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Most digital systems consist of a hardware component and software programs that execute
on the hardware platform. Obviously, a system can deliver higher performance when we
tune the hardware to its software applications and vice versa. Today’s novel architectures and
the possible use of computer-aided design tools have created new opportunities to find
solutions to codesign problems. This survey addresses this challenge, considers different
architectures and their uses, and reports on the status of CAD codesign tools, with particular

reference to simulation and synthesis.

hough skillful digital designers have

solved hardware-software codesign

problems for many years, three recent

developments have stimulated re-
newed interest in this topic.

First, today’s computing systems deliver
increasingly higher performance to end users.
This may require architectural support for oper-
ating systems or particular hardware features to
expedite application-specific software programs.
At the same time, cost considerations have
exploited the reprogrammability of the software
component of digital systems to support prod-
uct evolution. Second, new architectures based
on programmable hardware circuits can accel-
erate the execution of specific computations or
emulate new hardware designs.! Configuring and
executing programs on these architectures
exploit the synergy between hardware and soft-
ware. Third, recent progress in synthesis’ and
simulation tools for hardware circuits has paved
the way for integrating CAD environments for
codesign of hardware-software systems.

Background

Since hardware-software codesign techniques
can be applied in a vast number of areas, I've
tried here to coarsely classify the specific prob-

lems and solutions in each sector. I consider the
design of digital systems, or the digital compo-
nent of electromechanical and/or mixed-signal
systems, distinguishing general-purpose com-
puting systems from dedicated computing and
control systems. The former systems support
generic software application programs and may
range in size from palmtop computers to super-
computers. Thus, a wide disparity of operating
system and programming languages may be
available in this domain. The latter group of dig-
ital systems performs computations dedicated to
some applications such as signal processing sys-
tems and embedded controllers. Again, the size
of these systems may vary widely.

General-purpose and dedicated computing
systems may consist of a variety of units, includ-
ing standard instruction-set processors and/or
coprocessors such as mathematical coprocessors
for floating-point computation. Other coproces-
sors may be dedicated to subtasks, such as mem-
ory management or cache coherence handling
in multiprocessor systems. Some dedicated com-
puting and/or control systems may consist of one
application-specific processing and control unit
only.

Table 1 lists different approaches to the design
of coprocessors and/or application-specific dig-

0740-7475/94/$04.00 © 1994 IEEE




Table 1. Trade-offs in different design approaches.

Trade-off Standard coprocessor Core coprocessor ASIP ASIC
Performance  Medium Medium High Highest

Power High Medium Medium-low Lowest
Flexibility Medium High High Low

Design time Low (software) Medium (hardware, software)  Highest (hardware, software) High (hardware)

ital units. At one end of the spectrum, application-specific
integrated circuits (ASICs) provide a dedicated hardware
solution, which usually can yield the best performance for
the task at the expense of higher design time and cost.
Dedicated application-specific instruction processors (ASIPs)
contain an instruction set chosen to match the application,
providing high performance as well as a desirable program-
mability feature. At the opposite end of the spectrum, a
software-oriented solution consists of executing the appli-
cation-specific digital function as a software program run-
ning on a dedicated processor.

The implementation of the units in a digital system
depends on the chosen technology. The different units may
consist of individual ICs on a board or on a multiple-chip
module. Alternatively they can be integrated on a single sub-
strate. Several processors available today as core macrocells
can be combined with application-specific logic circuits in a
single chip. Figure 1 gives an example.

Codesign problems

Even though some CAD tools have been developed, most
of today’s hardware-software codesign problems still require
hand-crafted solutions.

Instruction-set processors. These processors are the
heart of information processing systems, and the frequent
release of new microprocessors affects many strategic indus-
trial decisions. Thus, the design of well-balanced, long-last-
ing processors is extremely important. Three issues in
processor design require hardware and software considera-
tions: instruction-set selection, cache design, and pipeline
control.

Designers must determine the number and format of the
instructions when selecting the appropriate instruction set.
The compatibility of general-purpose instruction-set proces-
sors with other processors highly constrains this selection.
On the other hand, this problem is less constrained and very
relevant in determining the architecture of ASIPs. Instruction-
set selection entails evaluating the benefits and costs of each
instruction. Designers usually simulate a set of benchmark
programs to determine the benefits, while the hardware
required for instruction support determines the cost.?

The design and sizing of a memory cache require a match
between circuit performance and the choice of the parame-
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Figure 1. Example of an IC with a programmable core.

ters and type of cache management algorithm (for example,
update, invalidation). Traditionally, designers used simula-
tion runs to determine cache sizes, but maintaining cache
coherence is an important issue in multiprocessor design.
For example, designers of the Flash multiprocessor at
Stanford* chose an invalidation algorithm for cache man-
agement. A major concern in the design of Flash was avoid-
ing the hardwiring of protocols into an ASIC chip. Therefore,
the designers considered three programmable options for
implementing the invalidation algorithm: a dedicated gener-
ic processor, programmable hardware, or an ASIP. They
chose the last option because it allowed performance
improvement in memory operations (as compared to a
generic processor) and tailoring of the ASIP to speedily exe-
cute the specialized code while retaining some flexibility due
to its programmability.

The design and control of a pipeline in a processor require
that pipeline hazards be avoided, using either hardware or
software techniques. A hardware mechanism would flush
the pipelines, while a typical software solution would reorder
instructions or insert no-operation instructions. The choice
affects the overall processor performance. Furthermore, per-
formance estimation is complex and requires appropriate
models for both hardware and software.

Computing the most effective pipeline structure is thus a
hardware-software codesign problem. The Piper synthesis
program (developed at USC) is an example of a codesign
CAD tool that addresses this issue.’ It provides a means of
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ASIC

Figure 2. Scheme of the essential part of a mixed embed-
ded system.

exploring the hardware-software trade-off and suggesting an
effective implementation. In particular, Piper supports the
automatic partitioning into pipe stages, pipeline scheduling,
and determination of an appropriate instruction reordering
that the corresponding back-end compiler should use to
avoid hazards.

Signal processors. These processors play an important
role in the telecommunication and consumer industries
where high-performance, low-cost processors are indis-
pensable. Several programmable DSPs can be produced in
volume to keep the unit cost low. In addition, the use of sig-
nal processors in portable electronic devices requires low
power consumption.

ASIPs present typical examples of codesign problems in
this domain, particularly, instruction-set selection and code
generation. The former problem is common to instruction-
set processor design, but it is central to the design of ASIPs.
Note that signal processors are often dedicated to one (or a
few) function(s) and thus execute dedicated programs.
Designers can choose the instruction set that supports fast
execution of specific programs, while reducing power and
area consumption. The optimization of performance relates
to the shortening of the cycle time, latency, and maximiza-
tion of the throughput.

The choice of instruction set affects the organization of
the hardware. One avenue available to designers is using an
integer linear programming formulation, as in the case of the
Peas system (developed in Japan at the Toyohashi University
of Technology).® Another approach, implemented in the
Alchemy system’ (codeveloped at Northwestern and
Pennsylvania State universities), is based on an analysis of
benchmark programs that are split into code segments, each
of which is compiled optimally and weighted by its execu-
tion frequency. The final instruction set is a minimal cover
of the instructions generated in compiling the segments.

The choice of an instruction set also affects the design of
the corresponding compiler. Software compilers usually con-
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sist of three stages: a language-dependent front end, an inter-
mediate code optimizer, and a code-generation back end.
ASIP designers must then develop back ends that match the
chosen instruction sets. Retargetable compilers address the
problem of adapting their back ends to the desired instruc-
tion sets and/or specific hardware architectures.®

Research on retargetable code generation dates back to
the development of the first compilers. Nevertheless, the
design of ASIPs has renewed interest in this field. In partic-
ular, efficient code generation requires an accurate model of
the ASIP data path. Novel code generators® use structural
descriptions of the data path that can be generated by high-
level hardware models. Thus, designers can model both
hardware and software using high-level languages, and retar-
getable code generation can be seen as the counterpart of
library binding (for hardware) in a codesign environment.

Embedded systems and controllers. These computing
and control systems are dedicated to an application and may
vary widely in size and scope. The most restrictive view of
an embedded system is a microcontroller or a processor run-
ning a fixed program, such as a dishwasher controller. An
example of a complex embedded system is an aircraft’s guid-
ance and control system. In general, embedded systems may
have dedicated hardware as well as dedicated software run-
ning on one, or more, processors in addition to sensors and
actuators to interact with the environment. (See Figure 2.)

Embedded systems often fall into the class of reactive sys-
tems. They are meant to react to the environment, by exe-
cuting functions in response to specific input stimuli. In some
cases, their functions must execute within predefined time
windows. Hence they are called real-time systems. Examples
of reactive real-time systems are pervasive in the automotive
field (engine combustion control), in the manufacturing
industry (robot controllers), and in the consumer and
telecommunications industries (portable telephones).

A specific design problem for embedded systems is inter-
facing to the peripheral devices (sensors and actuators)
according to the prescribed communication protocol. Usually
a system designer will use standard parts for such devices,
conforming to interfacing standards. Device drivers can be
implemented in hardware (by ASICs) or by software rou-
tines. The choice depends on the number of available I/O
ports of the processing unit and on the timing requirements
for communication-to peripheral devices. The Chinook
design system supports the computer-aided design of
embedded systems with peripherals. (See Chou, Walkup,
and Borriello’s article, this issue, p. 37.)

Embedded system designs are so numerous that the need
for automating their design becomes very important. In
addition, present embedded systems use simple processors
(8-bit processors) because of the ease of manual design.
Unfortunately, such a choice prevents leveraging the power
of 32-bit (and 64-bit) processors now on the market, making




synthesis and validation of embedded systems a topic of
recent high interest. The complexity of the problem stems
from the interplay of the hardware and software components
in embedded systems. "

Special architectures

Today’s gap between hardware and software is smaller,
because of the introduction of programmable hardware cir-
cuits, such as field-programmable gate arrays. Certain FPGAs
implement arbitrary combinational or sequential circuits and
can be configured by loading a local memory that determines
the transistor interconnection.

Applications of programmable hardware circuits are numer-
ous. Boards populated by FPGA chips implement software
functions (to speed up their execution) or to emulate hard-
ware circuits (for prototyping). In the first case, the selection
of the software segments to be implemented as programma-
ble hardware is a codesign task. In the second case, execut-
ing software programs on programmable hardware boards
can validate and optimize prototypes of complex digital sys-
tems. Since the hardware platform is retargetable, designers
can explore hardware-software codesign trade-offs.

Software-execution acceleration. Certain bottlenecks
in the execution of software programs limit performance.
Examples are inner loops where sequences of operations
are iterated. Coprocessors can help speed up the software
execution of these routines, especially when they can be
implemented in hardware to exploit the local parallelism.
Unfortunately, hardware coprocessors are usually dedicat-
ed to specific tasks.

Coprocessors based on programmable hardware can pro-
vide comparable speedup capabilities (in some application
domains) while being applicable to arbitrary software pro-
grams. Consider the programmable active memory (PAM),"
which consists of a board of FPGAs and local memory inter-
faced to a host computer, as shown in Figure 3. Before exe-
cuting a software program, a compiler compiles the critical
portion of the program into patterns that configure the pro-
grammable board. This task takes about 50 ps. Then, the pro-
gram executes, emulating the critical portions in hardware.

Successful applications of PAMs have been reported in dif-
ferent domains: cryptography, data compression, string match-
ing, solution of equations modeling physical systems, and so
on. Experimental results show a speedup of one to two orders
of magnitude, as compared to a host’s execution time.!!

The major hardware-software codesign problem with PAMs
consists of identifying the critical segments of the software
programs, and compiling them efficiently to run on the pro-
grammable hardware. The former task is not yet automated
for PAMs and is a current subject of research. The latter is
based on hardware synthesis algorithms, and it benefits from
performance optimization techniques for hardware circuits.

A specific project in this domain is the acceleration of dig-

Figure 3. Programmable array memory.

ital system simulation by means of a specific hardware plat-
form consisting of a tightly coupled processor and FPGAs. In
this case, the simulator performs a preprocessing step in
which the circuit model (to be simulated) is automatically
partitioned and scheduled for execution on the platform to
minimize runtime. Details appear in this issue in the
Olukotun et al. article, p. 48.

Hardware emulation and prototyping. Computer-
aided prototyping using programmable hardware boards is
very useful when validating a hardware circuit before man-
ufacture, and thus reducing the likelihood of an expensive
redesign. Prototypes provide design engineers with more
realistic data on correctness and performance than system-
level simulations. '

Moreover, prototyping of complex digital systems includ-
ing multiple hardware components and software programs
appeals even more to designers. Prototyping allows tests of
software program execution on hardware while retaining the
capability to change the hardware (and software) imple-
mentation concurrently. Once finalized, the hardware
configuration can be mapped onto a “hard” silicon imple-
mentation using synthesis systems? that accept as inputs hard-
ware models compatible with those used by the emulation
systems (for example, Verilog HDL models).

Validation and synthesis

CAD tools for mixed hardware-software systems, though
limited, do exist for validation and synthesis needs.

Simulation of mixed systems. Circuit and/or system
validation provides a reasonable certainity that a design is
immune from errors and therefore ready for manufacturing.
As circuits and systems become increasingly complex, vali-
dation becomes more important as well as more difficult.
Designers use formal verification or simulation programs as
well as prototyping techniques to validate designs.

Verification tools check the congruency of design repre-
sentations or try to prove specific properties (for example, the
existence of no-deadlock conditions). Today’s designers apply
verification in some restricted domains where regularity and
abstraction can be used, but we are far from the stage where
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we can fully verify complex hardware-software systems.

Simulation is a more traditional way of validating circuit
correctness; we can examine a set of output responses to
input stimuli. While simulation tools are widely available
(even though only a few support mixed hardware-software
representations), their use cannot ensure design correctness
because only a limited number of input/output patterns can
be analyzed. Nevertheless, simulation tools are still very use-
ful for codesign. Hu et al. (this issue, p. 17) addresses the
use of simulation in analyzing mixed systems in automotive
electronic applications.

Designers can also use fast register-transfer-level simula-
tors for hardware models in the Verilog HDL and VHDL lan-
guages. Similarly, register-transfer-level models for standard
processors and cores have been developed in these lan-
guages. Thus, in principle it is possible to model a mixed
system in a hardware description language for simulation
purposes. In practice, register-transfer-level simulation is too
slow to analyze systems executing software programs of rea-
sonable complexity.

Coupling an instruction-set simulator for the processor (or
core) to a register-transfer-level simulator for the applica-
tion-specific hardware component lets designers perform
cosimulation.'? There are several possibilities for integrating
simulators onto a simulation backplane. Specifically, when
the processor under consideration is the same as the one
used for simulation (for example, a Sparc core and a Sparc-
based workstation), designers can coordinate the execution
of the software code on the simulation host machine with
the execution of the hardware simulator. In particular, using
interprocess communication primitives helps.'*

The difficulty in cosimulating hardware-software systems
stems from their heterogeneous nature. The Ptolemy research
design environment and simulator'® for signal processing and
communication-system design (developed at the University
of California at Berkeley) particularly addresses the problem
of heterogeneity in cospecification. The Ptolemy user can
model a mixed system with different paradigms (dataflow
and discrete-event models) including user-defined models.
Ptolemy provides a simulation backplane in which the
description in the different domains can be simulated and
consistently interfaced, thus providing an efficient means for
validating mixed systems.

Synthesis of mixed systems. Computer-aided synthesis
of dedicated computing systems, or cosynthesis, will evolve
naturally from existing hardware architectural synthesis meth-
ods.? A working hypothesis for cosynthesis is that the over-
all system can be modeled consistently and be partitioned,
either manually or automatically, into hardware and software
components. Application-specific circuits using existing
hardware synthesis tools can implement the hardware com-
ponent; the software component can be generated auto-
matically to implement the function to which the processor
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is dedicated. Cosynthesis must also provide a means for inter-
facing and synchronizing the functions implemented in the
hardware and software components.

System-level modeling. Modeling at this level plays a major
role in supporting cosynthesis. Some proposed abstraction
models can be grouped into major classes: 1) representation
of system behavior by means of control/dataflow graphs
(CDFGs)? and 2) cooperating finite-state machines (FSMs).

CDFEGs abstract the behavior of a digital system as a set of
tasks and a set of (dataflow or control flow) dependencies.
Thus, this modeling style applies to both hardware and soft-
ware. Indeed, CDFGs can be derived directly from hardware
and software language models and have been used suc-
cessfully to support hardware architectural synthesis and soft-
ware compilation.

FSM models capture system states and transitions and
apply to both hardware and software portions of a design.
State charts'” provide an example of a modeling style in terms
of concurrent and hierarchical FSMs. SpecCharts'® combine
the FSM and programming formalisms. When systems are
not modeled directly by means of FSMs, FSM models can be
derived for either hardware or software languages.

Different execution models exist for cooperating FSMs.
The usual notion of concurrent FSMs is based on the syn-
chrony hypothesis (all FSMs have simultaneous transitions).
Such a modeling style is more appropriate for hardware than
for software, because of the unknown or uncontrollable
delays associated with the execution of software fragments.

Due to the disparity of execution speeds between hard-
ware and software implementations, Chou et al. (this issue,
p. 37) proposes modeling hardware-software systems by
FSMs that interact via events with possibly unbounded delays.
This paradigm extends hardware synthesis and verification
techniques to cope efficiently with the mixed systems.

A drawback of using cooperative FSM models for code-
sign is that the system partition into hardware and software
is mandated (or constrained) by the initial system specifica-
tion. Thus, research on hardware-software trade-offs using
automatic partitioning techniques has been leveraging CDFG
models.

System-level partitioning. Partitioning of the hardware and
software components affects the overall system cost and per-
formance. Hardware solutions may provide higher perfor-
mance by supporting parallel execution of operations at the
expense of requiring the fabrication of one (or more) ASICs.
Software solutions may run on high-performing processors
available at low cost due to high-volume production.
Nevertheless, operation serialization and lack of specific sup-
port for some tasks may result in loss of performance. Thus,
a system design for a given market may find its cost-effective
implementation by splitting its functions between hardware
and software.

Several researchers have investigated system-level parti-




tioning into hardware and software components.’>'** Two
approaches appear interesting: the synthesis of dedicated
coprocessors for hardware speedup® and the migration of
noncritical functions to software.’” The two problems have
complementary objectives: The former attempts to maximize
performance, while the latter tries to minimize system cost,
subject to performance constraints.

The Cosyma synthesis tool suite® (developed at the
University of Braunschweig, Germany) partitions a system
specification to speed up software execution by using a ded-
icated hardware coprocessor (to be synthesized). Cosyma
describes the original system model as a software program
in C*, which is an extension of the C programming language,
to support performance constraints. A software implemen-
tation of the initial model is readily available (by compila-
tion), but it may be delivering performance inferior to
expectations. The C* compiler compiles the system model
into a control/dataflow graph, and a partitioning algorithm
identifies the computational bottlenecks and then migrates
the corresponding functions to application-specific hard-
ware. As an example of an application, designers expedited
the chromakey algorithm for high-definition television
(HDTV) on a Sparc processor by a factor of three. They iden-
tified a critical loop that takes 90 percent of the software run-
time and fabricated an ASIC with 17,000 equivalent gates.
Figure 4 shows details of Cosyma.

The Vulcan synthesis tool suite!® uses a hardware model
of the system and attempts to reduce the cost of its imple-
mentation by transferring noncritical operations to a stan-
dard coprocessor, such as an 8086 or R3000. In particular,
Vulcan models systems in the HardwareC hardware descrip-
tion language, which has a C-like syntax but hardware
semantics. The system model specifies performance require-
ments, in terms of latency and data rate constraints.

While a hardware implementation can be derived from
the HardwareC model by using the Olympus synthesis tools?
(developed at Stanford University), the cosynthesis approach
is as follows. Vulcan compiles the system model into a con-
trol/dataflow graph and partitions it. This yields a set of soft-
ware threads to be compiled and executed on the standard
coprocessor and the specification of the remaining hardware
circuits for synthesis as a netlist of logic gates. An Ethernet
coprocessor satisfying the timing requirements of the
CSMA/CD communications protocol has been partitioned by
Vulcan into a mixed implementation using an R3000 proces-
sor. The implementation saved 20 percent more equivalent
gates than in the case of a hardware implementation, allow-
ing a smaller and cheaper ASIC gate array to be used. Figure
5 (next page) gives details of the Vulcan suite.

AT PRESENT, THE OVERALL CAD SUPPORT for hard-
ware-software codesign is still primitive. Nevertheless, the
potential payoffs make it an attractive area for further

C* model

ES —
HardwareC

C program Partitioning Harrrz]:igvdirlec
Cost
estimation
Object code Runtime

analysis

Figure 4. The Cosyma cosynthesis tool suite. (ESgraph is a
form of CDFG.)

research and development. Several open problems still
impede the rapid growth of the field. First and foremost is a
need to define better abstract models for hardware-software
systems and their environments as well as to develop con-
sistent languages to express them. Possible solutions range
from the extension of existing hardware and software lan-
guages to the use of new heterogeneous paradigms.

Cost and performance evaluation of mixed systems also
plays an important role in driving partitioning and synthesis
decisions. The problem is complicated by the remoteness of
the abstract system models from the physical implementation.

In addition, the still-primitive cosynthesis and cosimula-
tion methods leave plenty of room for improvement.

Last, but not least, methods for formal verification of prop-
erties of mixed systems would be extremely useful, because
cosimulation may provide insufficient evidence of design
correctness. Extending formal verification techniques to the
hardware-software domain would thus be desirable. [8
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