

**Department of Electrical, Computer, & Biomedical Engineering** Faculty of Engineering & Architectural Science

## **Course Outline (W2025)**

## **BME808:** Computations in Genetic Engineering

| Instructor(s)                          | Adam Lim [Coordinator]<br>Office: TBA<br>Phone: TBA<br>Email: adam.lim@torontomu.ca<br>Office Hours: Wednesday   11am - 12pm   Virtual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Calendar<br>Description                | Discusses the theory and practice of molecular database searching and sequence alignment in genetic engineering. Covers databases and Internet access, sequence homology searching, and multiple alignment and sequence motif analysis, and protein structure and function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Prerequisites                          | BME 501 and BME 532 and MTH 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Antirequisites                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Corerequisites                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Compulsory<br>Text(s):                 | <ol> <li>Exploring Bioinformatics, A Project-Based Approach, Second Edition by Caroline St. Clair<br/>&amp;Jonathan E. Visick Jones &amp; Bartlett Learning 2015.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Reference<br>Text(s):                  | <ol> <li>Sequence and Genome Analysis, D.W. Mount, Cold Spring Harbor Laboratory Press,<br/>2004,ISBN 978-087969712-9Data Mining, IH. Witten, E. Frank, M.A. Hall, Morgan<br/>Kaufmann, 2011.</li> <li>Reproducible Bioinformatics with Python, Ken Youens-Clark, Released July 2021,<br/>Publisher(s): O'Reilly Media, Inc. ISBN: 9781098100889</li> <li>Bioinformatics with Python Cookbook, 2nd Edition Paperback November 2018</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Learning<br>Objectives<br>(Indicators) | <ul> <li>At the end of this course, the successful student will be able to:</li> <li>1. Apply specialized engineering knowledge to predict functional regions in genetic data, such as exon-intron borders and promoter regions. (1d)</li> <li>2. Appraise the validity/reliability of bioinformatics sequence data relative to the degrees of error and limitations of sequence analysis theory and measurement. (3a)</li> <li>3. Apply selection/decision-making techniques to determine the relative value of feasible alternatives or proposed solutions in a complex sequence analysis problem. (4c)</li> <li>4. Design and develop simple software to perform given tasks as required by the problem, evaluate skills and tools to identify their limitations with respect to the project needs, and evaluate results using several skills and tools to determine the one that best explains reality. (5a)</li> <li>5. Gain a working knowledge of the literature of sequence analysis in the field of bioinformatics and how sequences are produced, annotated and analyzed. (12b)</li> <li>NOTE:Numbers in parentheses refer to the graduate attributes required by the Canadian Engineering Accreditation Board (CEAB).</li> </ul> |  |  |

| Course<br>Organization             | <ul><li>3.0 hours of lecture per week for 13 weeks</li><li>1.0 hours of lab per week for 12 weeks</li><li>1.0 hours of tutorial per week for 12 weeks</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Teaching<br>Assistants             | Daniel Genkin (daniel.genkin@torontomu.ca)<br>Mukhesh Reddicherla (mukhesh.reddicherla@torontomu.ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Course<br>Evaluation               | Theory       Midterm       25 %         Midterm       25 %         Final       45 %         Laboratory       Research Project       10 %         Labs/Tutorials       20 %         TOTAL:       100 %         Note: In order for a student to pass a course, a minimum overall course mark of 50% must be obtained. In addition, for courses that have both "Theory and Laboratory" components, the student must pass the Laboratory and Theory portions separately by achieving a minimum of 50% in the combined Laboratory components and 50% in the combined Theory components. Please refer to the "Course Evaluation" section above for details on the Theory and Laboratory components (if applicable).                                                                                                                                                                                                                                             |  |  |
| Examinations                       | Midterm exam in Week 8, 2.0 hours, closed book (covers Weeks 1-6 of lecture, assignment and laboratory material).<br>Final exam, during exam period, 3.0 hours, closed book (covers all the course material).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Other<br>Evaluation<br>Information | Labs: From Week 2 onward.<br>Participation: Based on in-class exercises and in-class presentations of recent advances in<br>biotechnology.<br>Research Project: Review and presentation of a scientific paper. The research project combines<br>two separate components: a written component and an oral presentation component. The<br>objective of this project is to study a specific topic in bioinformatics literature and to become<br>familiar with the research community and history of bioinformatics. You must select a publication<br>that presents either a specialized bioinformatics algorithm or its application. A 12 minute<br>presentation and a two page technical report will be used to<br>evaluate your project, as well as the technical merit and the skill with which the student<br>communicates his or her message. Papers in (peer-reviewed) journals and conference<br>proceedings are the main resources for this project. |  |  |
| Other<br>Information               | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

**Course Content** 

| Week | Hours | Chapters /<br>Section                                                | Topic, description                                                                                                                                                                                                                                                                                                     |
|------|-------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 3     | Exploring<br>Bioinformatics<br>Chapters 1 2                          | Introduction to Bioinformatics and Computational Genomics:<br>Structure of nucleic acids DNA RNA<br>Role of mRNA tRNA and ribosome<br>Gene transcription translation protein genetic code<br>Bioinformatics Databases                                                                                                  |
| 2    | 3     | Exploring<br>Bioinformatics:<br>Chapter 8                            | DNA Sequencing:<br>Deep sequencing of clinical samples<br>Assembly and Mapping<br>Algorithm for determining largest overlap<br>Next generation sequencing<br>Methods: Sanger Shotgun 454 Illumina Solid<br>Introduction to the Greedy Algorithm                                                                        |
| 3    | 3     | Exploring<br>Bioinformatics:<br>Chapters 3 5                         | Sequence Alignment:<br>Fundamentals of sequence Alignment<br>Scoring Alignments<br>Substitution matrices and scoring<br>Dynamic Programming Alignment algorithms<br>Needleman-Wunsch Algorithm<br>Sequence similarity databases<br>Alignment score significance: probability<br>Longest overlap algorithm using Python |
| 4    | 3     | Exploring<br>Bioinformatics:<br>Chapters 4 5                         | Sequence Alignment:<br>Smith-Waterman Algorithm<br>Dot-Matrix method<br>Multiple sequence alignment:<br>Global and local sequence alignments<br>Word or k-tuple method<br>ClustalW<br>BLAST<br>Introduction to protein sequence Alignment:                                                                             |
| 5    | 3     | Exploring<br>Bioinformatics:<br>Chapters 9 D.<br>Mount:<br>Chapter 9 | Gene Prediction Part-1:<br>Structure of genes in Prokaryotes vs. Eukaryotes<br>Consensus sequences in Prokaryotes vs. Eukaryotes<br>Alignment-Based Algorithms<br>Sequence-Based Algorithm<br>Pattern Matching Algorithm using Python<br>Content-Based Algorithm introduction<br>Probabilistic Algorithm introduction  |

|    |   |                                                                                       | Protein sequence Alignment:<br>Sequence Alignment using Substitution matrices<br>Hydrophobicity matrix<br>PAM Matrix<br>BLOSUM matrix                                                                                              |
|----|---|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | 3 | Exploring<br>Bioinformatics:<br>Chapters 10                                           | Gene Prediction Part-2:<br>Content-Based Algorithm<br>CpG Island Prediction Algorithm using Python<br>Probabilistic Algorithm<br>Exon-intron boundaries<br>Hidden Markov Model (HMM)<br>Neural Networks introduction               |
| 7  | 0 |                                                                                       | Study week - No class<br>Groups assigned for Final Project                                                                                                                                                                         |
| 8  | 2 | Midterm Exam                                                                          | Midterm-exam                                                                                                                                                                                                                       |
| 9  | 3 | Exploring<br>Bioinformatics:<br>Chapter 11 D.<br>Mount:<br>Chapter 10 (pp<br>417-434) | Hidden Markov Models (HMM):<br>Predicting Exon-Intron Boundary<br>Setting up Viterbi matrices<br>Hidden Markov Models Evaluation problem<br>Hidden Markov Models Learning problem<br>Hidden Markov Models Decoding problem         |
| 10 | 3 | Exploring<br>Bioinformatics:<br>Chapter 11 D.<br>Mount:<br>Chapter 10 (pp<br>435-467) | Proteins:<br>Primary, secondary and Tertiary Structures<br>Protein databases<br>Homology modeling<br>Threading<br>Chou-Fasman Algorithm<br>Chou-Fasman: find alpha<br>Chou-Fasman: find beta-strand<br>Chou-Fasman: find beta-turn |
| 11 | 3 | Exploring<br>Bioinformatics:<br>Chapter 12 D.<br>Mount:<br>Chapter 8                  | Nucleic Acid Structure Prediction:<br>Stem and loop structures<br>Folded Structure<br>Secondary Structure<br>Nussinov-Jacobson Algorithm                                                                                           |

| 12 | 3 | Phylogenetics | Phylogenetics                                       |
|----|---|---------------|-----------------------------------------------------|
| 13 | 3 | Presentation  | Students will present their course research project |

# Laboratory(L)/Tutorials(T)/Activity(A) Schedule

| Week | L/T/A                                                                              | Description                                                                                                                                |
|------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2    | LAB 1:<br>Exploring<br>bioinformatics<br>database on<br>the internet               | Students will be familiarized with key features of the bioinformatics databases.                                                           |
| 3    | LAB 2:<br>Assembly of<br>sequence<br>data                                          | Students will familiarize themselves with Python and use it to write simple bioinformatics applications. Greedy Algorithm using Python     |
| 4    | LAB 3:<br>Sequencing                                                               | Gaining experience with DNA sequencing data and software that analyzes it.<br>Example: the human gut metagenome in NCBI trace archives.    |
| 5    | LAB 4:<br>Dynamic<br>programming<br>algorithm<br>Pairwise<br>Sequence<br>Alignment | Students will implement the dynamic programming algorithm. Needleman-Wunsch and Smith-Waterman                                             |
| 6    | LAB 5:<br>Primer<br>Design                                                         | Students will utilize their learnings of Multiple Sequence Alignment to develop primer sequences for identifying SARS-CoV-2 virus variants |
| 9    | LAB 6: CpG<br>Algorithm                                                            | Implementation of CpG approach to finding the promoter region.                                                                             |
| 10   | LAB 7: Gene<br>Annotation                                                          | Implementation of the Pattern algorithm which is good for gene annotation in prokaryotes.                                                  |

| 11 | LAB 8: RNA<br>Secondary<br>Structure         | Explore a web application which deals with prediction of RNA secondary structure.<br>Also write python code for generating complement and reverse complements of<br>nucleic acid strands. |
|----|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | LAB 9: Chou<br>Fasman<br>Algorithm           | Python implementation and testing of Chou-Fasman algorithm                                                                                                                                |
| 13 | LAB 10:<br>Nussinov<br>Jacobson<br>Algorithm | Python implementation and testing of Nussinov Jacobson algorithm                                                                                                                          |

## **University Policies & Important Information**

Students are reminded that they are required to adhere to all relevant university policies found in their online course shell in D2L and/or on the Senate website

Refer to the Departmental FAQ page for further information on common questions.

#### Important Resources Available at Toronto Metropolitan University

- <u>The Library</u> provides research <u>workshops</u> and individual assistance. If the University is open, there is a Research Help desk on the second floor of the library, or students can use the <u>Library's virtual research help service</u> to speak with a librarian.
- <u>Student Life and Learning Support</u> offers group-based and individual help with writing, math, study skills, and transition support, as well as <u>resources and checklists to support students as online learners.</u>
- You can submit an <u>Academic Consideration Request</u> when an extenuating circumstance has occurred that has significantly impacted your ability to fulfill an academic requirement. You may always visit the <u>Senate website</u> and select the blue radio button on the top right hand side entitled: **Academic Consideration Request (ACR)** to submit this request.

For Extenuating Circumstances, Policy 167: Academic Consideration allows for a once per semester ACR request without supporting documentation if the absence is less than 3 days in duration and is not for a final exam/final assessment. Absences more than 3 days in duration and those that involve a final exam/final assessment, require documentation. Students must notify their instructor once a request for academic consideration is submitted. See Senate <u>Policy 167: Academic Consideration</u>.

- If taking a remote course, familiarize yourself with the tools you will need to use for remote learning. The <u>Remote Learning</u> <u>Guide</u> for students includes guides to completing quizzes or exams in D2L Brightspace, with or without <u>Respondus LockDown</u> <u>Browser and Monitor, using D2L Brightspace</u>, joining online meetings or lectures, and collaborating with the Google Suite.
- Information on Copyright for <u>Faculty</u> and <u>students</u>.

#### Accessibility

- Similar to an <u>accessibility statement</u>, use this section to describe your commitment to making this course accessible to students with disabilities. Improving the accessibility of your course helps minimize the need for accommodation.
- Outline any technologies used in this course and any known accessibility features or barriers (if applicable).
- Describe how a student should contact you if they discover an accessibility barrier with any course materials or technologies.

#### Academic Accommodation Support

Academic Accommodation Support (AAS) is the university's disability services office. AAS works directly with incoming and returning students looking for help with their academic accommodations. AAS works with any student who requires academic accommodation regardless of program or course load.

- Learn more about Academic Accommodation Support.
- Learn how to register with AAS.

Academic Accommodations (for students with disabilities) and Academic Consideration (for students faced with extenuating circumstances that can include short-term health issues) are governed by two different university policies. Learn more about <u>Academic Accommodations versus Academic Consideration and how to access each</u>.

### Wellbeing Support

At Toronto Metropolitan University, we recognize that things can come up throughout the term that may interfere with a student's ability to succeed in their coursework. These circumstances are outside of one's control and can have a serious impact on physical and mental well-being. Seeking help can be a challenge, especially in those times of crisis.

If you are experiencing a mental health crisis, please call 911 and go to the nearest hospital emergency room. You can also access these outside resources at anytime:

- **Distress Line:**24/7 line for if you are in crisis, feeling suicidal or in need of emotional support (phone: 416-408-4357)
- Good2Talk:24/7-hour line for postsecondary students (phone: 1-866-925-5454)
- Keep.meSAFE: 24/7 access to confidential support through counsellors via My SSP app or 1-844-451-9700

If non-crisis support is needed, you can access these campus resources:

- Centre for Student Development and Counselling: 416-979-5195 or email csdc@torontomu.ca
- Consent Comes First Office of Sexual Violence Support and Education: 416-919-5000 ext 3596 or email osvse@torontomu.ca
- Medical Centre: call (416) 979-5070 to book an appointment

We encourage all Toronto Metropolitan University community members to access available resources to ensure support is reachable. You can find more resources available through the <u>Toronto Metropolitan University Mental Health and Wellbeing</u> website.