization stage is discussed in detail in the next subsection. 

Designs are then re-mapped into LUTs and DFFs in the final Synopsys compile stage, which uses 

the set dont touch compile method and is similar to the initial Synopsys compile stage. We found 

that by repeating stage two and three, we can reduce the LUT count to within 1.03 times of the 

best Synopsys flat synthesis.

Bit Slice B1

Datapath 
Component B

Datapath 
Component A

Top Level 
Design

Bit Slice A2Bit Slice A1 Bit Slice B2

Figure 8: Hierarchical Structural of the Initial Synopsys Compile Output



12

Structural Optimization Algorithm
At the start of the structural optimization, we divide each datapath component into m bit wide 

chunks, where m corresponds the number of subclusters in a cluster. Each chunk of datapath is 

contained in its own module. An optimization is performed only when it is applicable to all m bit 

slices in a module. Three major optimizations are currently performed during the structural opti-

mization. They are mux tree collapsing, bit slice merging, and bit slice I/O optimization.

The first stage of our optimization is mux tree collapsing1. A mux tree sometimes can be substi-

tuted with a single mux which requires less logic to implement. An example is shown in Figure 9. 

Here we can substitute the mux tree on the left with the single mux on the right. To implement the 

two muxes and the and gate on the left we needs two 4 input LUTs. To implement the mux and 

the and gate on the right, we need only one 4 input LUT. The extra random logic in right circuit 

usually is shared by several bit slices, so its cost is negligible in wide datapath circuits.

The second optimization that we perform is bit slice merging. In this stage, we merge two mod-

ules together to form larger bit slices. This is a pattern identification process. Two datapath mod-

ules are merged together if all bit slices in one module are identically connected to their 

1. It is currently performed manuall y, but will be automated in the future.

DFF

DFF

A

S1

S2

R

A

R

rl

S1

S2

rl — random logic

Figure 9: Mux Tree Collapsing Example



13

corresponding bit slices in the other. An example is shown in Figure 10. Here each bit slice in 

Module A are connected to a corresponding bit slice in Module B. Furthermore, the nets connect-

ing these slices all have output pin Ao1 as sources and input pin Bi2 as sinks. By creating larger 

bit slices, we create more optimization opportunities for the next stage and the final Synopsys 

compile.

Finally, bit slice I/O optimization is performed. Three types of datapath module input buses and 

one type of output buses are converted into bit slice internal signals at this stage. Optimization is 

performed only when all signals in a module’s I/O bus meet the same optimization criteria. We 

eliminate input buses whose signals are all constant one or constant zero as ill ustrated in Figure 

13. Input buses that are connected to output buses from the same module are eliminated as ill us-

trated in Figure 13. Input buses that have the same sources as other input buses are eliminated as 

il lustrated in Figure 13. Output buses that do not have any sinks are also eliminated at this stage.

Ao1

Ao1

Ao1

Ao1

Bi2

M
od

ul
e 

A

M
od

ul
e 

B

Figure 10: A Bit Slice Merging Example

Ao2

Ao2

Ao2

Ao2

Bi1

Bit 
Slice 
A1

Bit 
Slice 
A2

Bit 
Slice 
A3

Bit 
Slice 
A4

Bit 
Slice 
B2

Bi2 Bi1
Bit 
Slice 
B1

Bi2 Bi1
Bit 
Slice 
B3

Bi2 Bi1
Bit 
Slice 
B4

M
od

ul
e 

A
 m

er
ge

d 
w

it
h 

M
od

ul
e 

B Ao2

Ao2

Ao2

Ao2

Bi1

Bit 
Slice 
A1

Bit 
Slice 
A2

Bit 
Slice 
A3

Bit 
Slice 
A4

Bit 
Slice 
B2

Bi1
Bit 
Slice 
B1

Bi1
Bit 
Slice 
B3

Bi1
Bit 
Slice 
B4

Before Merging After Merging



14

Ai1

M
od

ul
e 

A
Ai2

Ao 0Bit Slice 
A1

Ai1
Ai2

Ao 0Bit Slice 
A2

Ai1
Ai2

Ao 0Bit Slice 
A3

Ai1
Ai2

Ao 0Bit Slice 
A4

Before Optimization After Optimization

M
od

ul
e 

A

Ai2
AoBit Slice 

A1

Ai2
AoBit Slice 

A2

Ai2
AoBit Slice 

A3

Ai2
AoBit Slice 

A4

Figure 11: Input Optimization Criteria A

Ai1

M
od

ul
e 

A

Ai2
AoBit Slice 

A1

Ai1
Ai2

AoBit Slice 
A2

Ai1
Ai2

AoBit Slice 
A3

Ai1
Ai2

AoBit Slice 
A4

Before Optimization

M
od

ul
e 

A

Ai2

Bit Slice 
A1

Ai2

Bit Slice 
A2

Ai2

Bit Slice 
A3

Ai2

Bit Slice 
A4

After Optimization

Figure 12: Input Optimization Criteria B



15

5. Datapath-Oriented Packing

The input to our packing tool is the output of the synthesis tool. The final structural VHDL 

description produced by the synthesis tool consists of LUTs and DFFs. Datapath LUTs and DFFs 

are grouped into modules. Each module is divided into m identical bit slices, where m is equal to 

the number of subclusters in a cluster. Random logic LUTs and DFFs are not grouped into any 

module.

Our packing tool packs these LUTs and DFFs into clusters. We first pack LUTs and DFFs both 

inside and outside the modules into BLEs using an algorithm similar to the one presented in [6]. 

A normal packing tool packs BLEs into clusters one BLE at a time. Our cluster, however, is m bits 

wide. When dealing with datapath modules, our packer packs m identical BLEs into one cluster at 

a time. The packing algorithm is a modified T-Vpack algorithm [6] and has three stages. 

First, we create a graph consists of large nodes and small nodes connected by nets representing 

signals. Each large node represents m identical BLEs, each from a distinct bit slice in a datapath 

module. Each small node represents a single BLE that does not belong to any datapath.

Figure 13: Input Optimization Criteria C

Ai1

M
od

ul
e 

A
Ai2

AoBit Slice 
A1

Ai1
Ai2

AoBit Slice 
A2

Ai1
Ai2

AoBit Slice 
A3

Ai1
Ai2

AoBit Slice 
A4

Before Optimization After Optimization

Ai1

M
od

ul
e 

A

AoBit Slice 
A1

Ai1AoBit Slice 
A2

Ai1AoBit Slice 
A3

Ai1AoBit Slice 
A4



16

Then, large nodes are packed into clusters. Clusters are created one at a time and packed until the 

cluster has no room left for any unpacked large nodes. Throughout the packing process, each BLE 

in a large node is associated with a unique subcluster in the target cluster. The large node can be 

packed into the target cluster if each individual BLE can be packed into its corresponding subclus-

ter.

Typically, there are many large nodes that can be packed into a target cluster. We choose one with 

the highest attraction to the cluster. To compute the attraction of a large node to a cluster, we first 

compute the attraction between each BLE in the node with its corresponding subcluster using an 

algorithm similar to the one used in T-Vpack. The attraction of a large node to a cluster is then set 

to be the maximum attraction of all of its BLEs to their subclusters.

In the final stage, BLEs outside the modules are packed into subclusters using the T-Vpack algo-

rithm. New subclusters created at this stage will be grouped into clusters during placement.

Our packing algorithm achieves high BLE utili zation. We packed our datapath benchmarks into 

clusters. Each cluster contains 4 subclusters each of which has 10 inputs and four 4-input LUTs. 

On average, we achieve BLE utili zation of 97%. The detailed utilization results are listed in Table 

1. Column one lists the name of each benchmark circuit. Column two lists the number of BLEs in 

each circuit. Column three lists the number of clusters datapath BLEs are packed into. Each clus-

ter contains 16 BLEs. Column four lists the number of subclusters random-logic BLEs are packed 

into. Each subcluster contains 4 BLEs. As previously stated, these subclusters remain unpacked 

and we are working on placement tools that will group these subclusters into clusters in the place-

ment stage. Finally column five lists the BLE utilization over both clusters and unclustered sub-

clusters for each circuit.

Table 1: Utilization for Datapath Oriented Packing

BLE Count Clusters
Unclustered
Subclusters

BLE 
Utilization

dcu_dpath 966 57 15 99%

ex_dpath 2649 161 37 97%



17

6. Experiment Results

In this section, we present data collected on fifteen datapath benchmarks after synthesis and pack-

ing. Table 2 summarizes the LUT and DFF inflation of each benchmark. Each inflation figure is 

calculated by comparing the structural synthesis with the best flat synthesis as defined in Section 

4. Column two and three list the LUT and DFF count from the best flat synthesis, respectively. 

Column four and five list the LUT and DFF count from the structural synthesis, respectively. The 

inflation figures for LUTs and DFFs are listed in column six and seven, respectively. The average 

LUT inflation is 3.2% and the average DFF inflation is 0.0%. These numbers show that structural 

synthesis does not significantly increase the LUT and DFF counts for these benchmarks.

icu_dpath 3245 208 23 95%

imdr_dpath 1255 76 22 96%

pipe_dpath 473 29 3 99%

smu_dpath 557 31 20 97%

ucode_dat 1304 77 20 99%

ucode_reg 84 5 1 100%

code_seq_dp 368 19 17 98%

exponent_dp 517 23 44 95%

incmod 867 49 21 99%

mantissa_dp 942 55 31 94%

multmod_dp 1634 85 74 99%

prils_dp 393 20 20 98%

rsadd_dp 313 18 10 95%

Total 15567 913 358 97%

Table 1: Utilization for Datapath Oriented Packing

BLE Count Clusters
Unclustered
Subclusters

BLE 
Utilization



18

The next two tables show two major types of nets that exist in datapath benchmarks after packing. 

A two terminal bus is defined as an m bit wide bus (4 in this case) going from a single cluster to 

another with each bit generated by a distinct subcluster. They can be efficiently routed by the 

coarse grain routing channels in our proposed architecture. On average 48% of two terminal nets 

in these benchmarks can be grouped into 4 bit wide buses. The details for each benchmark are 

summarized in Table 3. In the table, column two lists the total number of two terminal nets in each 

circuit. Column three lists the total number of two terminal nets that belong to 4 bit wide two ter-

minal buses. Finally column four li sts the net count in column three as a percentage of the total 

Table 2: LUT and DFF Inflation after Structural Synthesis

Best Flat Synthesis Structural Synthesis Inflation

LUT Count DFF Count LUT Count DFF Count LUT DFF

dcu_dpath 960 288 966 288 0.63% 0.0%

ex_dpath 2530 364 2553 364 0.91% 0.0%

icu_dpath 3120 355 3235 355 3.7% 0.0%

imdr_dpath 1182 170 1218 170 3.1% 0.0%

pipe_dpath 443 218 471 218 6.3% 0.0%

smu_dpath 490 190 493 190 0.61% 0.0%

ucode_dat 1243 224 1304 224 4.9% 0.0%

ucode_reg 78 74 84 76 5.1% 0.0%

code_seq_dp 218 216 223 216 2.3% 0.0%

exponent_dp 477 64 501 64 5.0% 0.0%

incmod 779 72 867 72 11% 0.0%

mantissa_dp 846 192 878 192 3.8% 0.0%

multmod_dp 1558 193 1634 193 4.9% 0.0%

prils_dp 377 0 388 0 2.9% 0.0%

rsadd_dp 346 0 305 0 -12% 0.0%

Total 14647 2620 15118 2620 3.2% 0.0%



19

two terminal nets.

A control net is a single net that enters a cluster and fans out to all m subclusters (4 in this case). 

They can be efficiently distributed by our special control signal distribution network inside clus-

ters. The control nets on average consist of 35% of the total two terminal nets in these bench-

marks. The details for each benchmark is shown in Table 4. In the table, column two lists the total 

number of two terminal nets in each circuit. Column three lists the total number of two terminal 

nets that belong to 4 bit fan out control signals. Finally column four li sts the net count in column 

Table 3: Percentage of Two Terminal Nets that are 4 Bit Wide Buses

Total Two Terminal 
Nets

4 Bit Wide Two Terminal Buses

Net Count
as a Percentage of Total 

Two Terminal Nets

dcu_dpath 2232 1087 49%

ex_dpath 6547 3411 52%

icu_dpath 8047 3782 47%

imdr_dpath 3100 1547 50%

pipe_dpath 1049 500 48%

smu_dpath 1167 564 48%

ucode_data 3143 1631 52%

ucode_reg 194 140 72%

code_seq_dp 799 464 58%

exponent_dp 1362 436 32%

incmod 2013 843 42%

mantissa_dp 2533 1196 47%

multmod_dp 3380 1332 39%

prils_dp 864 352 41%

rsadd_dp 722 372 52%

Total 37152 17657 48%



20

three as a percentage of the total two terminal nets.

7. Conclusion and Future Work

This report summarized my major Ph.D. research results in the academic year 2000–2001. We 

discussed the current upward trend of implement datapath application on FPGAs and how CAD 

and FPGA architectures can be designed to achieve area savings by exploring datapath regularity. 

We proposed a datapath FPGA architecture with a two level clustering hierarchy, coarse grain 

routing channels, and special control signal distribution networks. We also discussed our empiri-

Table 4: Percentage of Two Terminal Nets that are 4 Bit Fan Out Control Signals

Total Two Terminal 
Nets

4 Bit Fan Out in Cluster

Net Count
as a Percentage of Total 

Two Terminal Nets

dcu_dpath 2232 964 43%

ex_dpath 6547 2572 39%

icu_dpath 8047 2860 36%

imdr_dpath 3100 1108 36%

pipe_dpath 1049 440 42%

smu_dpath 1167 296 25%

ucode_data 3143 1304 41%

ucode_reg 194 40 21%

code_seq_dp 799 144 18%

exponent_dp 1362 312 23%

incmod 2013 670 33%

mantissa_dp 2533 900 36%

multmod_dp 3380 848 25%

prils_dp 864 276 32%

rsadd_dp 722 196 27%

Total 37152 12928 35%



21

cal methodology of measuring the efficiency of our proposed architecture.

CAD tools needed by the empirical study are currently being built. Two tools, the datapath-ori-

ented structural synthesizer and the datapath-oriented packer, have been completed and their algo-

rithms were discussed in this report. We also measured the regularity of fifteen benchmark circuits 

after packing. We found that there is high degree of regularity in these packed benchmarks, with 

48% of two terminal nets that can be grouped into 4 bit wide buses and 35% of two terminal nets 

from control signals with at least 4 bit fan out. There is very litt le overlap between these two types 

of two terminal nets.

Future Work
Finally there are two major pieces of work remaining in my thesis. First, we need to gather more 

datapath benchmarks. All current benchmarks come from the Pico-Java processor. We want to add 

new circuits from other datapath applications to increase diversity. Preferably, we will add circuits 

form DSP and ASIC applications. 

Second, we need to finish and implement datapath-oriented place and route tools. To fully under-

stand the impact of our architectural changes on routing track utili zation, we need to place and 

route the benchmark circuits. A specialized router is needed due to the inclusion of the coarse 

grain routing networks, the specialized control signal distribution networks and the unique con-

nection boxes in our architecture. Placement tools also will be modified to take advantage of the 

regularity of datapath circuits. When these goals are completed, our proposed FPGA architecture 

can be further studied.

8. Bibliography:

[1] Andreas Koch, “Structured Design Implementation — A Strategy for Implementing Regular 

Datapaths on FPGAs”, Proceedings of the 1996 ACM Fourth International Symposium on Field-

Programmable Gate Arrays, 1996, Pages 151–157.

[2] A. R. Naseer, M. Balakrishnan, Anshul Kumar, “An Efficient Technique for Mapping RTL 

Structures onto FPGAs”, Proceedings of the Fourth International Workshop on Field Programma-

ble Logic and Applications, September 1994, Pages 99–110.



22

[3] Thomas Kutzschebauck, Leon Stok, “Regularity Driven Logic Synthesis” , Proceedings of 

IEEE/ACM International Conference on Computer Aided Design, 2000, Pages 439–446.

[4] Don Cherepacha, David Lewis, “DP-FPGA: An FPGA Architecture Optimized for Datap-

aths” , VLSI Design 1996, 1996, Pages 329–343.

[5] Andy Gean Ye, “Ph.D. Thesis Proposal: Routing Architecture and Place and Route Tools for 

DP-FPGA”, University of Toronto Technical Report, June. 2000.

[6] Vaughn Betz, Jonathan Rose, Alexander Marquardt, Architecture and CAD for Deep-Submi-

cron FPGAs, Kluwer Academic Publishers, 1999.

[7] Pico-Java Processor Design Documentation, Sun Microsystems Inc., 1999.

[8] Synopsys Design Compiler Manual, Synopsys Inc., 1999.

[9] Alan Marshall , Jean Vuill emin, Brad Hutchings, “A Reconfigurable Arithmetic Array for Mul-

timedia Applications” , Proceedings of the 1999 ACM/SIGDA Seventh International Symposium 

on Field Programmable Gate Arrays, February 1999, Pages 135–143.


