

COE838/EE8221-Course Project Page 1/13

 SystemC based NoC (Network-on-Chip) Modeling
Course Project

COE838/EE8221: Systems on Chip Design

 Department of Electrical, Computer and Biomedical Engineering

 Toronto Metropolitan University

COE838/EE8221-Course Project Page 2/13

1. Introduction

In t his NoC simulation project, students will model an NoC system using SystemC. They will
investigate and model an NoC s ystem c onsisting of r outers (switches) an d IPs (CPU or ot her
hardware module). The main interconnection structure (topology) us ed will be mesh, torus or
hypercube.

The students are provided with a SystemC design of a simple mesh NoC of size 1×2 including the
routers or switches, IP cores and interconnection as shown in Figure 1. The SystemC code for the
1×2 mesh design is given for downloading by the students from the course directory i.e.
/home/courses/coe838/labs/NoC-simulation-project/. Figure 2 shows a connection between an IP
core and the router. Students will learn f rom the basic NoC simulation and then design a more
practical NoC system model using SystemC as specified in the last section titled as “What to Design
and Hand In”.

Figure 2: 2D-router and IP Core Connection

2. Modeling and Simulation of NoC

The NoC simulator is divided into a number of modules that represent various components and
parts of functionality of an NoC design. These modules are the basic container object* of SystemC.
To better understand the structure of a simulator, we start from a small NoC design that is depicted
in Figure 3. It consists of a source module, a sink (receiver) module and a router module. These three
modules are connected by communication links together.

Each module contains has two basic elements such as port and process. Ports allow
communication a mong t he m odules. P rocesses a re the m ain c omputational elements t hat e xecute
concurrently. In the following sections, we describe the port and process element for each module.

IP0

Router

IP1

Figure 1: 1×2 NoC Mesh Architecture

COE838/EE8221-Course Project age 3/13

3. Packet Structure

The source module produces synthetic (or random) packets. The source module uses a particular
message structure, which provides the design access t o the packet. A message consists of packets
where a packet is formed by varying number flits. A flit is the smallest element of data which travels
inside t he NoC at a clock cy cle. I n o ur s imulator, a p acket h as a t least two f lits of header and
payload. The header flits are needed to route data from the source node to the sink node. The header
and payload flits are illustrated in Figure 4 and described below. The packet structure in terms of a
SystemC code is listed in Figure 5.
• Source and sink address bits are used to identify the sender and receiver nodes. The size of

them is defined by a parameter FW, which is determined depending on the number of cores in
an NoC. For example, if the number of cores is sixteen meaning FW should be more than four.
It also determines the size of the FIFO buffer such as 2 x (FW+5).

• Imaginary clock bit flips between 0 and 1 in each new flit and plays the role of a cl ock in a
packet. The NoC simulator is stimulated by events and an event is invoked for a new flit. If
two f lits have the same contents, then an event will not be created. In o rder t o d ifferentiate
between two flits, the clock bit is employed in every flit.

• Tail/Header bit determines the end of a packet an d this b it i s s et h igh in the l ast f lit. The
payload can be more than a f lit. Each pa yload flit carries data as well as tail/header and
imaginary clock bits.

4. Source Module

The source module h as three i nput ports source_id, ach_in and CLK and one ou tput po rt
packet_out as s hown i n F igure 6. T he output port packet_out is connected to the router and the
source m odule uses i t to s end packets. T he input p ort source_id has t he identification c ode that
identifies the source module in the NoC. The input port traffic_id is connected to a traffic generator
and it h as a d estination a ddress related to the source at each c lock. The i nput port ach_in is
connected to the router to get an acknowledgement signal for sending a new packet. The input port

*A container is a class, a data structure, or an abstract data type.

Figure 3: A Small NoC

Router

Source

Sink ack_in

Acknowledgment

CLK

Router_id=0 Sink_id=0 Source_id=0

Packet_out Packet_in

ack_out

sclk

0 1 1 0 1 0 0

CLK
Tail bit

0 1

Data

0

b) Payload flit

0 1 1 0 1 0 0

Source Sink

CLK Tail bit

0 1 0

a) Header flit

Figure 4: Header and payload flit

COE838/EE8221-Course Project Page 4/13

clock CLK is connected to the clock generator. The source module has a process, which is sensitive
to + ve ed ge t ransitions for the input port CLK. The source p rocess prepares packets according to
packet specification, sends packets in the NoC and records the number of packets by using pkt_snt.

Figure 6: Source Module Code

// packet.h file
#ifndef PACKET
#define PACKET
#include "systemc.h"
struct packet {
 sc_uint<11> data;
 sc_uint<4> id; // packet source ID
 sc_uint<4> dest; // packet destination ID
 sc_uint<1> pkt_clk; // bit for changing the new packet condition
 sc_uint<1> h_t; // header or tail flit("1" represents tail)
 inline bool operator == (const packet& rhs) const // arregment of flit elements
 {
 return (rhs.data == data && rhs.id == id && rhs.dest == dest && rhs.pkt_clk == pkt_clk && rhs.h_t == h_t);
 }
};

Inline ostream& operator << (ostream& os, const packet& a) // related to SystemC
{
 os << "streaming of struct packet not implemented";
 return os;
}

Inline void // this part assign what should be shown in trace graph as a packet
#if defined(SC_API_VERSION_STRING)
 sc_trace(sc_trace_file* tf, const packet& a, const std::string& name)
#else
 sc_trace(sc_trace_file* tf, const packet& a, const sc_string& name)
#endif
{
 sc_trace(tf, a.id, name + ".id");
 sc_trace(tf, a.dest, name + ".dest");
 sc_trace(tf, a.flit_clk, name + ".flit_clk");
 sc_trace(tf, a.h_d, name + ".h_d");
}
#endif

Figure 5: SystemC Packet Structure

// source.h
#include "packet.h"
SC_MODULE(source) {
 sc_out<packet> packet_out;
 sc_in<sc_uint<4> > source_id;
 sc_in<bool > ach_in; // input acknowledgment
 sc_in_clk CLK;
 int pkt_snt; // variable for recording of packet sent
 void func();
 SC_CTOR(source)
 {
 SC_CTHREAD(func, CLK.pos());
 pkt_snt=0;
 }
};

// source.cpp
#include "source.h"
void source:: func()
{
 packet v_packet_out; // a variable for packet
 v_packet_out.data=1000; // e.g.
 v_packet_out.pkt_clk = '0'; // e.g.
 while(true)
 {
 wait();
 if(!ach_in.read())
 {
 v_packet_out.data = v_packet_out.data +source_id.read()+ 1 ; // made a desired data
 v_packet_out.id = source_id.read();
 v_packet_out.dest= 1; // assign a destination
 if(v_packet_out.id == 1) goto exclode; // prevent from reciving flits by itself
 v_packet_out.pkt_clk= ~v_packet_out.pkt_clk ; // add an imaginary clock to each flit
 v_packet_out.h_t=false;

 pkt_snt++;
 if((pkt_snt%5)==0)v_packet_out.h_t=true; // make tail flit (the packet size is 5)

 packet_out.write(v_packet_out);
 cout << "New Pkt Sent: " << (int)v_packet_out.data

 << " source: " << (int)source_id.read() << " Destination: "<< source_id.dest <<endl;
exclode:;
 }
 }
}

COE838/EE8221-Course Project Page 5/13

5. Sink Module

The sink module a ccepts pa ckets f rom t he r outer module and keeps r ecord of t he number and
time of incoming packets. It plays the role of a receiving core in the NoC. When the sink module
successfully receives a packet, it sends an acknowledgment bit back to the router module. The sink
module has four ports consisting of three input ports, packet_in, sink_id and sclk, and one output
port, ack_out as depicted by the SystemC code of Figure 7. An input port, packet_in accepts packets
from the router. The clock port sclk is connected to the clock generator. The input port sink_id has a
fixed value that identifies the sink module in the network. The output port ack_out is used to send an
acknowledgment bit to the router. The sink module contains a process receive_data that is invoked
whenever a new packet arrives at the packet_in port (packet event) and a +ve edge transitions at the
clock port (i.e. clock event). In the case of a packet event, the process first stops receiving of new
packet from the router. Then it reads packet and keeps the records of time and number of incoming
flits. In the case of a clock event, the process lets the router send new packet. The clock adjusts the
speed of sink by c ontrolling the a cknowledgment to the r outer. Figure 7 provides the complete
SystemC code of a typical sink module.

Figure 7: Sink Module Code

6. Router Module

A simple 2D router has five input ports and five output ports as shown in Figure 8. It is modeled

to ha ve a maximum of 10 input/output po rts a s w ell as it is used i n mesh based topologies. The
router module accepts packets from the source (or other router modules) and passes the packets to
the sink (or other router modules). The router consists of some lower level modules such as FIFO,
crossbar, arbiter and demux which are connected by signals together as illustrated in Figure 8. The
router used in this simulator is some-way different than the router of Figure 8. (You need to identify
the difference as given in question 1 of Section 8).

// sink.h
#include "packet.h"
SC_MODULE(sink) {
 sc_in<packet> packet_in; // input port
 sc_out<bool> ack_out; // output port
 sc_in<sc_uint<4> > sink_id;
 sc_in<bool> sclk;
 int pkt_recv;
 void receive_data();
 // Constructor
 SC_CTOR(sink) {
 SC_METHOD(receive_data); // Method Process
 dont_initialize();
 sensitive << packet_in;
 sensitive << sclk.pos();
 pkt_recv = 0;
 }
};

// sink.cpp
#include "sink.h"
void sink::receive_data(){

 packet v_packet;
 if (sclk.event()) ack_out.write(false);
 if (packet_in.event())
 {
 pkt_recv++ ;
 ack_out.write(true);
 v_packet= packet_in.read();
 cout << " New Pkt Received: " << (int)v_packet.data<< " source: "

<< (int)v_packet.id << " sink: " << (int)sink_id.read() << endl;

 }
}

COE838/EE8221-Course Project Page 6/13

To provide a better understanding of how a router works, we describe the journey of a header flit

inside the router. Assume a local source module injects a header flit into the input port of first FIFO
module. T he FIFO module writes the flit into the tail of its buffers. When the flit emerges a t the
header o f FIFO module, a r equest c ontaining the route i nformation is s ent to the request port of
arbiter module (Req_L) for the desired output port (assume t he n orth ou tput port). The arbiter
module performs the required arbitration. When the request is granted, the arbitration result is sent to
the configure port of crossbar module. A grant signal (grant_L) is also sent to the grant port of the
FIFO module. Then the FIFO module activates its read port leading to the injection of flit to the
input port of crossbar module. The flit then traverses through the crossbar module from its input port
In_L to its north output port out_N. Finally, the flit will leave the router.

The router SystemC code is illustrated in Figure 9 and it has a total of 22 data and other signal
ports including rclk, router_id, etc. The first input port, in0 accepts packets from the source module
and port inack0 accepts acknowledgment bi t from the sink module. The output ports outack0 and
out0 send a cknowledgment b it to the source module and data packets to the sink module
respectively. The input port router_id has the constant value of router ID. The clock input port rclk is
used to get clock signal from the clock generator. The SystemC code of Figure 9 lists all of these
ports. The router process can have a process called r_func(). This process is sensitive to the events
on the four input ports: in1, in2, in3 and in4. When a new packet arrives, the router function r_func()
is invoked to keep the records of the number of incoming packets. All the router tasks like incoming
packets, acknowledgments, routing and transferring packets are done by the lower level modules of
the router. The router onl y binds these m odules and executes the router process. The f ollowing
sections describe these modules and their implementation in detail.

Outack 0
Req_L grant_L

Req_N grant_N

Req_E Arbiter grant_E

Req_S grant_S

Req_W grant_W
 Arbiter_id
 aclk Aselect free_out

Local
Source

Link L
 FIFO

D
E
M
U
X

rclk

Link N

FIFO n

FIFO 0

Local
Sink

D
E
M
U
X

Inack0

 Link L
Link E

 FIFO 0

Link N
 FIFO n

In_L out_L

In_N out_N

 Crossbar

In_E out_E

 (5×5)

In_S out_S

In_W out_W

Link E
D
E
M
U
X

 FIFO 0

Link S

Link S

 FIFO n

 FIFO 0

D
E
M
U
X

Link W

Link W

Router_id

R

 FIFO n

Figure 8: 5×5 Generic Router

In[4]

Out[0]

In[0]

In[3]

In[2]

In[1]

COE838/EE8221-Course Project Page 7/13

// router.h
#include "packet.h"
#include "buf_fifo.h"
#include "crossbar.h"
#include "arbiter.h"
SC_MODULE(router) {
 sc_in<packet> in0; sc_in<packet> in1; sc_in<packet> in2; sc_in<packet> in3; sc_in<packet> in4;
 sc_out<packet> out0; sc_out<packet> out1;sc_out<packet> out2; sc_out<packet> out3; sc_out<packet> out4;
 sc_in<bool> inack0; sc_in<bool> inack1; sc_in<bool> inack2; sc_in<bool> inack3; sc_in<bool> inack4;
 sc_out<bool> outack0; sc_out<bool> outack1; sc_out<bool> outack2; sc_out<bool> outack3; sc_out<bool> outack4;
 sc_in<sc_uint<4> > router_id; sc_in<bool> rclk;
 buf_fifo* buf0; // need codes// need codes// need codes
 buf_fifo* buf4;
 arbiter* arbiter0;
 crossbar* crossbar0;
 sc_signal<sc_uint<5>> req_s_0; sc_signal<sc_uint<5>> req_s_1; sc_signal<sc_uint<5>> req_s_2;
 sc_signal<sc_uint<5>>req_s_3; sc_signal<sc_uint<5> > req_s_4;
 sc_signal<sc_uint<4> > free_s;
 sc_signal<sc_uint<15> > select_s;
 sc_signal<sc_uint<1> > gr_s_0; sc_signal<sc_uint<1> > gr_s_1; sc_signal<sc_uint<1> > gr_s_2;
 sc_signal<sc_uint<1> > gr_s_3; sc_signal<sc_uint<1> > gr_s_4;
 sc_signal<packet> re_s_0; sc_signal<packet> re_s_1; sc_signal<packet> re_s_2;
 sc_signal<packet> re_s_3; sc_signal<packet> re_s_4;
 void func();
 int pkt_sent;
 SC_CTOR(router)
 {
 buf0 = new buf_fifo ("buf0");
 buf0->wr(in0);
 buf0->re(re_s_0);
 buf0->ack(outack0);
 buf0->req(req_s_0);
 buf0->grant(gr_s_0);
 buf0->bclk(rclk);
 buf4 = new buf_fifo ("buf4");
 buf4->wr(in4);
 buf4->re(re_s_4);
 buf4->ack(outack4);
 buf4->req(req_s_4);
 buf4->grant(gr_s_4);
 buf4->bclk(rclk);

arbiter0 = new arbiter ("arbiter0");
 arbiter0->arbiter_id(router_id);
 arbiter0->free_out0(inack0);
 arbiter0->free_out1(inack1);
 arbiter0->free_out2(inack2);
 arbiter0->free_out3(inack3);
 arbiter0->free_out4(inack4);
 arbiter0->req0(req_s_0);
 arbiter0->req1(req_s_1);
 arbiter0->req2(req_s_2);
 arbiter0->req3(req_s_3);
 arbiter0->req4(req_s_4);
 arbiter0->grant0(gr_s_0);
 arbiter0->grant1(gr_s_1);
 arbiter0->grant2(gr_s_2);
 arbiter0->grant3(gr_s_3);
 arbiter0->grant4(gr_s_4);
 arbiter0->aselect(select_s);
 arbiter0->aclk(rclk);
 crossbar0 = new crossbar ("crossbar0");
 crossbar0->i0(re_s_0);
 crossbar0->i1(re_s_1);
 crossbar0->i2(re_s_2);
 crossbar0->i3(re_s_3);
 crossbar0->i4(re_s_4);
 crossbar0->o0(out0);
 crossbar0->o1(out1);
 crossbar0->o2(out2);
 crossbar0->o3(out3);
 crossbar0->o4(out4);
 crossbar0->config(select_s);
 SC_THREAD(func);
 sensitive << in0 << in1 << in2 << in3 << in4;
 pkt_sent = 0;
 }
};
// router.cpp
#include "router.h"
void router :: func()
{
 while(true) // functionality
 {
 wait();
 if (in0.event()){pkt_sent++;}// only record
 if (in1.event()){pkt_sent++;}
 if (in2.event()){pkt_sent++;}
 if (in3.event()){pkt_sent++;}
 if (in4.event()){pkt_sent++;}
 }
}

Figure 9: Router SystemC Module (only two FIFOs are instantiated)

COE838/EE8221-Course Project Page 8/13

6.1. Arbiter Module

The arbiter module ha ndles all the methods in a router like the routing/switching
techniques. The arbiter module has eight input ports and six output ports as shown in Figure 8. The
request and grant ports are connected to FIFO buffers. The SystemC code for the arbiter is provided
in Figure 10. In the SystemC code, aselect port is connected to the crossbar module and when the
arbitration is done , it will hv ve the free requested ootput port. The free_out is c onnected to t he
in_ack port of the router an d co ntains t he ack nowledgment f rom t he r eceiver m odules. The
arbiter_id is also connected to the router_id so that the arbiter has access to the id of the router. The
aclk is connected to rclk leading to the router clock generator. The arbiter module has a process such
as a_func(). This process is sensitive to the events at the -ve of aclk.

When a p acket is injected to a router, it is directed to the FIFO buffer. The FIFO module sends
the routing address of packet to t he arbiter as a request event. At each -ve edge of the clock, t he
arbiter f irst checks that whether an output port is f ree or not . If it i s f ree, t he arbiter enables t he
free_out bit related to that output port and the enabling of this bit means that the output port is ready
to operate. Then the arbiter checks its request inputs. If any request is activated, it reads the
destination address and checks that whether the output address is free. If i t is free, then the packet
will be sent through that output port. The arbiter then disables a specific bit in the variable free_out
meaning that no data can be sent through the output port. This bit stays disable until the next clock
event. If the output port is not available, the request will stay until the next clock event.

6.2. FIFO Buffer Module

When a flit is directed to the input port of FIFO module, the FIFO module writes the flit into the

tail of its buffer. The block diagram of a typical FIFO is shown below. The FIFO issues two signals,
empty and full based on the status of FIFO. The empty is used in req signal and the full is used as ack
signal. When the flit emerges at the head of FIFO, a request containing the empty and destination ID
is sent to the request port of a rbiter module. A fter the arbiter m odule pe rforms the required
arbitration, it sends a grant signal to the grant port of FIFO module that leads to the activation of the
read port of FIFO. The flit is injected to the input port of crossbar module.

A detailed description of the above mentioned operation is described here. The FIFO module has

three input ports: wr, grant and bclk as well as three output ports: re, req and ack as illustrated in the
SystemC code of Figure 11. It has a process that can be called f_func(). The process is sensitive to
the events on the two input ports, wr and bclk. In the write event wr.event(), the packet is stored in
the tail of FIFO buffer. In the bclk event, the grant is checked and if it is set then the packet is sent to
the crossbar module. The FIFO struct object provides a f irst-in first-out property to the buffers of
FIFO module. The module creates this by two functions namely packet_out() and packet_in(). The
packet_in function stores the flit in the tail of FIFO buffer and if the buffer is full, it causes the FIFO
module to s top receiving new packets, and if t he FIFO i s not empty, i t generates a request t o t he
arbiter. The packet_out function shifts the contents of all the registers once toward the head of FIFO
module, and if the module is not full then it changes the condition so that FIFO starts receiving the
new packet.

 ack grant req

wr FIFO re
 clk

FIFO Module

COE838/EE8221-Course Project Page 9/13

//arbiter.h
#include "systemc.h"
SC_MODULE(arbiter) {
 sc_in<sc_uint<4> > arbiter_id;
 sc_in<sc_uint<5> > req0;
 sc_in<sc_uint<5> > req1;
 sc_in<sc_uint<5> > req2;
 sc_in<sc_uint<5> > req3;
 sc_in<sc_uint<5> > req4;
 sc_in<bool > free_out0;
 sc_in<bool > free_out1;
 sc_in<bool > free_out2;
 sc_in<bool > free_out3;
 sc_in<bool > free_out4;
 sc_out<sc_uint<15> > aselect;
 sc_out<sc_uint<1> > grant0;
 sc_out<sc_uint<1> > grant1;
 sc_out<sc_uint<1> > grant2;
 sc_out<sc_uint<1> > grant3;
 sc_out<sc_uint<1> > grant4;
 sc_in<bool> aclk;
 void func();
 SC_CTOR(arbiter) {
 SC_THREAD(func);
 sensitive << aclk.neg();
 }
};
//arbiter.cpp
#undef SC_INCLUDE_FX
#include "packet.h"
#include "arbiter.h"
void arbiter :: func(){
 sc_uint<1> v_connected_input[5]; //set when input is connected to an output
 sc_uint<1> v_reserved_output[6]; //set when output is reserved by a input (one output more for simple coding)
 sc_uint<3> v_req[5];
 sc_uint<5> v_free; // status of output in term of being free
 sc_uint<4> v_id;
 sc_uint<5> v_arbit;
 sc_uint<15> v_select;
 for(int i=0;i<5;i++){v_connected_input[i]=0;v_reserved_output[i]=0;v_req[i]=0;}
 v_free = 31; // '11111'
 v_arbit = 0;
 v_select = 0;
 // functionality
 while(true)
 {
 wait();
 grant0.write(0); // reset grant
 grant1.write(0); // reset grant
 grant2.write(0); // reset grant
 grant3.write(0); // reset grant
 grant4.write(0); // reset grant
 if (!free_out0.read()) {v_free = v_free | 1 ; } // set the bit 0 showing the output 0 is free
 if (!free_out1.read()) {v_free = v_free | 2 ; }
 if (!free_out2.read()) {v_free = v_free | 4 ; }
 if (!free_out3.read()) {v_free = v_free | 8 ; }
 if (!free_out4.read()) {v_free = v_free | 16 ;}
 v_id = arbiter_id.read();
 if (!req0.read()[4]){//if FIFO buffer is not empty
 //if(!v_connected_input[0]) // if input is not connected i.e. it is header
 if(v_id[0] < req0.read()[0]) v_req[0]=3; // go to east
 else {
 if(v_id[0] > req0.read()[0])v_req[0]=5; //go to west
 else{
 if(v_id[1] < req0.read()[1])v_req[0]=4; // go to south
 else{
 if(v_id[1] > req0.read()[1])v_req[0]=2; //go to north
 else v_req[0]=1; // that is the destination
 }
 }
 }
 switch (v_req[0]) {
 case 1: v_arbit=v_free & 1; break;
 case 2: v_arbit=v_free & 2; break;
 case 3: v_arbit=v_free & 4; break;
 case 4: v_arbit=v_free & 8; break;
 case 5: v_arbit=v_free & 16; break;
 default: break ;
 }
 if(!v_connected_input[0]) { // if input is not connected
 if (v_reserved_output[v_req[0]])v_arbit=0;//if requested output was reserved, goto nxt input
 }
 if(v_arbit!=0){
 grant0.write(1); // set grant
 v_select.range(2,0) = v_req[0];
 v_free = v_free & (~v_arbit); // inactive the related output
 v_connected_input[0]=1; // input 0 is connected
 v_reserved_output[v_req[0]]=1; // output is reserved
 if(req0.read()[5]){ // if it is tail flit, reset connection and reservation
 v_connected_input[0]=0;v_reserved_output[v_req[0]]=0;}
 }
 }
 (other input codes)

 aselect.write(v_select);
 }
}

Figure 10: Arbiter Module (with one request)

COE838/EE8221-Course Project Page 10/13

6.3. Crossbar Switch Module

When a flit is injected to the input port of crossbar module, the crossbar module reads the address
of output port associated to the packet from the input port config, and then sends the packet out of
the router via that output port. The crossbar module has a process such as c_func (). The process is
sensitive to the events on five input ports (except config port). The process is invoked when one or
more events happen on the i nput ports. I n the event, it reads the configuration address f rom t he
config port and then sends the packet via its associated output ports. For additional information, the
SystemC code of Figure 12 may be consulted.

// fifo.h
#include "packet.h"
SC_MODULE(buf_fifo) {
 sc_in <packet> wr;
 sc_out <packet> re;
 sc_in <sc_uint<1>> grant;
 sc_out <sc_uint<5> > req;
 sc_out <bool> ack;
 sc_in <bool> bclk;
 void func();
 SC_CTOR(buf_fifo) {
 SC_THREAD(func);
 sensitive << wr;
 sensitive<< bclk.pos();
 }
};
struct fifo {

public:
 packet registers[4];
 bool full;
 bool empty;
 int regnum;
 fifo(){ // constructor
 full = false;
 empty = true;
 regnum = 0;
 };
 void packet_in(const packet& data_packet); // methods
 packet packet_out();
};
// buf_fifo.cpp
#include "buf_fifo.h"
void fifo::packet_in(const packet& data_packet){
 registers[regnum++] = data_packet;
 empty = false;
 if (regnum == 4) full = true;
}
packet fifo::packet_out()
{
 regnum--;
 packet temp;
 temp = registers[0];
 if (regnum == 0) empty = true;
 else {
 registers[0] = registers[1];
 registers[1] = registers[2];
 registers[2] = registers[3];
 }
 full = false;
 return(temp);
 }
void buf_fifo :: func()
{
 fifo q0;
 packet b_temp;
 q0.regnum = 0;
 q0.full = false;
 q0.empty = true;
 req.write((q0.empty, q0.registers[0].dest));
 while(true){
 wait();
 if (wr.event()){ //read input packets
 q0.packet_in(wr.read());
 ack.write(q0.full);
 req.write((q0.empty, q0.registers[0].dest));
 }
 if (bclk.event()) { //write the packets out
 if(grant.read() == 1){
 b_temp = q0.packet_out();
 re.write(b_temp);
 ack.write(q0.full);
 req.write((q0.empty, q0.registers[0].dest));
 }
 }
 }
}

Figure 11: FIFO Module

COE838/EE8221-Course Project Page 11/13

// crossbar.h
#include "packet.h"
SC_MODULE(crossbar) {
 sc_in<packet> i0;
 sc_in<packet> i1;
 sc_in<packet> i2;
 sc_in<packet> i3;
 sc_in<packet> i4;
 sc_out<packet> o0;
 sc_out<packet> o1;
 sc_out<packet> o2;
 sc_out<packet> o3;
 sc_out<packet> o4;
 sc_in<sc_uint<15> > config;
 void func();
 SC_CTOR(crossbar) {
 SC_THREAD(func);
 sensitive << i0;
 sensitive << i1;
 sensitive << i2;
 sensitive << i3;
 sensitive << i4;
 }
};
// crossbar.cpp
#include "packet.h"
#include "crossbar.h"
void crossbar :: func()
 {
 packet v_cross0;
 packet v_cross1;
 packet v_cross2;
 packet v_cross3;
 packet v_cross4;
 sc_uint<15> v_config;
 // functionality
 while(true){
 wait();
 v_config = config.read();
 if (i0.event()){
 v_cross0 = i0.read();
 switch (v_config(2,0)) {
 case 2: o1.write(v_cross0); break;
 case 3: o2.write(v_cross0); break;
 case 4: o3.write(v_cross0); break;
 case 5: o4.write(v_cross0); break;

 default: cout << "-------------------------wrong destination " <<endl ;break ;
 }
 }
 if (i1.event()){
 v_cross1 = i1.read();
 switch (v_config(5,3)) {
 case 1: o0.write(v_cross1); break;
 case 3: o2.write(v_cross1); break;
 case 4: o3.write(v_cross1); break;
 case 5: o4.write(v_cross1); break;
 default: cout << "------------------------wrong destination " <<endl; break ;
 }
 }
 if (i2.event()){
 v_cross2 = i2.read();
 switch (v_config(8,6)) {
 case 1: o0.write(v_cross2); break;
 case 2: o1.write(v_cross2); break;
 case 4: o3.write(v_cross2); break;
 case 5: o4.write(v_cross2); break;
 default: cout << "------------------------wrong destination " <<endl; break ;
 }
 }
 if (i3.event()){
 v_cross3 = i3.read();
 switch (v_config(11,9)) {
 case 1: o0.write(v_cross3); break;
 case 2: o1.write(v_cross3); break;
 case 3: o2.write(v_cross3); break;
 case 5: o4.write(v_cross3); break;
 default: cout << "------------------------wrong destination " <<endl; break ;
 }
 }
 if (i4.event()){
 v_cross4 = i4.read();
 switch (v_config(14,12)) {
 case 1: o0.write(v_cross4); break;
 case 2: o1.write(v_cross4); break;
 case 3: o2.write(v_cross4); break;
 case 4: o3.write(v_cross4); break;
 default: cout << "----------------------------wrong destination" <<endl ;break ;
 }
 }
 }
}

Figure 12: Crossbar Module

COE838/EE8221-Course Project Page 12/13

7. NoC Simulator Main Module

The main function is the top-level entity that ties all the NoC modules together and provides the
clock generation and tracing capabilities. The pseudo-code of the main SystemC module is shown in
Figure 13.

The main SystemC function i ncludes all the modules related to NoC simulation and modeling.
First of all, instantiate each of the lower level modules and connect their ports with the signals to
create an NoC model. To instantiate a low-level module, the interface of the module must be visible.
The local signals are declared to connect t he modules ports together. After declaration of s ignals,

// main_noc.cpp

include "files"

int sc_main(int argc, char *argv[])

{

 Define local signals;

 Define local variables;

 Declare clocks;

Instantiate the traffic generatore;

 Connect its ports to lacal signals;

Instantiate the sources;

 Connect its ports to lacal signals;

Instantiate the sinks;

 Connect its ports to lacal signals;

Instantiate the routers;

 Connect its ports to lacal signals;

 Trace instractions;

 sc_start(); // start simulation

Close trace files; // stop simulaton

if(REG_TRAFFIC) // regular traffic

{

Calculate the performance, power and area metrics;

}

if(IRREG_TRAFFIC) // irregular traffic

{

Calculate the performance, power and area metrics;

 }

}

Figure 13: Pseudo-code of the main Function

COE838/EE8221-Course Project Page 13/13

there ar e t hree cl ock generation d eclarations: s_clock (source cl ock), r_clock (router c lock) and
d_clock (destination or sink clock). The number of clock generator is optional and can be equal to
the number of modules in the design. However, we design the simulator to have three clock
generators.

The modules in the simulator design are instantiated after the declaration statements. The source,
sink and router module are instantiated as well as connected together with the locally declared
signals. This co mpletes the i mplementation of N oC simulator design. The SystemC pr ogram can
now be built and run. A sample main function (main_noc.cpp) for a 1x2 NoC is provided with the
set of files available in the course directory /home/courses/coe838/labs/NoC-simulation-project/. To
make i t easier to determine if the design works as intended, we create a trace file with the built-in
signal tracing methods in SystemC. After simulation is executed, we can examine the results stored
in the trace file with a number of visualization tools that generate waveforms and tables of results.
After the simulation is completed, the instructions related to the calculation of output results a re
executed.

8. What to Hand In

1. Understand the given SystemC code for 1x2 NoC and answer the following questions as interim

report of the project progress.
• Explain the architecture of source module. How the source module creates data for

different sources? How a packet is made at the source module (core) level?
• Draw the architecture of router. (Figure 8 should be amended and changed)
• Set the clock time of source modules clk_s equal to the router modules clk_r and execute

NoC simulation. Then explain the simulation results on the monitor in terms of receiving
data by the sink module of IP1.

• Add a variable in each source module and sink module and record the sending t ime and
receiving time of flits and then output on the monitor the average packet delay in the NoC.

• The p rocesses in the arbiter module manage wormhole (flow control) communication in
the NoC. However, each body flit should have a destination ID (similar to header flit) that
is not necessary. Change the codes of arbiter in w hich after r eceiving t he header flit, i t
does not need any information f rom the body flit except the tail bit (the last bit of each
flit).

2. Design and model a 4x4 m esh NoC and test i ts f unctionality by generating various types of

communication patterns (uniform a nd n eighbouring pattern) from the source to sink cores.
Explain your design with full schematics, documented SystemC code of your choice in the final
report. The details of the communication patterns are:
• Uniform pattern: Each IP core sends packets to only one of the IP cores and no IP core

receives p ackets f rom more t han one IP. P lease note that each IP core of NoC has one
source and one sink module.

• Neighbouring pattern: Each source sends packets to one of its neighbouring nodes’ sink,
and no sink receives packets from more than one source.

3. As a bonus convert y our 4x4 mesh t opology N oC into a 4 x4 t orus topology and design a

complete NoC model along with simulation. E xplain your torus design as part o f your f inal
report.

