
in Proc. IEEE Conf. on Computer Design: VLSI in Computers & Processors, Austin, Texas, October 5-7, 1998, pp. 384-389

Fault-Tolerant Architecture for High Performance
Embedded System Applications

Gul N. Khan
Division of Computing Systems, School of Applied Science

Nanyang Technological University, Nanyang Avenue, Singapore 639798
Email: asnkgul@ntu.edu.sg

Abstract
 The architecture of a fault-tolerant embedded computer
system is presented. It employs multiple processors for
high performance and dual-port memory units for
interprocessor communication. The high performance
embedded computer (HPEC) system consists of five
processors that are partitioned into two sets namely the
computing and IO partitions. The computing partition is
concerned with computational intensive tasks and it
consists of three worker processors. The IO partition
performs general-purpose and real-time I/O related tasks.
It has two interface processors with high-speed I/O and
fast interrupt capabilities. The processor cores for these
partitions are selected according to computational and
high-speed I/O functions. The HPEC system size can be
adjusted for varying needs of computing and real-time I/O
without affecting the basic architecture features. The
HPEC architecture is fault-tolerant in terms of fault
containment and isolation of faulty units. Reliability
modeling and analysis of the system indicates that it
degrades gracefully under different fault scenarios.
Key words: safety-critical embedded systems, hardware
and software fault-tolerance, high-performance embedded
computers, parallel computing.

1. Introduction

The embedded computer systems are being employed
in simple consumer products like microwave oven,
washing machine, and cellular phones as well as in
computationally intensive products like laser printers and
videophones. At the high performance end of embedded
systems, safety-critical applications in the areas of
avionics, astronautics and robotics demand fault-tolerance
as well as high performance. So long the typical embedded
systems have been small and execute only a few thousand
bytes of code. Modern embedded computer systems may
include megabytes of code and run at ultra speed to meet

tight performance and reliabilit y deadlines. The architects
of embedded system are facing high throughput and
reliabilit y demands that have never before been required of
these systems [1]. One can add a high performance CPU to
handle a number of tasks but there are pitfalls in using
powerful CPUs in real-time environment. Fast processors
tend to have caches and memory managers that can easily
increase the already long interrupt latencies. Increasingly,
the system designers are responding with multiple
processor solutions [2].

Future safety critical-control embedded systems are
likely to have fault-tolerance and high-throughput
requirements that current single processor embedded
systems cannot meet. Typically, the allowable system
failure probabiliti es are moving upward from 10-5 per hour
to 10-10 per hour. Another main requirement is the high
level of computing performance that not only includes high
throughput and large memories but also the adaptabilit y of
the architecture to varying requirements of real-time
critical applications. The target architecture should be able
to adapt itself to the varying needs by trading performance
with reliabilit y and vice versa. A similar high performance
embedded computer (HPEC) system architecture has been
investigated and designed which employs dual-port
memories for high speed interprocessor communication.

2. HPEC Architecture

The architecture of HPEC system, depicted in Figure 1,
is aimed at high performance as well as safety-critical
embedded applications. The system consists of five
processors, which are fully connected using ten dual port
memories DPij for i, j = 1, 2, 3 ---- 5 (i < j). In an n
processor system, n(n-1)/2 dual-port memories are needed
for full processor connectivity and each processor has
access to (n-1) DP memories. HPEC has three worker
processors, WP dedicated to computing intensive tasks and
two interface processors, IP that are responsible for

general purpose and real-time I/O. The interface processors
also perform system monitoring, fault containment and
system recovery from failures.

The high performance of a multiprocessor system
depends not only on using faster and more reliable
hardware but also on eff icient interprocessor
communication. Dual port memory based processor
interconnection provides a high-speed communication
media. Dual-port memories have been previously used for
interprocessor communication in large-scale parallel
systems [3]. In HPEC, each processor bus is dedicated to
one processor only and this has avoided the time-shared
bus bottleneck by eliminating memory access conflicts.
The HPEC architecture provides eff icient routing schemes
including single step broadcast supported by writing the
message to multiple DP memories concurrently [3].

3. High Performance, Fault-Tolerant Features

The prototype version of the HPEC system consists of
five processors and it is partitioned into two sets of
dedicated processors for achieving fault-tolerance as well
as high performance. The computing partition performs
high performance computation and it consists of three

worker processors as shown in Figure 2. The second
partition performs real-time I/O and it has two interface
processors to communicate with the outside world. The
processor cores for each partition can be selected
according to their functions and may also be optimized for
their respective tasks. Additional processors can be added
to one or both of the partitions for varying computing and
fault-tolerance demands without affecting the basic
features of HPEC.

3.1. Fault Detection

Fault-tolerant mechanisms employed in HPEC are
depicted in Figure 3. Different techniques are used to
detect faults in different units of the system. A watchdog
timer each detects processor failure and generates
processor fail (PF) signal. The local memories are
equipped with error detection and correction circuits and in
the case of a failure, they generate memory fail (MF)
signal. In this way, each processing node is self-checking
and declares itself faulty when the processor or its program
memory fails [4, 5]. The DP memory and its interface
failure are detected at the time of data transfer by using
CRC/checksum errors.

WPi: Worker Processor with
Local Memory

 IPi: Interface Processor with
Local Memory

 DPij: Dual Port Memory

Figure 1: HPEC System Architecture

IP5

 DP25

 DP24

 DP23

 DP34

 DP35 DP15

 DP14

 DP13

 DP12

 DP45

WP3

IP4

WP2
W

WP3
P2W

P2

WP1
W

WP3
P2W

P2

IP5IP4

WP2

WP3

I/O
Channels

WP1

Computing Partition

IO Partition

Figure 2: Logical Architecture of HPEC

The interface processors IP4 and IP5 provide fault
tolerant support in addition to performing real-time I/O,
load balancing and scheduling tasks. At a given time, one
of the interface processor is designated as system
controller to monitor and isolate faulty processors, DP and
other memories. The second interface processor monitors
the designated controller and takes over the charge of
system controller in case the designated controller fails.

3.2. Fault Containment and Recovery

Fault containment and system recovery techniques are
explained using Figure 3. The faili ng processing node
interrupts the system controller (IP4 or IP5) that performs
necessary actions for fault isolation and system recovery.
The failure of a processor or its local memory is handled as
a single fault and system controller performs the following
actions:
• It disables the interrupting capabilit y of the faulty

processing node.
• It generates the isolation signal, ISn to inhibit the

faulty processors from modifying the shared data or
program in DP memories.

• The system controller broadcasts the failure of a
processing node to rest of the system.

• It invokes a diagnostic process that can reset and
analyze the failed processor. For transient faults, the
faili ng processor is put back into service. Otherwise,
the faulty processor is permanently kept out of service
and its tasks are re-distributed to other healthy
processors. Both interface processors keep a record
of the useful work performed by other processors and
in case of a processing node failure, its tasks are
rolled back to a predetermined state.

• For a faulty local memory, the system controller also
isolates its processor before diagnosing the memory.
The diagnostic programs are executed from the
corresponding DP memories. The processor with a
faulty local memory is utili zed in a degraded mode by
executing the critical tasks that can fit into its DP
memory blocks.

In the case of a DP memory failure, the system
controller isolates it from rest of the system. The processor
interconnection network facilit ates alternate routes for
interprocessor communication when a particular DP
memory unit or its interface fails. For instance, if DPij
memory fails, the communication between Pi and Pj
processors is established through a third processor Pk by
using DPik and DPjk memory units. A high degree of
dynamic redundancy exists for interprocessor
communication.

The HPEC system architecture suits to most of the
software fault-tolerant strategies including recovery block,

N self-checking and N-version programming [6]. The
computing partition of the system can be considered as a
TMR system where each WP processor executes different
versions of the application code and one of the IP
processor works as a voter. Similarly in the IO partition
both interface processors can be employed to work in
duplex self-checking configuration. Reliable operation of
the IO partition is essential and therefore, distributed
recovery block scheme [7] should be employed for
interface processors. Distributed recovery block scheme
handles both software and hardware faults in a uniform
manner. The HPEC system provides basic computing
hardware units that can be configured and programmed to
implement various fault-tolerant strategies for varying
reliabilit y and safety requirements.

4. HPEC System Reliability

There are two extreme cases for defining reliabilit y of
multiple processor systems. The parallel systems with large
number of nodes (processor, memory and interface) have
hundreds of switches, pins and wires of interconnection
network and accurate communication requirements
combined with thousands of lines of system level code. At
one extreme, the probabilit y that such a system is
completely operational is very low. On the other extreme,
one may claim that as long as two system nodes are
working and communicating successfully, the parallel
system is operational. However, a realistic reliabilit y
model of a parallel system like HPEC would require only
two (one in each partition) fault-free communicating nodes
for the system to be considered operational.

 Threshold reliabilit y for shared memory parallel
systems has been introduced and analyzed by Hwang and
Chang [8]. For a P processors and M shared memory units
system, threshold reliabilit y Rp,m(t) is defined as the
probabilit y of having at least p-out of-P processors
communicating with m-out of-M memory units in a time
interval (0, t). Threshold reliabilit y concept is useful for
evaluating degradable computer systems.

4.1. Evaluation of Graceful Degradation

The dual-port memory organization of HPEC can be
considered as a restricted shared memory [3]. Each dual-
port memory block is accessed by two processors not only
for data but also for task sharing. To simpli fy the
evaluation of graceful degradation, HPEC can be
considered as a degradable system without repair whose
utili zation period is the time between successive scheduled
maintenance. For a gracefully degrading computer system
without repair, the relevant performance can be measured
as the total number of working interprocessor

communication paths in a given utili zation time interval.
An expected value of communication paths represents the
expected energy that the system provides at the end of a
given utili zation period. Lipovski and Malek [9] employed

a similar approach to evaluate multistage-network based
shared memory systems. This approach avoids the
complexities of enumerating all states of the system for
performabilit y evaluation. However, all possible final

WPx: Worker Processor
IPy : Interface Processor
DPij : Dual Port Memory
In : Processor Interrupt
PF : Processor Fail
MF : Local Memory Fail
ISn : Processor Isolate

 I1 I 2 I3 I 5

IS1 IS 2 IS3 IS5

WP3

PF & MF WP1

WP1
Interrupt

Gen.
Logic

DP12
DP15 DP13

 I2 I 3 I4 I 5

PF & MF

DP25 DP23

WP2

WP2
Interrupt

Gen.
Logic

 I1 I 3 I4 I 5

 I1 I 2 I3 I 4

IP5

IP5 Interrupt &

Isolation Logic

PF & MF

IP4

IP4 Interrupt &

Isolation Logic

PF & MF

Figure 3: HPEC Fault Detection and Containment

states of the system and their corresponding probabiliti es
are evaluated. The performance in terms of available
energy and processor interconnection paths is associated
with each final state, which can be averaged over the final
states.

DP memory units handle the interprocessor
communication. We assume that each processing node and
DP memory unit has a failure rate of λp and λm
respectively (where λp >> λm) and their failures are
independent to each other. The degradation of a five
processor HPEC system without repair is analyzed in the
time interval (0, t). We also assume that initially all the
HPEC components are operational and system fault
detection and isolation capabiliti es are operating in the
presence of faults. HPEC consists of the following main
components:
• Healthy processing nodes (processor and its local

memory), P = 5
• Healthy dual-port memory units

DPxy = P(P-1)/2 = 10

In a fault free system, the interconnection paths are
equal to DP memory units. We are only considering
processing nodes and DP memory units' failures. For a P
processor and M dual-port memory units, the performance
measure is assumed as the number of working
interconnections, Cmax = f (P, M).

f(P, M) = [P*(P-1)*(M+1)]/k (1)
where k ≅ 20 for a five processor system

For p faulty processing nodes and m faulty DP memory
units, the performance measure,

C = f(P-p, M-m) = (P - p)*(P - p -1)*(M - m + 1)/k
..... (2)

The performance measure has the following properties,
which were also identified by Lipovski and Malek [9].
• The performance measure, C reaches maximum for a

fault free system.
• Its value decreases monotonically with the faulty

components.
• It is equal to zero when all processors fail .
• Degradation due to processor failure is greater than

the memory unit failure.
Normalized performance coeff icient, Cnor is defined as:

Cnor = f(P-p, M-m+1)/Cmax
= [(P-p)*(P-p-1)*(M - m + 1)]/[P*(P-1)*(M+1)]

Cnor lies in the interval, 0 ≤ Cnor ≤ 1, which makes it
possible to compare the graceful degradation of different
size HPEC.

Considering one or a small number of node failures,
Cnor = (((P-1)*(P-2p)*(M - m + 1))/(P*(P-1)*(M+1))
 = ((P-2p)/P) * ((M - m + 1)/(M+1)) (3)

We can also define the system reliabilit y level R(t) in
the time interval (0, t) as a function of expected value of
performance coeff icient Cnor and probabiliti es r(p) and
r(m). The probabilit y r(p) and r(m) are of having exactly p
faulty processing nodes out of P nodes and m DP memory
units out of M units.

P M
R(t) = ΣΣ ΣΣ r(p) * r(m) * Cnor (4)

p=0 m=0
Where r(p) and r(m) probabiliti es can be approximated

by a Poisson distribution. If λpt and λmt are the
probabiliti es of failure of each processing node and each
DP memory unit respectively and λpt & λmt<< 1. Then

r(p) = (λp t)p / p! * exp(-λp t) (5)
r(m) = (λm t)m / m! * exp(-λm t) (6)

The seperabilit y of the performance coeff icient, Cnor
results in representing the system reliabilit y of equation (4)
given below.

Rsys = ΣΣ r(p)*(P-2p)/P ΣΣ r(m)*(M-m+1)/(M+1) (7)
 p m

It can be further simpli fied by substituting the values of
r(p) and r(m) given in equation (5) and (6).

 P M
Rsys = ΣΣ (r(p) * (1 - 2p/P)) ΣΣ (r(m)*(1 -m/(M+1)))

 p=1 m=1

The first summations ΣΣr(p) and ΣΣr(m) are equal to unity
and second summations ΣΣr(p)*p and ΣΣr(m)*m represent
the expected values of Poisson arrivals with an arrival rate
of Pλpt and Mλmt respectively. Therefore

Rsys = (1 - 2λpt) * (1 - λmt) (8)

Equation (8) indicates that HPEC degradation is
affected more by its processing node failures than DP
memory unit failures.

4.2. Reliability Modeling

HPEC system is logically divided into two non-
overlapping partitions (computing and IO). The computing
partition is considered operational when at least one-out
of-three WP processors is functioning. Therefor, for a
worker processing node reliabilit y of Rwp the computing
partition reliabilit y Rcomp can be expressed as:

Rcomp = Rwp3 − 3Rwp2 + 3Rwp (9)

Similarly for the IO partition, one-out of-two IP
processors must be functioning for the proper operation of
IO partition. Therefore, for interface processing node
reliabilit y Rip the IO partition reliabilit y Rio is given as:

Rio = 2Rip − Rip2 ….. (10)

Assuming that for HPEC system to be operational, one
processing node in each partition and one DP memory unit
connecting the two working nodes must be operational.
The overall HPEC system reliabilit y Rsys is expressed as a
function of Rcomp and Rio.

Rsys = Rcomp ∗ Rio
= (Rwp3 − 3Rwp2 + 3Rwp) ∗ (2Rip − Rip2)

For Rp = Rwp = Rip
Rsys = Rp2 (6 − 9Rp + 5Rp2 − Rp3) (11)

Nevertheless, in the worst case HPEC will continue
functioning until the IO partition is operational. In other
words, the system can also be functioning after the failure
of computing partition. Therefore HPEC reliabilit y can be
modeled as the reliabilit y of IO partition as:

 Rsys = Rio = 2Rip − Rip2

5. Concluding Remarks

The HPEC system can be constructed using off the
shelf dual-port memories, microcontrollers and fixed-point
processor cores. A VLSI implementation of HPEC is being
planned. The system degrades gracefully and its design is
fully modular. HPEC is considered as a gracefully
degradable parallel system with no repair in a given
utili zation time interval for reliabilit y analysis and
evaluation. The performance measure of the system has
been modeled in terms of healthy processor
interconnection network (dual-port memory) paths. The
modeling results indicate that the performance of HPEC
degrades gracefully under various fault scenarios. The
system has a high reliabilit y and mean time to failure
provided the reliable and eff icient fault detection and

recovery procedures are implemented. The most critical
part of HPEC is the IO partition and one of the interface
processors must be functioning for the operation of HPEC.
Therefore a distributed recovery block scheme [7] is
recommended to handle both software and hardware faults
in the IO partition.

References

[1] P. G. Paulin, C. Liem, M. Cornero, F. Nacabal and G.
Grossens, "Embedded software in real-time signal processing
systems: application and architecture trends", Proceedings of
the IEEE, 85(3) 1997 pp. 419-435.

[2] R. Wilson, "Higher speeds push embedded systems to
multiprocessing", Computer Design, July 1989 pp. 72-83.

[3] G. N. Khan, K. Mahmud, M. S. Iqbal and H. U. Rashid,
"RSM - A restricted shared memory architecture for high
speed interprocessor communication", Microprocessors and
Microsystems 18(4) 1994 pp. 193-203.

[4] D. A. Rennels, "Fault-tolerant computing--concepts and
examples", IEEE Transactions Computers C-33(12) 1984
pp. 1116-1129.

[5] Russel J. Abbott, "Resourceful systems for fault tolerance,
reliabilit y and safety", ACM Computing Survey 22(1) 1990
pp. 35-68.

[6] J. C. Laprie, J. Arlat, C. Beounes and K. Kanoun, "Definition
and analysis of hardware- and software-fault-tolerant
architectures", IEEE Computer 23(7) 1990 pp. 39-61.

[7] K. H. Kim and Howard O. Welch, "Distributed Execution of
Recovery Blocks: An Approach for Uniform Treatment of
Hardware and Software Faults in Real-Time Applications",
IEEE Transactions Computers 38(5) 1989 pp. 626-636.

[8] K. Hwang and T. P. Chang, "Combinatorial reliabilit y
analysis of multiprocessor computers", IEEE Transactions on
Reliability, R-31(5) 1982 pp. 469-473.

[9] G. J. Lipovski and M. Malek, Parallel Computing, Theory
and Comparisons. John Wiley & Sons, New York 1987.

