EE8205: Embedded Computer Systems
Electrical, Computer and Biomedical Engineering

Toronto Metropolitan University

Introduction to Keil uVision and ARM Cortex M3

1. Objectives

The purpose of this lab is to introduce students with the installation of uVision on their home computers. They will
also be made known to the Keil uVision IDE along with the ARM Cortex M3 architecture and some of its features.
Specifically, the basic steps of coding and execution with the ARM Cortex M3 (NXP LPC1768) embedded
processor. Students will learn to execute simple Cortex M3 programs using uVision. The lab will allow students to
become familiar with the uVision environment, its simulating capabilities, and the tools needed to assess various
Cortex M3-CPU performance features and factors. As majority of embedded systems use ARM processors for low-
power consumption and competitive performance, students will find the skills obtained from this lab very useful.

2. KEIL uVision 5 Installation

The first step is to download the MDK531.EXE or the latest version available. Follow the link below
https://www.keil.com/demo/eval/arm.htm fill the form and you will see the download screen of Figure 1.
Download the MDK531.EXE file to your machine.

Products Download Events Support Videos Q Search Keil...

Product Information Home / Product Downloads

Software & Hardware Products

Arm Development Tools M DK-ARM

C166 Development Tools MDK-ARM Version 5.31

Version 5 31
C51 Development Tools ersion 5.3

251 Development Tools = Review the hardware reguirements before installing this software.

Debug Adapters = MNote the limitations of the evaluation tools.
Evaluation Boards = Further installation instructions for MDKS
Product Brochures

Newsletters (MD5:679eb0b5d83574b4eb071b5CT 227287)

To install the MDK-ARM Software...

Device Database®

Device List

Compliance Testing
ISO/ANSI Compliance

Validation and Verification

Distributors

Overview

= Right-click on MDKS531.EXE and save it to your computer.
= PDF files may be opened with Acrobat Reader

= ZIP files may be opened with PKZIP or WINZIP.

MDK531.EXE (296,933K)
Thursday, July 2, 2020

= If you are evaluating the tools, be sure to request a quote for the full version of the tools.

Figure 1: KIEL uVision 5 Download page

EE8205: Embedded Computer System -- uVision Tutorial Page 1/19

https://www.keil.com/demo/eval/arm.htm

Once the file is downloaded, double click and run the setup file (MDK531.EXE). Accept the license agreement,
select installation folder, enter your information, and complete MDK setup as depicted in Figures 2 to 7.

Setup MDK-ARM V5.31

o ArmekeEiL

'

| This SETUP program nstalls:
MDK-ARM V5.31

This SETUP peogram may be used to update a previous product installation
However, you should make a backup copy before proceedng

It is recommended that you exit all Windows programs before continuing with SETUP.

Follow the instruchions to complete the product nstallation.
i Y o]
N”

Figure 2: Setup Options

Setup MDK-ARM V5.31 B3
Folder Selection
Select the lolder whete SETUP wil natall fles arm KEIL

Press Ned' 10 natall MDECARM 1o thete foldecs. Precs Browee' 10 sslect diferent foiders for natalaton

! Destnation Folders
Coe: [CAKal_vS Browrie |
Pack: [C\Users\Dev\AppDato\Localim\Packs Browte .

<<80ck‘| Noxt >> I’ Cancel I
___,/

Figure 3: Program Directory

EE8205: Embedded Computer System -- uVision Tutorial Page 2/19

Setup MDK-ARM V5.31
Customer Information
Please enter your infomation, G rm KE”—

Plaase enter pour name, the name of the compary for whom you wark and your E-mail address.

First Mame: Hohn

Last Name: |Den

Compary MNarme: |r,,.gg,.;.n

E-mail: ljohn.don@ryerson.ca.

<« Back Nest »» Cancel

Figure 4: Your Information

Setup MDK-ARM V5.31

ArmeckeEilL

MDE-ARM Setup iz performing the requested operations.

Inztall Filez ...

Inztalling fromelf. exe.

— Keil MDE-ARM Setup

<< Back I Mext x> I Cancel

Figure 5: Setup Running

EE8205: Embedded Computer System -- uVision Tutorial

Page 3/19

All the Cortex M3 based labs are remote and online only and we cannot use the Cortex M3 hardware
boards in Lab ENG408. Therefore, we do not need the ULINK driver. However, if any student wants use
the ENG408 lab board or intend to obtain/buy Cortex M3 (or M4) processor development board, he/she
should install this driver also.

Setup MDK-ARM V5.31
= Windows Security i

Would you like to install this device software?

Marne: KEIL - Tools By ARM Universal Serial Bus...
¥ > Publisher: ARM Ltd

Always trust software from "ARM Ltd". Install Don't Install

'l" You should only install driver software from publishers you trust, How can
| decide which device software is safe to install?

Cancel

Figure 6: Device Driver

Setup MDK-ARM V5.31

Keill MDK-ARM Setup completed

MDK-ARM WE 3 G r m KE | L

MDOK-ARM Core Setup has performed all requested operations successfully.

W Show Releasze Motes.

| Finish |

N

Figure 7: MDK Installation Completed

EE8205: Embedded Computer System -- uVision Tutorial Page 4/19

3. Package Installation:

Select NXP LPC1768 processor from the Devices tab (See Figure 8) as this is the processor used in the Cortex
M3 based MCB1700 boards available in our ENG408 lab. Install all the packages as mentioned in Figure 9.

& Pack Installer - C:\Users\Dev\AppData\Local\Arm\Packs - b
File Packs Window Help
] ‘ Device:
4] Devices | Boards | AR Packs | Examples |]
Search: - X Pack Action Description
Device /| summary =1 Device Specific 0Packs No device selected B
=715 All Devices 7055 Devices “a| || = Generic 48 Packs
% ABOV Semiconductor 20 Devices - Alibabe::AliOSThings | & Install AliOS Things seftware pack
% Active-Semi 17 Devices Am-Packs:PKCST1 | < Install OASIS PKCS #11 Cryptographic Token Interface
% Ambiq Micro 10 Devices - Arm-Pad Install Unit Testing for C (especially Embedded Software)
% Amiccom 3 Devices -_ Software companents for inter processor communication (Asymmetric Multi
% Analog Devices 15 Devices Pack Installer te | CMSIS (Cortex Microcontroller Software Interface Standard)
@ APEXMIC 14 Devices te | CMSIS Drivers for external devices
¥ ARM 57 Devices », Welcome to the Keil Pack Installer CMSIS-Driver Validation
9 AutoChips 16 Devices /| Pack Installer i a utiity for managing Saftware Packs on the local computer and Bundle of FreeRTOS for Cortex-M and Cortex-A
s provides the following windonis:
@ Cypress 507 Devices CMSIS-RTOS Validation
¥ Dialog Semiconducter 15 Devices Devices : List supported devices. Selecta device to show related Packs and examples. | ——1| At Mmbed Client for Cortex M devices
@ EtaCompute 3 Devices ARM mbed C library —
@ Gigaevice 160 Devicss Boards : Listsupported boards, Select a board to show related Packs and examples. ARM mbed Cryptographic and SSL/TLS library
% Goodix 18 Devices Packs : Listand manage Software Packs, Instal 2 Pack for access within pVison. ||| mbed OS Scheduler for Cortex-M devices
% HDSC 75 Devices Trusted Firmware-M (TE-M) reference of Arm’s Platform Sec
& Holtek 215 Devices Examples : List example projects. Copy projects and launch pision for testing examples. Intutive graphical FIR/IR digital fiter designer
@ Infineon 183 Devices Pack Installer connects to www kel com/pack to obtain the published Software Packs. Flexible Safety RTOS
- Lapis Semiconductor 2Devices To install a local Software Pack use File - Import... from the menu. te_| Keil ARM Compiler extensions for ARM Compiler 5 and ARM Compiler 6
- Maxim 16 Devices NXP i.MX RT 1051/1052 MOK-Middleware examples and CMSIS-Drivers
4 MediaTek 2 Devices ¥ Show this cislog at startup Help NKP .M RT 106171062 MDK-Middleware examples and CMSIS-Drivers
% Microchip 304 Devices NKP .M RT 1064 MDK-Middleware examples and CMSIS-Drivers
% Microsemi 6 Devices ¢ Keilzansson & Install Jansson is a C library for encoding, decoding and manipulating JSON data
% MindMotion 29 Devices ~KeilsLPCS5SE TFM-PF | @ _Install= DUXP LPC5556x MCU Family TF-M Platform Support
- Nordic Semiconductor 12 Devices ~Keil:MDK-Middleware | € Uptodate | Middleware for Keil MDK-Professional and MDK-Plus
% Nuvoton 591 Devices KeilzSTM32L 50 TFM-... | 3 Install= STMicroelectronics STM32L3 Series TF-M Platform Support -
B9 NXP 1283 Devices =L | 0
Qutput o x
Refresh Pack descriptions
Action (1 left): Update Pack ptions, download Keil, 1.B-L475E-IOT01A_BSP.pdsc [= lomume |

Figure 8: Package Installation

& Pack Installer - C:\Users\Dev\AppData\Local\Arm\Packs - b -
File Packs Window Help
1l ‘ Device: NXP- LPCI768
4] .~ Devices | Boards | o] |[4] " Packs | Examples | |
Search: - X Pack Action Description
T A | Sy I Device Specific 18 LBC1768 selected B
% Lpcezs 1 Device = Keil:LPC1700_DFP @ Uptodste | NXPTHCTTO0 Series Device Support, Drivers and Examples for MCBI700 and LPCT78
43 Lpcass 2 Devices =-Generic T
% Lpcads I Devices #-AlibabazAliOSThings | & Install AlIQS Things software pack
%2 LPCT100 Series 128 Devices - Am-Packs:PKCSTT | € Install OASIS PKCS #11 Cryptographic Token Interface
4 LPC1200 Series 12 Devices - Arm-Packs:Unity & Install Unit Testing for C (especially Embedded Software)
4 LPCT300 Series 24 Devices 1 ARM:AMP. | lostall___| Software components for inter processor communication (Asymmetric Multi Proce
42 LPCT500 Series 13 Devices - ARM:CMSIS @ Uptodate || CMTSy(Cortex Microcentroller Software Interfece Stendard)
=% LPCT700 Series 21 Devices - ARM:CMSIS-Driver date LGS Drivers for edernal devices
% LpCT 6 Devices 1 ARM:CMSIS-Driver_Va Install CMSIS-Driver Validation |
T
5% LPCTTx 7 Devices - ARM:CMSIS @ Upto doic | Butiea FreeRTOS for Cortex-M and Cortex-A
@ eciTe ARM CortecM2, 100 MHz, 64 kB RAM, 256 kB ROM = ARMECMSISAIS Vo, | @ Unio dote || CMSISAATOS Validation
@ Lecizes "ARM Cortex-M3. 100 Mz 32 kB RAM. 120 k8 ROM #-ARM:mbedClient Tnstall ARM mbed Client for Cortex-M devices
@ eciTes ARM Cortex-M2, 100 MHz, 64 kB RAM, 256 kB ROM &-ARM:mbedCrypto Install ARM mbed C library
8 Leci7es ARM Cortex- M3, 100 MHz. 64 kB RAM, 256 kB ROM & ARM:mbedTLS & Install ARM mbed Cryptographic and SSL/TLS library
8 LpCiTeT ARM Cortex-M3. 100 M 64 kB RAM 512 kB ROM - ARMzminar @ _Install mbed 05 Scheduler for Cortex-M devices
PC1768 “ARM Cortex M3, 100 Mz, 64 kB RAML 512 kB ROM - ARM:TFM & _Install+ Trusted Firmuware-M (TF-M) reference implementstion of Arm's Platform Security £
* ARM Cortec- M3, 120 MHz 64 kB RAM. 512 kB ROM - ASN:Filter Designer | €_Install Intuitive graphical FIR/IR digital filter designer
0% PCITI £ Devices - EmbeddedOffices:Flexi... & _Install Flexible Safety RTOS
A —
% LpCT7E 4 Devices 1 Keil:ARM_Compiler Up to date | KeiLPRM Compiler extensions for ARM Compiler 5 and ARM Compiler 6
%2 LPCT800 Series 21 Devices #-Keil:iMXRTIOSCMWP | € Installs NXP i MK RT 105171052 MDK-Middleware examples and CMSIS-Drivers
%2 LPCA000 Series 16 Devices #1-Keil:iMXRTI060_ MWP | & Installs NXP i MX RT 10611062 MDK-Middleware examples and CMSIS-Drivers
5% LPCA300 Series 25 Devices - Keil:iMXRT1064 MWP | &5 Installs NXP i.MX RT 1064 MDK-Middleware examples and CMSIS-Drivers S
@ 1pcssi? 2 Devices =)
Output B x
Refresh Pack descriptions
Update available for ARM:CMSIS-Driver (installed: 2.6.0, available: 2.6.1)
Update available for Keil:MDK-Middleware (installed: 7.11.1, available: 7.12.0)
Ready [lonune 2

Figure 9: Device and Supported Package Installation

EE8205: Embedded Computer System -- uVision Tutorial Page 5/19

4. Developing Software for Cortex with Keil uVisions

In this section, you will learn to create a uVision project, import necessary files, compile, and simulate an
application to assess the performance. In particular, the example will demonstrate a simple project called
blinky. The code will read the voltage provided by the microcontroller's ADC channel AIN2 (the
potentiometer available on the MCB1700 board). Based on the value set on the channel, the LEDs will flash
at a certain speed. If enabled, a bar graph and voltage reading will also appear on the LCD display.

4.1. Creating a new uVision Project

We will be working with the NXP LPC1768 (Cortex M3 produced by NXP) processor in these labs. This
processor chip is used in the Keil MCB1700 evaluation board. You will find a lot of online resources and
tutorials for assistance.

To run uVision IDE, double click uVision program on your desktop. Open the application.

Figure 10: uVision5 Icon

1. When uVision has launched and if a project already exists, then first close the project by selecting
Project >> Close Project.
G

L. -
2. Now from the top bar select Pack Installer option == in the top bar as shown in Figure 11.
B uVision [Non-Commercial Use Lic
L) |[E] %
Project L |

Figure 11: Select Pack installer
3. The Pack Installer Opens up Select the Blinky ULp Project. As shown in Figure 12.

4. Create New Directory for EE8205 Labs and a subfolder for Labl. Copy to that folder as shown in
Figure 13.

5. Your workspace should now resemble Figure 14.

EE8205: Embedded Computer System -- uVision Tutorial Page 6/19

] Pack Installer - C:\Users\Dev\AppData\Local\Arm\Packs
File Packs Window Help
o ‘ Device: NXP-LPC1768 ——
4| " Devices | Boards |] [a] o pacel) Examples |) b
Search: -)(|7 Show examples Trem installed Packs only
Device /| Summary Example Action Description
GE LPCE44 4 Devices o --BSD Client (MCB1700) Coj Example using BSD sockets to send commands to remote server 4
P 9 =
q? LPC845 4 Devices ~-BSD Server (MCB1700) Coj Example using BSD sockets to accept commands from remote clie
P 9 P
A3 LPC1100 Series 128 Devices i Blinky example
3 LPC1200 Series 12 Devices < inky ULINKpro exarmple
3 LPC1300 Series 24 Devices CAN example that sends and receives data messages
P 9
qf LPC1500 Series 13 Devices Demo (MCB1700) 2 Copy Demao example
= qf LPC1700 Series 21 Devices FTP Server (MCB1700) Coy File Server using FTP protocol with SD/MMC Memory Card as stori
qFlPp Y
A LpCr75e 6 Devices File System Demo (MCB1700) & Copy File manipulation example: create, read, copy, delete files on any e
=] qf LPC176x 7 Devices HTTP Server (MCB1700) 2 Copy Compact Web Server with CGl interface
& Lpc17es ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM HTTP Upload (MCB1700) ! Copy Web Server with CGlinterface and SD/MMC Memory Card as stora
€1 Lpc17ed ARM Cortex-M3, 100 MHz, 32 kB RAM, 128 kB ROM SMTP Client (MCB1700) ! Copy Example showing how to compose and send emails
& Lpc17es ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM SMNMP Agent (MCB1700) ! Copy Example showing how to use a Simple Network Management Prot
€1 Lpc17e6 ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM Telnet Server (MCB1700) ! Copy Command-line Host service example using Telnet protocol
& Lpci7e7 ARM Cortex-M3, 100 MHz, 64 kB RAM, 512 kB ROM -USB Device Audio (MCB1700) ! Copy USE Audio Device demonstrating USB Speaker.
ARM Cortex-M3, 100 MHz, 64 kB RAM, 512 kB ROM ~SB Device HID (MCB1700) ! Copy USB Human Interface Device providing access from PC to board LE
&8 pCi76g ARM Cortex-M3, 120 MHz, 64 kB RAM, 512 kB ROM -USB Device Mass Storage (MCB1700) ! Copy USB Mass Storage Device using SD/MMC Memory Card as storage
OrS LPCIT7c 4 Devices ~USB Device Virtual COM (MCB1700) ! Copy Virtual COM Port example: bridges UART port of the eval board to
=48 LpC17Ex 4 Devices --USB Host Keyboard (MCB1700) & Copy Measure example using USB HID Keyboard as input device
0!3 LPC1800 Series 21 Devices ~\SB Host Mass Storage (MCB1700) ! Copy USB Host file manipulation example: create, read, copy, delete files
0!3 LPCADDD Series 16 Devices ~-emWin Example (MCB1700) ! Copy emWin Graphics simple example =
0!3 LPC4300 Series 25 Devices ~-emWin GUI Demo (MCB1700) ! Copy emWin Graphics Demo example
A Lpessiz 2Devices _Ij
A 1prssig ? Devices = |l J '
Output X
Refresh Pack descriptions
Update available for ARM:CMSIS-Driver (installed: 2.6.0, available: 2.6.1)
Update available for Keil:MDK-Middleware (installed: 7.11.1, available: 7.12.0}
Ready [lonume

Figure 12: Copy Blinky Project

4 E:\Ryerson MASc\(\kiel5 project\lab1\Boards\Keil\M(

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEd@ B9 | | ® | IE It | & SETIEE

* 0L &-

& @ - L|g%?|S‘-'\-fOTrace v%lﬁ%.@@
roject B |] Abstract.txt
2% Project: Blinky The "Blinky' project is a simple program for the LPC1768
45 SWO Trace microcontroller using Keil 'MCB17@@' Evaluation Beard, compliant
25 Source Files to Cortex Microcontroller Software Interface Standard (CMSIS).
|] Blinky.
i) Biinky.c It demonstrates the use of ULINKpro Debugger.
11 IRQc
=55 Documentation Example functionality:
[] Abstract.xt - Clock Settings:
- XTAL = 12.88 MHz
4 Board Support - U _ 100,00 Mz
& cmsis
’ Compiler - Sys Timer is used in interrupt mode
o % Device - 8 LEDs blink with speed depending on potentiometer position

- AD settings: 12 bit resclution
- AD value is output onto ITM debug port #@

The Blinky program is available in different targets:

- SWO Trace: configured for on-chip Flash
shows use of System Analyzer, ITM output

Figure 13: Copy Blinky to Lab1 folder

EE8205: Embedded Computer System -- uVision Tutorial Page 7/19

! Copy I Blinky example

linky ULp (MCB1700) [€ Copy | Blinky ULINKpro.

<B RAM, 512 kB ROM AN (MCB1700) € Copy CAN example tha
-Demo (MCB1700 & Copy Demo example

copy Exam[’le & Copy F?Ie Ser\.rér usin.g I

& Copy File manipulation

Destination Folder & Copy Compact Web Se

- & Copy Web Server with (

|E:\,Ryerson MASC\COE718 TABlinky j M & Copy Bample showing

[V Use Pack Folder Structure [V Launch pvision & Copy Example showing

& Copy Command-line -

x| Concel_ | & Copy USE Audio Devict

& Copy USE Human Inter

SB Device Mass Storage (MCB1700) & Copy USB Mass Storage

SB Device Virtual COM (MCB1700) € Copy Virtual COM Port

USB Host Keyboard (MCB1700) & Copy Measure example

SB Host Mass Storage (MCB1700) & Copy USE Host file mar

; mWin Example (MCB1700) & Copy emWin Graphics

E--'----emWin GUI Demo (MCB1700) . Copy emWin Graphics

Figure 14: Workspace

6. Double click on startup_LPC17xx.s to open the editor. Click on the "Configuration Wizard" tab
at the bottom of the editor window as shown in Figure 15. The Wizard window converts the "Text
Editor" window so that the programmer may view the configuration options more easily. It is
possible to adjust the stack and heap sizes of the LCP1768 chip here if necessary.

Project T A |] Abstracttxt |] startup LPC1%oxs | |] Blinkyc |°] ADC_MCB1700.c
=% Project: Blinky
&8 WO Trace Bopand Al | Collapse Al | __Hep | T ShowGnd
155 Source Files Option Value
L1 Bliny.c [=l-Stack Configuration
ij IRQ.c Stack Size (in Bytes) D000 0200
L] Abstract.xt Heap Size (in Bytes) 0x0000 0000
€ Board Support
& cmsis
& Compiler
= ’ Device

ﬁ GPIO_LPC17onc (GPIO)
ﬁ PIN_LPCTTxe.c (PIN)

|1 RTE_Device.h (Startup)

ij startup_LPC17xx.s (Startup)
ij systern_LPC1 7. (Startup)

Heap Configuration

< | ©
&= project | B Books | {} Functio..| Oy Templa... Text Editor j, Configuration Wizard |

Figure 15: Project Files

EE8205: Embedded Computer System -- uVision Tutorial Page 8/19

7. Similarly by clicking on the "Books" tab at the bottom of the Project workspace window, the
"Complete User Guide Selection” opens up to provide you with FAQs and system help. Once you
have finished inspecting the user guide, switch back to the "Project"” tab in the Project window.

8. During this lab, you will be simulating the blinky.c program. Thus we must define certain
preprocessor symbols for the compiler to interpret. In your main menu, select Project >> Options
for Target 'SWO Trace'. Click the tab entitled "C/C++".

9. In the box "Preprocessor Symbols", write "ADC_IRQ" in the textbox Define. Click OK.

Enabling printf: Project >> Options for Target 'SWO Trace. Select the Debug tab (see Figure 16), select
"Use" on the right side, and then click the Settings box. Under the Trace tab, click "Trace Enable".
Ensure that the Core Clock is set to 96 MHz, and that the SWO Clock has "Autodetect" enabled. In the
ITM Stimulus Ports, set Enable to OxFFFFFFFF, and ensure that the lower port checkbox, Port 7..0 is
unchecked. Click OK. In the "Options..." window, select "Use Simulator" once again. Click OK. Also
notice the source code necessary in Blinky.c to support the printf function.

project by pressing F7. Make sure that the project compiles and links without any errors or
warnings. A newline at end of file warning may appear; this is fine.

Register Window

Disassembly Debug Mode
Step Logic Analyzer ch
Reset File Edit iew Project | Flash Debug Peripherals Tools SYCS Window elp l
N E | @ -o|p | == | ® VR e||@-e oo @@ X
& O HesEEEo-2-%-2- 8- »-
Registe; 2 E1 Disassembly g
Regis;et l IVdue li 54 uint32_t AD avg = 0; ~
RUN C v 0x000008834 MOVS x4, #0x00
00000000 55: inti6 t AD value = 0;
2? 00000000 0x00000B36 2500 ~ MOVS 5, $0%00
R2 56: uintl6é_t AD print = 0;
R3 57:
R4 0x00000B38 2600 MOVS ré,$0x00
RS 58: LED Initialize(): // LED Initialization
RE 0x00000B3A F7FFFBE1 BL.W LED_Initialize (0x00000300)
R7 300000000 59: ADC_Initialize(): // ADC Initialization
g v
RS (00000000 e %
RS (x00000000
R10 (x00000000 _) Abstracttt |] startup tPCiTocs |) Blinkyc |5 ADC.MCB1700.c v x
R11 (x00000000 I e e dian
50 ain function "~
R12 (00000000 I A P S L
R13 (SP) (10000230 52 Hint main (void) {
zlgm OcFFFFFFFF 53 int32_t res;
o 1) OOINED 54 uint32_t AD_avg =
4 xPSR 001000000 55 uinclé_t AD value = 0;
£ o 56 | uintié t AD print = O;
2 System = 57
Intemal 58 LED_Inlcxalize() 3 t
::bde :h“d 59 ADC_Initialize(): za n
ﬂV‘e()e nvlleged - 7.
| o sion ¥ 9 Watch Window v
[E] project | &2 Registers < >
Command o B watch1 l O x |
Running with Code Size Limit: 32K Name Value Type
Load "E:\\Ryerson MASc\\COE718 TA\\kielS project\\labi\\Boar -
WS 1, AD avg ¥ AD_avg 0x00000000 uint
WS 1, ‘AD_value ¥ AD_value OxOFFF ushort
WS 1, ‘AD print ¥ AD_print OxOFFF ushort
?j ?:\D 2:_&’0 @ AD_dbg OXOFFF ushort
P9 <Enter expression>
< >
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet | & Call Stack - Loca J ebu t er Watch1
Simulation t1: 6.2430
Figure 16: uVision Debug Window
EE8205: Embedded Computer System -- uVision Tutorial Page 9/19

Side Note: Examining the Application

Before we continue to work with the Debug mode, it is important to understand what each part of the
Blinky.c application is responsible for. Take a minute to analyze the code provided to you. In particular,
examine blinky.c, IRQ.c. How do they work together? What are their functionalities?

4.2. Simulation with Debug Mode

Next, we will enter Debug mode. Debug mode is an environment that provides capabilities to assess
your application and its performance characteristics

Blinky.c - main file, initializes the LED, Serial and ADC functions
IRQ.c - Contains the timer interrupt handler routine needed by blinky.c. It is responsible for
keeping track of clock_ms (10 ms timer flag) and the LED blinking rate.

Enter the Debug mode by clicking on the @2 icon. A window will pop up displaying: "EVALUATION
MODE Running with Code Size Limit:32K", Click OK and uVision will transform into new successive
multiple windows, including the disassembled version of your *.c code. If you have entered the Debug mode
correctly, you will see a number of windows pop up which will allow you to examine and control the
execution of your code. You should observe something similar to that of Figure 16 window. The Debug mode
will connect uVision to a simulation model of your program, downloading the project's image into the
microcontroller's simulated memory.

O
1. Reset the program using the RST jcon.

2. Execute the program by clicking the =l RUN icon. STOP (or pause) the program by selecting
the @ icon.

Congratulations, you've executed your first program Cortex M3 program through uVision. Now, you know
what all these windows in Debug mode actually do and what does this all mean?

4.3. uVision Debug Features and Analysis

uVision possesses many features for assessing the status and performance of your application software
running in Cortex. The following is a list of useful features that can be used to view and control your
applications. Note that they can only be accessed when in Debug mode.

a) Watch Window
A watch window allows you to keep track and view local and global variables, as well as raw memory
values. These values can be observed by running or stepping through your program. It may be beneficial to
watch the window with the use of steps and/or breakpoints in your code for debugging. A note on steps and
breakpoints is given below.
o Steps - (See Figure 16) As opposed to running through the whole code, the step keys allow you to step
through your code line by line, step through a function, etc.
¢ Breakpoints - Move the mouse cursor into the grey area next to the line numbers in your .c code in the
debugger. Left click the line (with a dark grey area) that you would like to set a breakpoint. A red dot
will appear if you are successful. Click it again to remove the breakpoint.
= Note when the code is executed, the dark grey boxes will turn green indicating that the line has
been executed.
1. To open a watch window (in Debug mode), select View >> Watch Window >> Watch 1. Note, a
watch window may open up automatically when entering the Debug mode.
2. Find the column entitled "Name" in the Watch 1 window. The subsequent rows under this column

EE8205: Embedded Computer System -- uVision Tutorial Page 10/19

should read <Enter expression>. Highlight the field and press backspace. Enter "ADC_dbg" in the
first row.

o When you click the RUN icon to execute the program, the value of ADC_dbg will change
depending on the ADC value entered on analog channel 2 (AIN2). (More on entering analog input
in the Peripheral section)

e To automatically input a variable in the watch window, go to the blinky.c code. Right-click on the
variable AD_dbg. A pop-up menu will appear. Select "Add ADC_dbg to..." >> Watch 1.

3. It is also possible to change the value of "ADC_dbg" during execution. If you enter a '0" in the
value field of the watch window, you may modify the variable's value without affecting the CPU
cycles during execution.

b) Register Window

The register window (see Figure 16) displays the contents of the CPU's register file (RO - R15), the
program status register (xPSR), the main stack pointer (MSP) and the process stack pointer (PSP). This
window will automatically open when transitioning to Debug mode. These registers may be used for
debugging purposes, in conjunction with the watch window, steps, and breakpoints.

c) Disassembly Window

The disassembly window displays the low-level assembly code, where its respective C code is appended
beside it as a comment. This window is useful for viewing compiler optimizations and the .c code's
assembly generation. The left margin of the disassembly window is also useful for keeping track of
execution (green blocks), possible executable blocks (grey), line numbers, and setting breakpoints.

d) Performance Analyzer
The Performance Analyzer (PA) tool is extremely useful for determining the time your program spends
executing a certain task. It presents itself as a horizontal bar graph dynamically changing with respect to the
total execution time of its respective tasks. Separate columns display the exact execution time and the
number of calls for each task. To use this feature (In Debug mode).
1. Select View >> Analysis Windows >> Performance Analyzer. Alternatively you can select the icon's
downward arrow and select Performance Analyzer. A new PA window should appear.

e M
Logic Analyzer

I E Performance Analyzer

Code Coverage

TRE

System Analyzer

—
111

Event Recorder

Event Statistics

2. Expand some of the tasks in the PA window by pressing the "+" sign located next to the heading.
There should be a list of functions present under this heading tree.
Ot=
3. Press Rm@Reset icon to reset the program (ensure that the program has been stopped). Click RUN.
4. Watch the program execution and how the functions are called. You will see something similar to
that of Figure 17. The analyzer is able to gather various statistics dynamically from the program,

useful for both debugging and performance assessment. Stop the program when you have finished
analyzing with the PA tool.

EE8205: Embedded Computer System -- uVision Tutorial Page 11/19

Pro s 4 b—— .
L. -
LT - - To- ®

-~ 1" s [— —]

. o -)

-] |

-]

- " [

- |

. . '

- . !

Yo !

- '

) L ——t hean a

Figure 17: Performance Analyzer Window

e) Execution Profiling

An alternative to the PA is the Execution Profiling (EP) tool. EP is useful for determining how many times
a function call has occurred and/or the total time spent executing a certain line of code and/or function.
Therefore, the PA tool would technically be the graphical representation of the EP tool. To use this feature:

1. From the menu select Debug >> Execution Profiling >> and either Show Times or Show Calls. A left
column will expand on your source code, indicating either the execution time per task, or the number
of calls respectively.

2. Regardless of the option , if you hover the mouse over a number in the left column, all the
information will be displayed as if you chose both options (i.e., execution time and the number of
calls).

f) Logic Analyzer
The Logic analyzer in debug mode allows you to visualize a logic trace for a variable during its execution.
Thus we could use this as a visualization for the variables we place in the watch window. For this lab, we
will graphically follow the AD_Dbg value in our code:
1. Press the arrow on the icon and select Logic analyzer. A window will appear (if not already
present).
2. In the blinky.c code, right-click on the variable AD_dbg. A pop-up menu will appear. Select "Add
AD_dbg to..." >> Logic Analyzer. The variable will appear in the Logic analyzer window.
3. If you click run, you will see the AD_dbg trace generate as a straight line on the zero mark. It should
correspond to the value you are seeing in the Watch 1 window.
4. Under the Zoom heading in the Logic analyzer, click "All". This will scale your window according to
the execution trace time (horizontally).
5. Under the Min/Max heading, select "Auto" to scale the trace's amplitude (vertically).

This AD_dbg value will keep running with a zero value. Why? The AD_dbg is representative of the value
which we place on the board's potentiometer (AD input channel 2). Since we are not inputting any values
on the channel, it will logically continue to trace at '0". It is evident how we would go about turning the
potentiometer on the dev board, but how could we simulate the pot for testing in Debug mode?

g) Peripherals (A/D Converter, System Tick Timer, and GP10s)

uVision debugger allows you to model the microcontroller's peripherals. With peripheral modeling, it is
possible to adjust input states of the peripherals and examine outputs generated from your program. In our
Blinky.c program, the peripherals of interest are the AD converter (since we are inputting AD values from
AIN2 - pot), the systick timer, and the GPIOs (the output to the LEDs). We will not model the LCD in this
lab as it possesses high CPU utilization times and is more for demo purposes. Therefore make sure that
#define _USE_LCD remains commented in the code during debugging.

EE8205: Embedded Computer System -- uVision Tutorial Page 12/19

1. To open the GPIO 2 analyzer (LED simulator), select Peripherals >> GPIO Fast Interface >> Port
2. A window will appear as shown in Figure 18. Also open Port 1, i.e. Peripherals >> GPIO Fast
Interface >> Port 1 (as the first 3 LEDs belong to Port1, last 5 belong to Port 2).

2. To open the System Tick Timer window, in the main menu select Peripherals >> Core Peripherals
>> System Tick Timer. A window will appear resembling Figure 19.

3. To open the AD Converter window, in the main menu select Peripherals >> A/D Converter. A
window will appear similar to that of Figure 20.

A/D Converter e (vl Prorputar Inpub Chotpaat 2 900 21 - facet Endwrince e
A/D Control (o
iy Ty - —_— Js Fas M Fay 5 15 Fa] 7 Frs [
ADCR: [x01200404 SEL: |04 ¥ FDN e 0000 | T 1 T T T i T FrEFE
CLKDIV: [Bx0d I" BURST [EDGE FACOBLASH [ReD000000e
START: [Now +] A/D Clock: [5000000 FOSET. B O O
A/D Global Data & Status FQCLA. |2 00000000
ADGDR: [b0Z000000 RESULT:[20D00 [~ DONE [~ OVERUN FIOZFS: [De000¥ 50
ADSTAT: | 00000404 CHN: |B<02 ™ ADINT Pora [oxD000 ¥ 2D T T I T m o

A/D Channel Data
ADDRO: [<00000000 RESULTO: [2x0000 [~ DONEQ [~ OVERUND . A . .
ADDR1:[B0D0000D0 RESULT1:[B<0000 [~ DONET I~ OVERUN1 Flgure 18 GPIO Pe”pheral WIndOW
ADDR2 [DCO000000 RESULTZ [20000 [DONEZ ¥ OVERUN2
ADDR3: [D<00000000 RESULT3: [B<0000 [~ DONE3 [~ OVERUN3
ADDR4: 000000000 RESULT4:[30000 [~ DONE4 [~ OVERUN4 Systers Tick Timer
ADDRS: [D<00000000 RESULTS: [20000 [~ DONE5 [~ OVERUNS
ADDRS: [B0DD000DD RESULTE: [20000 [~ DONEG [~ OVERUNG T o ety B v ENABLE ‘v" CUSOURCE
ADDRY-[B0D0000DD RESULT7: [200D0 [~ DONEZ [~ OVERUNT A Sy ¥ TICONT & COUNTRLAG

A/D Intemupt Enable

I ADINTEND [~ ADINTEN4
ADINTEN: [000000100 I~ ADINTEN1 [~ ADINTENS
[~ ADINTENZ [~ ADINTENS
I~ ADINTENZ [~ ADINTEN?

RELOAD DFzy

CURRENT pocc2e
¥ ADGINTEN

Analog Inpuls Reference— | |1 T U pe—

5T_cAUB 1200000000 TENNS: 12000000

AING:[00000 AIN1:[00000 AINZ:[00000 AN3:[00000 | | yRer ST_CALR: 190000000 IS AN
SKEW [NOREF

AN4:[00000 AIN5:[00000 AING:[00000° AIN7: [0.0000 3.3000 —— 3

Figure 20:A/D converter Window Figure 19: System Tick Timer Window

4. To open the Debug window and view "printf" statements in the code, select View >> Serial
Windows >> Debug (printf) Viewer.

5. Reset the program and run the blinky application until it has simulated for one second. Watch how
the asserted "Pins" on the GPIO windows transition. This represents the LEDs on the dev board and
how they will transition when the program is executed. Note that in reality, these transitions are
occurring at a much faster speed than they are during this simulation. Why?

e Simulators require long computational runtimes to simulate a short period of hardware
runtime. This is a well-known problem in software.

6. Notice the System Tick Timer and its quick transitions within all the fields of the window.

7. Once, the one second of simulation time has been reached, there are two possible ways to change the
value of the simulated pot.

¢ Locate the A/D converter window and type 3.3000 in the AIN2 textbox under "Analog Inputs".
This will simulate the value transition for your pot from 0V to 3.3V (notice the Vref voltage of
3.3V, which cannot be exceeded).

e Alternatively in the "Command window" found in the debugger, type "AIN2 = 3.3". This will
execute the same result as the A/D converter window.

8. Now interrupt enable must be asserted to simulate the value inputted on the AIN2 channel. To enable
the interrupt, locate the A/D Interrupt Enable box in the A/D Converter window. Check off the
ADINTEN2 box. Wait for a moment. Uncheck the box.

9. Wiait for approximately 0.1sec (simulated time) or so. Your logic analyzer and watch windows will
update the inputted A/D information accordingly (Note this transition may take slightly longer. To
speed up the process, you may also click and unclick the "BURST" checkbox at the top of the A/D
Interrupt window).

10. Note the GPIO windows and how the speed of the LED flashes has also changed (will transition at a
slower pace).

EE8205: Embedded Computer System -- uVision Tutorial Page 13/19

11. Keep transitioning to different values using this simulated potentiometer method. Your simulation
should then resemble and close to Figure 21.

4 ua

=1 27
wan T JIeran NeTen

Figure 21: Simulating the Port and A/D Conversion using Logic Analyzer

12. While your program continues to execute, watch the application using the Performance Analyzer,
Watch window, execution times in the Disassembly window, and the Execution Profiler. This will
help you analyze the application. Where does your program spend most of its time executing?

13. Oncegvlou have finished executing your simulated blinky application, exit Debug mode by clicking

the =4 icon onceagain.
4. Optional Tutorial Assignment

With the code used in this tutorial, and the joystick files and peripheral notes found in the Appendix of this
lab, edit the Blinky.c program which will read the direction that the joystick is pressed on the MCB1700 dev
board. Based on the direction of the joystick, the following peripherals should function as following.

o Demonstrate how will you add joystick to the project from the A Manage Run-time Environment.

o Printf- the direction of joystick. (use-- joystick_initialization() joystick_stats() and printf) **
**Due to online labs, you cannot physically check it but printing the initial position of the joystick would
be enough for the demo. However, you are welcome to use the MCB1700 hardware board in ENG408 to
fully demo your work.

Hint: Joystick files can be added by clicking hd button and choosing the Board Support>Joystick (API).
Once the file is added explore the joystick MCB1700.c and call its functions in Blinky to perform the

assignment task.

Create a pdf file of the source code for your lab, including the main files, and any .h or .c files provided to
you during the tutorial that you may have altered for your application. Add relevant screen shots where
required. submit the pdf file through D2L assignment submission system.

References
1. "The Keil RTX Real Time Operating System and uVision" www.keil.com. Keil an ARM Company.
2. "Keil pVision and Microsemi SmartFusion" - Cortex-M3 Lab by Robert Boys www.keil.com.

Acknowledgement

This tutorial has been adapted from introductory notes by Robert Boys "Cortex-M3 Lab" and
"The Keil RTX Real Time Operating System and uVision" available at www .keil.com.
Keil is an ARM Company

EE8205: Embedded Computer System -- uVision Tutorial Page 14/19

Appendix

Peripheral Programming with the LPC1768

Peripheral pins on the LPC1768 are divided into 5 ports ranging from 0 to 4. Thus during the course of this
lab you may have noticed that pin naming conventions (for GPIOs, etc.) were in the format Pi.j, where i is the
port number and j is the pin number. For instance, if we take a look at the first LED on the MCB1700 dev
board, we will see the label P1.28, signifying that the LED can be found on Port 1, Pin 28. A pin may also
take on any one of four operating modes: GPIO (default), first alternate function, second alternate function,
and third alternate function. It is important to note that only pins on Ports O - 2 can generate interrupts.

https://iwww.keil.com/support/man/docs/mch1700/mcb1700_to_joystick.htm

The 5-position joystick control on the MCB1700 board grounds one of 5 possible port pins depending on how the
joystick control handle is positioned. The control may be positioned left, right, up, down or pushed toward the
board (select).

o The Left joystick position connects pin C to port pin P1.26 of the LPC17xx device to ground.
The Right joystick position connects pin B to port pin P1.24 of the LPC17xx device to ground.
e The Up joystick position connects pin A to port pin P1.23 of the LPC17xx device to ground.
¢ The Down joystick position connects pin D to port pin P1.25 of the LPC17xx device to ground.

The Select joystick position connects the Cntr pin to port pin P1.20 of the LPC17xx device to ground.

To use the peripherals provided to you on the dev board, ensure that you abide by the following steps. Let us
take joystick.MCB_1700.c as an example which can be found at the end of this Appendix. Note: masking
register bits with |= (...) will turn the specified port pins high, while &= ~(...) will alternatively place them as
low.

1) Power up the Peripheral

Looking at the NXP LPC17XX User Manual provided to you in the course directory, refer to Chapter 4:
Clocking and Power Control (in particular pp. 63). The PCONP register is responsible for powering up
various peripherals on the board, represented as a total of 32 bits.

The joystick is considered as a GPIO and therefore we are concerned with bit 15 for powering up. Note that
the default value is "1 when the chip is reset. Thus GPIOs are powered up by default on reset. When coding
for joystick, Inititialize() we must then include the following code to power up the GPIO:

LPC SC->PCONP = (1 << 15);

2) Specify the operating mode

The pins that need to be used by the peripherals must be connected to a Pin Connect Block (LPC_PINCON
macro in LPC17xx.h). The registers which connect the peripheral pins to the LPC_PINCON are referred to
as PINSEL, containing 11 registers in total.

The joystick pins are located on Port 1, pins 20, 23, 24, 25, and 26 (verify on the dev board). Referring to
the manual (i.e. Table 82 on pp. 109) we observe that PINSEL3 is responsible for configuring these pin
functions. Thus we include the following in joystick-MCB1700.c:

/* P1.20, P1.23..26 is GPIO (Joystick) */
LPC_PINCON—>PINSEL3 &= ~((3<< 8)] (3<<14) | (3<<106) | (3<<18) | (3<<20));

These pins are automatically selected as GPIOs upon reset according to Table 82. Thus we keep the "00"
value assigned to them (re-declare these values as good practice).

EE8205: Embedded Computer System -- uVision Tutorial Page 15/19

3) Specify the direction of the pin

The 1/O direction of the peripheral pins must also be specified (input/output). The FIODIR registers are
used to set pin directions accordingly, where '0' represents input, and '1' is output. By default all registers
are assigned as input. As the joystick is on port 1 in the LPC1768, we can configure specific pins as input
as follows (pins on the LPC_GPIO1 macro):

/* P1.20, P1.23..26 1is input */
LPC GPIO1->FIODIR &= ~((1<<20) | (1<<23) | (1<<24) | (1<<25) | (1<<206));

Copyright (c) 2013 - 2019 Arm Limited (or its affiliates). All
rights reserved.

SPDX-License-Identifier: BSD-3-Clause

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1.Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2.Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3.Neither the name of Arm nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

EORE R R T R S S S N B SRR S T S S N N

* Name: Joystick MCB1700.c
* Purpose: Joystick interface for MCB1700 evaluation board
* Rev.: 1.01

#include "LPCl7xx.h"

#include "PIN LPC17xx.h"
#include "GPIO LPCl7xx.h"

#include "Board Joystick.h"
#define JOYSTICK COUNT (50)

/* Joystick pins:
- center: P1 20 = GPIO1[20]
- up: P1 23 = GPIO1[23]
- down: Pl 25 = GPIO1[25]
- left: Pl 26 = GPIOL[26]
- right: P1 24 = GPIO1[24] */

/* Joystick pin definitions */

EE8205: Embedded Computer System -- uVision Tutorial Page 16/19

static const PIN JOYSTICK PIN[] = {
{ 1u, 20U},
{ 1U, 23U},
{ 1u, 25U},
{ 1U, 26U},
{ 1U, 24U}
b

/**
\fn int32_t Joystick Initialize (void)
\brief Initialize joystick
\returns
- \b 0: function succeeded
- \b -1: function failed
*/
int32 t Joystick Initialize (void) {
uint32 t n;

/* Enable GPIO clock */
GPIO PortClock (10) ;

/* Configure pins */

for (n = 0U; n < JOYSTICK COUNT; n++) {
PIN Configure (JOYSTICK PIN[n].Portnum, JOYSTICK PIN[n].Pinnum, PIN FUNC O, 0U, 0U);
GPIO SetDir (JOYSTICK PIN[n].Portnum, JOYSTICK PIN[n].Pinnum, GPIO DIR INPUT);

}

return O;

}

/*‘k
\fn int32 t Joystick Uninitialize (void)
\brief De-initialize joystick
\returns
- \b 0: function succeeded
- \b -1: function failed
*/

int32 t Joystick Uninitialize (void) {
uint32 t n;

/* Unconfigure pins */
for (n = 0U; n < JOYSTICK COUNT; n++) {
PIN Configure (JOYSTICK PIN[n].Portnum, JOYSTICK PIN[n].Pinnum, 0U, 0U, 00U);
}
return 0O;

}

/**
\fn uint32 t Joystick GetState (void)
\brief Get joystick state
\returns Joystick state

*/

uint32 t Joystick GetState (void) {
uint32 t val;

val = 0U;

if (! (GPIO PinRead (JOYSTICK PIN[O].Portnum, JOYSTICK PIN[O].Pinnum))) val | =
JOYSTICK CENTER; B B

if (! (GPIO_PinRead (JOYSTICK PIN[1].Portnum, JOYSTICK PIN[1].Pinnum))) val |=
JOYSTICK UP;

if (! (GPIO PinRead (JOYSTICK PIN[2].Portnum, JOYSTICK PIN[2].Pinnum))) val | =
JOYSTICK DOWN; B B

if (! (GPIO_PinRead (JOYSTICK PIN[3].Portnum, JOYSTICK PIN[3].Pinnum))) val | =

JOYSTICK LEFT;

EE8205: Embedded Computer System -- uVision Tutorial Page 17/19

if (! (GPIO_PinRead (JOYSTICK PIN[4].Portnum, JOYSTICK PIN[4].Pinnum))) val | =
JOYSTICK RIGHT;

return val;

* Copyright (c) 2013 - 2019 Arm Limited (or its affiliates). All

* rights reserved.

* SPDX-License-Identifier: BSD-3-Clause

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

* 1.Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2.Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.
* 3.Neither the name of Arm nor the names of its contributors may be used
* to endorse or promote products derived from this software without

* specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

*

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

*

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

*

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

*

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.

* Name: Board Joystick.h

* Purpose: Joystick interface header file

* Rev.: 1.0.0

#ifndef _ BOARD JOYSTICK H

#define _ BOARD JOYSTICK H

#include <stdint.h>

#define JOYSTICK LEFT (1 << 0) /// Defines the Left-button

EE8205: Embedded Computer System -- uVision Tutorial Page 18/19

/77
117/
/77
/17

#define JOYSTICK RIGHT (1 << 1)
#define JOYSTICK CENTER (1 << 2)
#define JOYSTICK UP (1 << 3)
#define JOYSTICK DOWN (1 << 4)
/**

\fn int32 t Joystick Initialize (void)

\brief Initialize joystick

\returns

- \b 0: function succeeded

- \b -1: function failed
*/
Jx*

\fn int32 t Joystick Uninitialize (void)

\brief De-initialize joystick

\returns

- \b 0: function succeeded
- \b -1: function failed

*/
/*x

\fn uint32 t Joystick GetState (void)

\brief Get joystick state

\returns Joystick state
*/
extern int32 t Joystick Initialize (void) ;
extern int32 t Joystick Uninitialize (void) ;
extern uint32 t Joystick GetState (void) ;

#endif

/* __ BOARD JOYSTICK H */

EE8205: Embedded Computer System -- uVision Tutorial

Defines
Defines
Defines

Defines

the
the
the
the

Right-button
Center-button
Up-button

Down-button

Page 19/19

