
This article has been published in the Dec. 2008 issue DAES Journal. Content is final as presented, with the exception of pagination.
The original publication is available at www.springerlink.com DOI 10.1007/s10617-008-9031-1
 An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

CAD Tool for Hardware Software Co-synthesis of Heterogeneous
Multiple Processor Embedded Architectures

Gul N. Khan and U. Ahmed

Electrical and Computer Engineering, Ryerson University
350 Victoria Street, ON M5B2K3 Canada

email: gnkhan@ee.ryerson.ca URL: http://www.ee.ryerson.ca/~gnkhan

Abstract: Hardware software co-synthesis process intends to determine an optimal architecture for an

embedded application specified by a task graph or a specification language. In this paper, we present a co-

synthesis approach targeting MPSoCs and distributed memory multiprocessor architectures for high

performance embedded applications. Our co-synthesis approach produces pipelined multiprocessor architectures

consisting of heterogeneous processing elements connected by a point-to-point communication structure. The

co-synthesis process consists of four distinct phases; processing element selection for addition to the system,

pipelined task allocation, scheduling and a regular interconnection topology mapping. Initially, an irregular

topology is generated that is mapped to a regular architecture. Our co-synthesis methodology performs system

partitioning and produces an irregular topology multiprocessor system. It also generates an optimal (or sub-

optimal) regular topology architecture after considering some of the well-known regular topologies like mesh,

hypercube, tree, etc. The co-synthesis method is demonstrated by exploring embedded architectures for MPEG

encoder and artificially generated application task graphs representing complex embedded systems.

Keywords: Co-synthesis of Multiprocessor Architecture, Embedded Computer Design Tools,

Hardware/Software Co-design, MPSoCs, Network on Chip.

1. INTRODUCTION

A number of application domains like multimedia, automotive, biomedical, networking and ambient

intelligence technologies are computationally intensive and single processor based embedded systems can’t

provide all the functionality with desired timing and throughput. Such applications require multiprocessor

systems or MPSoCs (Multiple Processor System on Chips). This research is motivated by the need to automate

the design of high performance multiprocessor embedded systems. Automation of hardware-software (HW/SW)

co-synthesis is driven by a number of factors including lower time-to-market, migration of software processes to

hardware and vice versa and optimal generation of embedded architectures. HW/SW co-synthesis is an

important component of co-design process and its flexibility can avoid early decisions. It allows designer to

decide quite late in the design process about which technology CPU or dedicated hardware is to be employed. It

also allows changing the implementation of processing modules at any stage of the design process and provides

a number of benefits including short design-cycle and competitive systems. The main advantages of HW/SW

co-synthesis are lower system design time and cost. Additionally, the handling of complex system design is

made easier.

Page 1/30

mailto:gnkhan@ee.ryerson.ca

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

Single-processor embedded architecture consists of a CPU and one or more hardware modules. A number of

initial research projects on HW/SW co-synthesis target single-processor architectures [1, 2]. A multiprocessor

embedded architecture provides higher performance by distributing computation among CPUs and dedicated

hardware modules. Several research groups have pursued multiprocessor embedded architectures [3]–[8].

SpecSyn employs a mixed (static/dynamic) performance estimation approach and it is difficult to capture

dynamic changes of the execution time during design space exploration [3]. In POLIS, the target embedded

architecture consists of CPUs combined with some DSPs and ASICs [4]. The timing analysis approach used in

POLIS can capture much of the dynamic timing behavior as it uses a combination of high-level simulation and

low-level estimation. However, it lacks precision in its analysis. Yen and Wolf analyze the interaction between

different processes at the system level [5]. They start with an acyclic graph representing data dependencies

among processes and calculate the worst-case execution time of the overall system by using partitioning and/or

allocation information. Cai and Gajski have tackled heterogeneous multiprocessor architectures with multiple

CPUs, coprocessors and other hardware modules communicating through multiple busses [6]. Other researchers

have presented design flows for application-specific multiprocessor architectures using a point-to-point

communication model [7, 8]. Most of these techniques targeting multiprocessor architectures lack generic

aspects and can only tackle specific applications.

Various algorithms have been proposed for hardware/software co-synthesis but these algorithms are limited in

the sense that they usually consider only shared bus architectures with a few general-purpose processors.

Prakash and Parker presented their co-synthesis work targeting synthesis of application specific heterogeneous

multiprocessor systems [9]. Their technique employs a formal mechanism by creating mathematical model for

the constraints and objectives. The algorithm input is a data flow graph and it synthesized an arbitrary

multiprocessor topology producing optimal results. However, their technique is slow and limited to only small

applications due to mixed integer linear program based formulation. Heuristic approaches have also been

utilized for co-synthesis of distributed memory architectures that build the solution step by step. COSYN is an

example of constructive co-synthesis [10]. Most of the constructive approach based co-synthesis research has

been concentrated on hierarchical systems [11]. An iterative co-synthesis approach has been employed to design

generic system architectures by Wolf [12]. The algorithm targets irregular system topologies and can handle

multiple CPUs and hardware (HW) modules. The algorithm separates selection and allocation processes,

however, the addition of HW modules to the system may produce inefficient solutions. HW modules are almost

always fully utilized and might never be removed from the system. Moreover, the algorithm does not pipeline

the tasks and therefore cannot satisfy high throughput requirements.

Multiple processor task allocation and scheduling is an important component of co-synthesis and known to be

NP-complete [13]. Therefore heuristics are employed to allocate and schedule tasks on multiple processors [14].

Higher throughput requirements demand pipelined systems [15]. Executing only the critical application sections

in hardware cannot satisfy the increased throughput constraint and processing elements (PEs) need to be

Page 2/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

arranged into concurrent execution stages. Bakshi and Gajski have presented a co-synthesis technique involving

pipelining and scheduling of multiple PEs [16]. This technique is limited, as it cannot trade-off between

hardware and software implementation for a given task. The hardware cost of adding a CPU is not considered

and inter-task communication time is ignored. Another co-synthesis approach by Chatha and Vemuri involves

pipelining [17]. Their algorithm generates architectures for data-flow oriented applications and it is centered

around a branch and bound partitioner. It performs pipelining by heuristically selecting a data dependency and

then creating a pipeline stage. Since task allocation and pipelining are performed without any interaction and

without considering pipeline period, the algorithm can result in implementations with redundant pipeline stages.

The method is limited to single CPU systems and executes with exponential time.

MPSoCs are composed of multiple processors for various applications including mobile terminals, set-top

boxes, gaming and video processors. MPSoC is becoming a popular and prevalent design style to achieve low

time-to-market, to simplify system verification and to provide flexibility in the design of complex and high

performance platforms. HW/SW co-synthesis of MPSoC architecture is a major challenge and the average

number of processors per MPSoC is growing [18]. For example, the computational load of ambient intelligence

may require a large number of processors. MPSoC performance is determined by the ability of on-chip inter-PE

communication network that can accommodate the communication needs of heterogeneous processing elements.

It is claimed that Network-on-Chip (NoC) based systems are economically feasible for several product variants

[19]. Betrozzi and others have proposed a synthesis tool ‘Netchip’ for designing domain specific on-chip

network for MPSoCs [20]. It provides design support for regular topologies suited to interconnection structures

of homogeneous as well as heterogeneous PEs. Netchip assumes that the system has been already partitioned,

application tasks are mapped on to cores, and core graph is available to the topology mapping tool. Its main

functions include topology mapping, topology selection and generation. SUNMAP performs the topology

mapping and selection [21] while XpipeCompiler generates the topology [22]. However, our approach performs

system partitioning as well as optimal system topology mapping and generation. HW/SW co-synthesis technique

along with a regular topology selection methodology described in this paper, provides a tool for designing

multiprocessor embedded architectures as well as MPSoCs. Our co-synthesis framework allows the comparison

of regular and irregular topologies of the target system by co-synthesis and producing the application-specific

irregular topology architecture. Then a sub-optimal regular topology architecture is generated, which is based on

the irregular topology produced in the initial phase of cosynthesis.

2. COSYNTHESIS OF MULTIPROCESSOR EMBEDDED ARCHITECTURES

2.1. Overview

The co-synthesis approach described in this paper, targets multiprocessor embedded architectures consisting

of heterogeneous processing elements (PEs) connected by a network structure. The main components of the

Page 3/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

embedded multiprocessor architecture are PEs, local memories for program and data as well as inter-PE

communication structure. The PEs can either be processors/DSPs (software-PEs) or dedicated hardware

modules (hardware-PEs) that are linked to the interconnection network. We disassociate PEs from the

interconnection network by decomposing the communication interface into two parts, one is specific to PE and

the other is generic depending on the number and type of communication links and protocol. The

interconnection structure being proposed is also suitable for MPSoCs [20]. In these systems, a master PE node is

the initiator of communication while the slave node responds to the master. In addition to local memory, each

PE node is considered as having a wormhole switch/router. The hardware area of the switch/router assumed to

be part of the PE node. A software or hardware PE accesses the interconnection network using the network

interface, which performs the data conversion into a format supported by the network.

We assume best effort, packet switched inter-PE communication systems, using wormhole switching. Static,

look-up table based routing is assumed, with route tables embedded in the header flits of each packet (source

routing). The PE node level switches have the sole role of transferring data through the network. Each

switch/router is composed of fixed number of ports. Switches/routers are assumed to be capable of performing

arbitration and data forwarding independently for every output port. Each output port can have a dedicated

arbitration and forwarding unit. Round-robin based arbitration can be easily realized by a small amount of

hardware. From the target architecture point of view, in addition to local memory, hardware area of switch and

network interface is included in the PE node area. It is also assumed that the data buffering required for

pipelining is provided by the local memory at each PE node.

The HW/SW co-synthesis approach described here requires the embedded application to be specified as an

acyclic task graph encompassing the system requirements. It is also assumed that application task graph as well

as the target system is of course grain nature where each PE node has a program/data memory and switch/router.

The co-synthesis methodology also needs a library of PEs with profiling data in the form of worst-case

execution time of each task for the available PEs and their hardware area. Overall system hardware area and

execution time constraints are fed to the co-synthesis algorithm. The system execution time constraint is

specified in terms of pipeline period. The co-synthesis tool can be fed with the system hardware area constraint

only. The co-synthesis algorithm explores the design space following the hardware area constraint for a range of

pipelined periods. The co-synthesis process begins with a single-CPU based all software solution of the

application and adds PEs to the target system incrementally. Pipeline stages are created during the allocation and

scheduling process. The overhead of task scheduling on software-PEs is ignored. The mathematical formulation

described in this section can be amended to include the overhead of task scheduling on the same software-PE.

The co-synthesis methodology presented in this paper employs a two-phase system generation mechanism,

where an irregular topology is generated first and then a regular architecture is determined. In the first phase, an

application specific architecture is produced satisfying the system hardware area and pipelined period

constraints. In the 2nd phase, directly connected PEs are mapped to a regular topology while meeting the HW

Page 4/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

area and timing constraints as depicted in Fig. 1. The shaded part of Fig. 1 provides the details of 1st phase,

where PEs are added to the target system one by one followed by pipelined task allocation and scheduling.

Details of each step of this phase are provided in the next sub-sections.

N

Y

Y

N

Improve Pipeline Period

Timing
Constraints Met ?

Map Topology & Schedule

Hardware
Constraints Met ?

All the Tasks
Scheduled ?

Pipelined Allocation

PE Selection

Y

N Success

Success

Y

Y

Hardware Constraints
Met ?

NFail

N

Start with the
Application Task graph

All Tasks are
Scheduled ?

Pipelined Allocation

PE Selection

Fig. 1. System Topology Generation and Co-synthesis

2.2. Processing Element Selection for Addition to the System

 Initially all the tasks are scheduled on a software PE to meet the timing constraints and if this is not possible,

additional PEs are added to the system. This is an important and critical stage of our co-synthesis approach

Page 5/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

where a software (SW) or hardware (HW) PE is selected for addition to the target system. A heuristic approach

is employed to select the PE. The heuristic is based on the system performance gain and HW area of the PE

being selected for addition to the system. Once an in-efficient PE is added to the system, it is only considered for

removal when the target system could not meet the timing constraints even after adding as many PEs as the

number of application tasks. The formulation of PE selection for adding to the system is mathematically

rigorous and it chooses the heuristically best PE in terms of overall improvement in the system performance i.e.

lower pipeline period and target system HW. The PE selection parameter consists of two factors namely the

performance and HW area improvements. To keep this step simple, the effect of data communication delay on

the performance when the tasks are allocated to different PEs is not considered. Following variables are defined

in order to describe these factors.

TSW denotes the set of tasks that do not have a dedicated hardware resource (SW-PE) in the current system. ●

●

●

●

THW denotes the set of tasks that have a dedicated hardware resource (HW-PE) in the current system.

PESW and PEHW denote the SW-PEs (CPUs) and HW-PEs respectively.

SYSPESW and SYSPEHW are the sets of software and hardware PEs in the current system.

The PE selection process begins with the calculation of cumulative software and hardware PEs execution

times as given in equations (1) and (2). These equations only consider the SW and HW PEs in the current target

system and calculate the cumulative software execution time factor (CUM_SW_TIME) that is the sum of

execution times of all the tasks that are only executable on SW-PEs in the target system. Similarly, cumulative

hardware execution time factor (CUM_HW_TIME) is the sum of the execution times of all tasks that are

executable on HW-PEs in the current target system. These factors treat the tasks separately in terms of

application tasks that are executable on HW-PEs and the tasks that are only executable by SW-PEs.

∑ ∑=
T PE

PETExecTimeTIMESWCUM
i j

ji),(__ (1)

where Ti ∈ TSW and PEj ∈ SYSPESW.
ExecTime(Ti , PEj) is the time of executing task Ti on a SW-PE, PEj.

∑ ∑=
T PE

PETExecTimeTIMEHWCUM
m n

nm),(__ (2)

where Tm ∈ THW and PEn ∈ SYSPEHW.
ExecTime(Tm , PEn) is the time of executing task Tm on a HW-PE, PEn.

To explain the PE selection, task allocation and scheduling, consider a simple task graph with five tasks (T1,

T2, … ,T5) shown in Fig. 2. The inter-task communication data is provided on the edges of the graph. There are

two SW-PEs (PE1 and PE3) that can only execute all the tasks and one HW-PE (PE2) that can only execute task

T3. Table 1 provides the library data in terms of PE hardware area and task execution times. The hardware area

and pipeline time period constraints used for the example are 3200 and 30 units respectively. The co-synthesis

process starts with one SW-PE solution and chooses PE1 due to its lower HW area. By using the PE selection

Page 6/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

mechanism, another PE1 is selected for addition to the system. Consider the current target system with two SW-

PEs (two instances of PE1) in the target system. At this stage, the system is not meeting the pipelined period

constraint of 30 time units and another PE will be added to the target system.

T5

T3T2

T4

T1

4

5

4

5

3

5

Fig. 2. Example Task graph

Table 1. PE Execution Time and Area Information

Tasks PE1 PE2 PE3
T1 15 - 10
T2 22 - 20
T3 10 2 10
T4 10 - 5
T5 15 - 15

PE Type Area

PE1 SW 1000

PE2 HW 15

PE3 SW 1500

The cumulative software and hardware times of equations (1) and (2) are calculated as following.

CUM_SW_Time = 62 + 62 = 124 (There are 2 instances of PE1 in the current target system)

CUM_HW_Time = 0 (There is no HW-PE in the current system)

The process selection methodology also defines a hardware improvement factor HW_IMP(PENEW) formulated

by equation (3), which is the envisaged performance improvement obtained by adding a new hardware-PE

(PENEW) to the system. This factor is used for calculating the system execution time factor (SYSCURR_TIME) when a

hardware PE, (PENEW) is considered for addition to the system as presented in equation (5).

HW_IMP(PENEW) = ∑
∑ ∑

−
T

PET ExecTime
SYS

T PE
PET ExecTime

i

NEW
SW

i j
i

PE

ji

),(

),(

 (3)

where Ti is a set of tasks that can execute on PENEW.
PEj ∈ SYSPESW and PEj are software PEs that have been included to the system.

Page 7/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

By using the hardware improvement factor and cumulative hardware and software execution time factors of

equations (1) and (2), the system execution time factors before (SYSPREV_TIME) and after (SYSCURR_TIME) the

addition of a new PE are estimated by using equations (4) and (5).

() TIMEHWCUM
SYS

TIMESWCUM
SYS

PE
TIMEPREV

SW

__
__

2_ += (4)

where SYSPESW represents software PEs in the current target system.

SYSPREV_TIME is the time related performance parameter of the current target system when a new PE is not

added to the target system where SYSCURR_TIME is the time related performance parameter of the target system

after the addition of a new PE to the target system. For HW-PE selection, SYSCURR_TIME is calculated by

subtracting the hardware PE improvement factor (HW_IMP) from the SYSPREV_TIME. It is worth mentioning that

SYSPREV_TIME used in the 2nd part of equation (5) include the cumulative software and hardware execution time

factors of the target system before adding PENEW.

 _ =SYS TIMECURR
()21

),(__

 SYS

T

PET ExecTime TIMESWCUM

PE

NEWi

SW

i

+

+ ∑
 (5)

where Ti is a set of tasks that can be executed execute on PENEW.

P if P ∈ E NEW E SW

 − H W _) P(IMP E NEW if P P ∈ E NEW SYS E HW TIME _ PREV

SYSPESW are the number of SW PEs in the target system.

In the case of example task graph, the hardware improvement factor formulation presented in equation (3) is

only calculated for PE2 and HW_IMP(PE2) = (10+10)/2 − 2 = 10 − 2 = 8.

The system execution time of the target system (SYSPREV_TIME) formulated by equation (4) while the system

execution times after the addition of a new PE, (SYSCURR_TIME) calculated by equation (5) are given below.

SYSCURR_TIME is calculated for all the available PEs, however, only one PE with the largest improvement is

selected for addition to the target system.

SYSPREV_TIME = 124/4 + 0 = 31

SYSCURR_TIME (PE1) = (124 + 62)/9 = 20.67

SYSCURR_TIME (PE2) = 31 − 8 = 23

SYSCURR_TIME (PE3) = (124 +50)/9 = 19.33
To select a PE for addition to the system, the system performance improvement factor (PEPERF_IMPR) has been

formulated by using the improved system execution time (in terms of SYSCURR_TIME/SYSPREV_TIME) as presented in

equation (6). The cost of adding a PE (PENEW) is also considered by employing the hardware (HW) area factor

(PEAREA_FACTOR) of equation (7) that takes into account the HW area associated with a particular PE.

PEPERF_IMPR = 1 − [SYSCURR_TIME /SYSPREV_TIME] (6)

Page 8/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

PEAREA_FACTOR = 1 − [Area(PENEW) / MAX_AREA] (7)

where Area(PENEW) is the HW area of the new PE to be considered for addition to the system.
 MAX_AREA is the HW area of an available PE with maximum hardware cost.

The PE selection parameter (PESELECT) is defined as a weighted sum of performance improvement factor

(PEPERF_IMPR) and HW area cost improvement factors (PEAREA_FACTOR), which is given in equation (8). PESELECT

for all the available PEs are considered to select the most suitable PE for addition to the system.

PESELECT = k X PEPERF_IMPR + (1 − k) X PEAREA_FACTOR (8)

where k is a user defined area-performance trade-off factor and k ∈ [0, 1].

For the example task graph of Fig. 2, PE selection parameters are calculated for each PE (PE1, PE2 and PE3)

by using SYSPREV_TIME, SYSCURR_TIME and the HW area of these PEs as given below. In this particular case, we use

an equal weighting for the area and performance improvement factors (i.e. k = 0.5). However, user has the

option of utilizing a different weight.

PESELECT(PE1, PE2, PE3) = (0.33, 0.62, 0.19)

Our methodology chooses PE2 for addition to the system from the above values of PE selection parameters as

PE2 has the maximum improvement parameter. The updated target system now contains three PEs (PE1, PE1

and PE2) whose HW is 2015 area units. When all the tasks are scheduled by following the pipelined task

allocation and scheduling strategy described in the next sub-section, system pipeline period is still higher than

the timing constraint of 30 time units. The same process of PE selection is repeated to add another PE to the

system. Finally a four PE target system with three instances of PE1 and a PE2 is generated by this phase of the

co-synthesis method that meets both the area constraint of 3200 and pipeline period constraint of 30 time units.

This phase of the co-synthesis, which adds a new PE to the target systems, terminates when all the tasks are

scheduled successfully within the pipeline period constraint. Otherwise, it continues to add more PEs until the

HW area constraint is violated. In this phase of co-synthesis, there is a chance that slow and inefficient PEs

become part of the system. It may also result in a system that could not meet the required timing constraints.

Another step is needed that enables the co-synthesis method to remove slow and inefficient software-PE that has

become the system bottleneck. This situation arises when total number of tasks allocated to software PEs

become equal to software PEs (i.e. TSW = SYSPESW). When it happens, a SW PE cannot be added to the

system. One needs to replace the slow and inefficient SW-PEs with faster and efficient SW-PEs. An inefficient

and a slow SW-PE is selected for removal by employing equation (9).

 PET ExecTime
SYSPE

 PE
TTi

ji
SWPESW

MAXSLOW

∈∀
= ∑

∈
),((9)

Equation (9) chooses the SW-PE (PESLOW) that takes maximum time to execute the software tasks of the

application. If HW area constraint is being violated then PE HW area criterion can also be used to choose the

Page 9/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

inefficient PE. Once such a PE is removed from the system, it is kept on a ‘slow-PE’ list whose PEs are not

considered in the subsequent PE selection process.

2.3. Pipelined Task Allocation and Scheduling

PEs are selected and tasks are allocated to PEs iteratively, in the PE allocation and pipelining step. Pipeline

stages are created during allocation, which results in systems that do not have any redundant pipeline stage.

After adding a new PE, tasks are allocated along with pipelining of the task execution. Pipelined allocation is

the process of assigning start time to each task satisfying the condition given in equation (10).

0 ≤ StartTime(Ti) ≤ [StartTime(Ti) + ExecTime(Ti, PEj) + MAX(CommTime(PEj, PEk))] ≤ TPERIOD (10)

where StartTime(Ti) is the time when task Ti starts execution.
ExecTime(Ti, PEj) is the execution time of task Ti on its allocated PEj.
CommTime(PEj, PEk) is the data transfer time from the predecessor PEs (PEk) to PEj.
PEk are all the PEs where parent tasks of Ti are allocated.
TPERIOD is system pipeline period constraint.

First step of pipelined task allocation is to assign a priority to each task. The priority criterion assigns high

priority to those tasks, which are on the critical path (from the execution point of view) as formulated by

equation (11).

Priority(Ti) = MIN(ExecTime(Ti)) + MAX(Priority(Tj)) (11)

where ExecTime(Ti) is the execution time of task Ti for all the PEs in the target system.
Tj task is a successor of task Ti.

Priority is assigned by starting at the tail of the task graph and setting the priority of each task as the sum of its

minimum execution time (on any PE) and maximum priority of its successors. Similar priority measure has been

extensively employed for multiprocessor scheduling as part of parallel computing research [13, 14, 15]. At this

stage of task allocation and scheduling, a priority list of tasks is created. The prioritized list of tasks is sorted in

terms of task priorities determined by equation (11). Pipeline allocation process initially finds start and finish

time of each task for all the PEs. Start time for a task is defined in terms of the earliest start time

(EarliestStartTime) and idle time of a PE (PEIdleTime). PEIdleTime is the time when a PE becomes available

(idle) after executing all the tasks allocated to it. Start and finish times formulation for a task Ti when it is

allocated to PEj is represented by the following set of equations (12).

StartTime(Ti , PEj) = MAX(EarliestStartTime(Ti), PEIdleTime(PEj))

FinishTime(Ti, PEj)= StartTime(Ti, PEj) + CommTime(Ti, PEj) + ExecTime(Ti, PEj) (12)

EarliestStartTime(Ti) = MAX(FinishTime(PRED(Ti)))

where PRED(Ti) is the set of all the predecessors of task Ti.
PEIdleTime(PEj) = FinishTime(Last task on PEj).
CommTime(Ti, PEj) is the data transfer time to/from PEj with respect to task Ti.

Task scheduling mechanism that is based on equations (11) and (12) will be discussed further in section 3.2

where a pseudo code for scheduling is also provided. The overhead of inter-task data communication is ignored

Page 10/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

for those tasks when they are allocated to the same PE. The data communication time for a task Ti is only

defined when Ti is allocated to PEj. It is obtained by adding data transfer times of all the predecessors of Ti that

are not allocated to PEj as formulated in equation (13). Finish time of the highest priority ready task is

calculated for all the PEs that has been added to the system. A task is allocated to the PE with the earliest finish

time. When the earliest finish time violates the pipeline period constraint, a new pipeline stage is created and

the task is added to the new pipeline stage.

 TPRED rataTransfeD PETommTimeC
PE TPRED i

iji
j

∑
∉∀

=
)(

))((),((13)

Communicating PEs are directly connected for the irregular architecture generated by this co-synthesis phase.

The system architecture generated for the example task graph of Fig. 2 is shown in Fig. 3(a). The architecture

has four PEs containing three software-PEs and one hardware PE. Task allocation and scheduling of PEs for the

example task graph is performed by following the pipelined allocation and scheduling process described above.

The pipelined schedule of the target system, which has three instances of SW-PE (PE1) and one HW-PE (PE2)

is also given below in Fig. 3(b). The execution is divided into three pipeline stages where tasks T1, T3 and T4

execute in 1st stage, T2 executes in the 2nd stage and T5 executes in the 3rd stage.

PE1 T5

PE1

PE2T3 PE1
T2

T1,T4

(a)

Fig. 3. (a) Irregular Topology with Allo

3. REGULAR INTERCONNECTION STRUCTUR

The multiprocessor system generated in previou

however the PEs are connected by an irregular top

message passing systems, fault-tolerance, etc [23].

employed for various MPSoC platforms [18]. Rese

interconnection structures known as Network on C

the realization of complex MPSoCs [24]. Regular

tolerance and proven deadlock free inter-PE routin

can be routed to other PEs through alternate paths
Task Allocated
to

Start
Time

Finish
Time

Pipeline
Stage

T1 PE1 (a) 0 15 1
T2 PE1 (b) 0 27 2
T3 PE2 15 22 1
T4 PE1 (a) 15 25 1
T5 PE1 (c) 0 20 3
 (b)

cation (b) Scheduling of the Example Task Graph

E

s section meets all the timing and HW area constraints,

ology. Irregular topology structures lack support of standard

 Regular interconnection structures have been proposed and

archers have recently pursued scaleable and regular

hips (NoCs), which have particular features that can enable

topologies like mesh, tree and hypercube support fault-

g algorithms exist. If a communication link or a PE fails, data

. Moreover, off-the-shelf IPs are available for regular

Page 11/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

topologies to expedite the system realization. A number of regular interconnection structures have been

proposed for on-chip architectures of MPSoCs. For example, SoCBUS is a 2D mesh based interconnection

structure that relies on a simple layout while its switch hardware is independent of interconnection network [25].

SPIN is another fat-tree based regular topology employed for on-chip interconnection structures of MPSoCs

[26]. Octagon based regular topology has also been advocated for on-chip communication structures [27].

Hypercube topology embedded architectures has also been targeted recently for co-synthesis [28].

The final phase of our co-synthesis approach is the regular topology mapping and it is depicted in the 2nd half

(un-shaded part) of Fig. 1. Topology selection follows another task scheduling phase. If all the tasks complete

their execution within the pipeline period constraint, co-synthesis algorithm terminates successfully. Otherwise,

the algorithm can proceed to reduce the pipeline period. Alternatively, other regular topologies can also be tried

for successful topology mapping and scheduling within the pipeline period constraint. At this stage, our co-

synthesis method selects an economical topology suitable for the embedded application after considering

various regular topology structures.

3.1. Topology Generation and Addressing

Initially, a topology template of nodes is created and addresses are assigned to the nodes. All the regular

topologies are defined using the same template. The topology template is presented by a graph (GT) consisting

of nodes (VT) that are connected by edges (ET) as presented in equation (14).

GT = { VT, ET } (14)

where { }0 1, ,...,T v v= iV v is a set of nodes.

{ }(,) | ,T i x y x y TE e v v v v V= = ∈ is the set of edges.

Each node is assigned a unique address ‘Addr(vi)’ and the number of topology nodes are equal to the number

of PEs in the system. A set of neighbours is defined for each node as given in equation (15).

{ }| (,)
i ivN n v n E= T∈ (15)

The topology mapping process for 2D mesh and hypercube topologies is explained here. In the case of mesh,

the template is generated by arranging the nodes in a grid. A topology mapping and scheduling algorithm is

presented in a preliminary method presented earlier [29]. Number of rows and columns in a mesh are determined

by finding the total number of PEs in the system (SYS_PE), which is determined by adding software and

hardware PEs of the system given in equation (16).

_
SW H WP E P ESYS PE SYS SYS= + (16)

Number of rows and columns of a 2D mesh are determined by employing the equation set (17).

Page 12/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

_ _MAX ROWS SYS PE =

()_ _ _MAX COLS SYS PE MAX ROWS = ÷ (17)

2_ log (_)ADDR BITS MAX ROWS=

Row address bits (ADDR_BITS) are determined by the equation set (17) and column address bits are also

determined in the same way. Nodes are added row-wise, while addresses are assigned to each node by

concatenating row and column addresses. For example, node 6 (0110) of Fig. 4 has the address bits that

correspond to 2nd row and 3rd column i.e. (01_10). After address assignment, the neighbors are added if they

exist. The pseudo code provided below illustrates this process for 2D mesh topology.

node = 0 ;
FOR row = 0 to MAX_ROWS - 1
FOR col = 0 to MAX_COLS - 1 { // Assign address to

// node by concatenating addresses row and column
Addr(vnode) = (row << ADDR_BITS) | col ;
| Nvnode

 | = 0 ; // set neighbour count to ‘0’

IF (Exist(UPPER_NEIGHBOUR))
AddNeighbour(UPPER); // add upper neighbour

IF (Exist(LOWER_NEIGHBOUR))
AddNeighbour(LOWER); // add lower neighbour

IF (Exist(LEFT_NEIGHBOUR))
AddNeighbour(LEFT); // add left neighbour

IF (Exist(RIGHT_NEIGHBOUR))
AddNeighbour(RIGHT); // add right neighbour

node++;
IF (node == SYS_PE)

RETURN; // return when all nodes have been added
} // FOR

Fig. 4 depicts an eight-node 2D-mesh topology generated after application of the above pseudo code. The

number of hops needed to transfer data from one node to another node is the sum of absolute differences of

corresponding row and column addresses. For instance, data transfer from node ‘0’ (00_00) to node ‘9’ (10_01)

would require three hops as differences in row and column addresses are two and one respectively.

The topology generation process for hypercube topology is also presented for completeness. Addresses for

hypercube range from 0 to SYS_PE. After assigning addresses, the neighbors for a node are added while the

degree of hypercube identifies the number of neighbors for each node where DEGREE = log2(SYS_PE). The

adjacent nodes in hypercube have only 1-bit difference between their addresses. This feature is employed to

assign neighbors for each node as given in the following pseudo code.

Page 13/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

10

54 6

2

98

Fig. 4. Eight-Node 2D-Mesh Topology with Address Assignment

FOR node = 0 to SYS_PE -1 {
 Addr(vnode) = node;
 | Nvnode

 | = 0 ; // reset neighbor count to ‘0’

} // FOR
 //Set neighbors for each node
FOR i = 0 to SYS_PE -1
 FOR j = 0 to SYS_PE -1 {
 IF (AddrBitDiff(vi, vj, DEGREE) == 1)
 // add vj as vi’s neighbor
 AddNeighbor(vi, vj);
 } // FOR

Fig. 5 shows an 8-node hypercube where the above procedure is used to assign addresses to its node. The

number of address bit difference determines the inter-node path length in terms of number of hops among the

nodes. For example topology node 1 (001) and 6 (110) has a bit difference of three indicates a three-hop length

path between nodes 1 and 6. A similar methodology and specific topology properties have been used to generate

the templates for tree and other regular topologies.

10

32

54

76

Fig. 5. Eight-Node Hypercube with Address Assignment

At this stage of mapping, a blank topology template has been created, however, PEs are not allocated to the

topology nodes. PEs are mapped to the topology nodes such that the total communication delays among all the

system tasks are minimal. It maximizes data traffic among neighbor (directly connected) nodes. A topology

Page 14/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

node is allocated if a PE has been assigned to it. Consequently allocated neighbours of a node vi are the adjacent

nodes that have been assigned a PE and the neighbours are denoted as
i

A
vN ⊆

ivN . Neighbor node traffic is

formulated in equation (18).

NeighborTraffic(PEi, vj) = (18) ∑
∈∀ N v

 v, PEPECommTime
a j

ai

A
v

))((

where PE(va) is the PEj that is mapped to the topology node va.
CommTime(PEi, PEj) is the time taken to transfer application data between PEi and PEj.

During the allocation of PEs to the topology nodes, unallocated neighbors of the current node are stored in a

FIFO list and PEs are assigned first to the neighbours of the allocated nodes. The pseudo code given below

illustrates the allocation of PEs to the topology nodes irrespective of the topology (mesh, hypercube or tree).

The start node is assumed to be node 0 of the topology, however it can be selected differently depending on the

position of the node in the irregular topology architecture.

PE0 → V0 ; //Assign first PE to start node
PE0 = ALLOCATED; //Add all neighbours of v0 to FIF0
AddtoFIFO(Nv0

);
 //Processing all un-allocated nodes
WHILE (Vu = GetfromFIFO()) { // Calculate neighbour

 // traffic for current node and all unallocated PEs
 FOR ALL UNALLOCATED PEs: PEi
 FOR j = 0 to | Nvu

 |
 Calculate-NeighbourTraffic(PEi, Vj) ;
 // Get PE with maximum neighbour traffic
 PEA = GetMaxTrafficPE();
 PEA = Vu ; //Assign PEA to Vu
 PEA = ALLOCATED;
 //Add unallocated neighbours of Vu to FIFO
AddtoFIFO (Nvu

)
} //Continue till FIFO is empty

An efficient topology is selected by calculating the overhead for each topology with respect to the irregular

topology. The topology overhead is defined as the extra time spent on transferring data between PEs due to

indirect and multi-hop communication paths of a regular topology. It is determined by calculating the number of

hops between all the communicating PE pairs and the amount of data to be transferred via these hops as

formulated by equation (19). Number of hops, HOPS is determined from the addresses of source and destination

nodes. For a 2D-mesh the number of hops needed is the sum of address bit differences of rows and columns of

the source and destination nodes. In the case of hypercube, the number of hops between any two nodes is their

address bit differences.

OverheadTOP = (19) ∑ ∑
−

= =
×−

)1(

0 0
),(]1),([

 SYS

i

N

j
jijiTOP

PE PEi
PEPECommTime PEPEHOPS

where HOPSTOP(PEi, PEj) is the path length (hops) between PEi and PEj

Page 15/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

CommTime(PEi, PEj) provides the time required to transfer data between PEi and PEj

3.2. Task Scheduling

The application tasks are rescheduled by following list scheduling after the PEs are mapped to a regular

topology. It is the same technique for pipelined task allocation and scheduling that has been described in section

2. Pipeline stages are not modified and each task is scheduled in the same pipeline stage and allocated to the

same PE where it was scheduled in the first phase of co-synthesis. Scheduling is performed by selecting the

highest priority task whose predecessors are already scheduled. Earliest start time and PE idle time are

determined for the selected task by following the equation set (12). Data communication time is also calculated

by taking into account the location of the PE node in the topology for the current task and PEs of its predecessor

tasks. Finish time of the task is calculated by using its execution time and the communication delays. If the task

completes its execution within the pipeline period, it is removed from the ready task list. If the task cannot

complete within the pipeline period, more PEs are added to the system to reduce the pipeline period as described

next. A pseudo code given below illustrates the scheduling process employed at this stage of co-synthesis.

READY_TASK = Task0; // Initiailze the ready task list
// Continue while there is a task to be scheduled
WHILE (TaskR = GetReadyTask()) {

 PE = GetTaskPE(TaskR); // Get PE where TaskR is allocated
 // Get time when all parents of TaskR finish execution, it is ‘0’ for a new pipeline stage.
 Eearliest_Start_Time = GetEarliestStartTime(TaskR);
 // Time when PE finishes executing tasks allocated before ‘TaskR’
 PE_IDLE_TIME = GetPEIdleTime(PE);
 // Time to transfer the data from parent tasks including
 // the delay due to extra hops in the regular topology
 COMM_TIME = GetDataXfrTime (PE, TaskR);
 // Time taken by ‘TaskR’ to complete its execution on ‘PE’
 EXEC_TIME = GetTaskExecTime(PE, TaskR);
 // Time when ‘TaskR’ finishes its execution on ‘PE’
 FINISH_TIME = GetTaskFinishTime(TaskR, MAX(Eearliest_Start_Time,

 PE_IDLE_TIME), COMM_TIME, EXEC_TIME);
 IF (FINISH_TIME > TPERIOD) RETURN ; //Add a new PE or Pipeline Stage
 UpdateReadyTasks();

} // while

3.3. Pipeline Period Reduction

Communication delays introduced by the topology mapping can terminate the scheduling phase

unsuccessfully. In that case, additional PEs are added to the system so that tasks can complete their execution

within the pipeline period constraint. Pipeline period can be reduced by the maximum violation time; however

other tasks may not violate the pipeline period with the same amount and this may redundantly add more PEs in

the system. Moreover, all pipeline stages do not have the same time period as tasks in some pipeline stages

complete earlier than the pipeline period. Therefore reducing the period by maximum violation time can result in

Page 16/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

expensive system. We employ an iterative period reduction mechanism where period is reduced by a smaller

amount every time the scheduling phase fails. The reduced pipeline period is determined by employing the

topology overhead (OverheadTOP). The reduced pipeline period can also be related to the number of missing

communication links in the regular topology as compared to the irregular topology. For constants K1 and K2,

the pipeline time period can be estimated by using equation (20). The pipeline period can also be reduced by a

constant factor of 10% to 50% instead of employing the equation given below.

TPeriod (Reduced) = TPeriod − (K1 × OverheadTOP) (K2 × LinksM) (20)

where OverheadTOP is associated with the selected topology.
LinksM is the number of missing communication links for the regular topology.

The application task graph is re-cosynthesized by employing the reduced pipeline period to generate a new

irregular topology by following the first phase of the cosynthesis methodology. The new irregular topology is

mapped to the regular interconnection structure meeting the pipelined period constraints as described in this

section. When all the tasks are scheduled within the timing constraint, the algorithm terminates successfully

otherwise pipeline period is further reduced and the same process is repeated. In case, any of the regular

topologies does not satisfy the hardware area and pipeline period constraints, the irregular architecture generated

in the first phase can also be considered for system implementation.

4. ASSUMPTIONS, LIMITATIONS AND COMPLEXITY OF CO-SYNTHEIS METHODOLOGY

The inter-PE communication structure, we are assuming in our co-synthesis methodology has also been

advocated for Network-on-Chip [19]. This communication structure is also suitable for MPSoCs, where

communication occurs between master and slave interface of the PE nodes. A PE node contains a simple

wormhole switch/router with equal number of input and output ports and its hardware area is assumed to be part

of the node. The PE node also contains a local memory addressing the buffering requirements for pipelining and

communication. Software and hardware PEs access the communication network using a Network Interface (NI),

which perform packetization and de-packetization. It is assumed that a PE will make use of two network

interfaces, the master and slave.

We have assumed packet switched communication with static wormhole routing where route tables are

embedded in the header flits of each packet. These features ensure that the inter-PE communication system

components are simple, and switches/router will require small hardware area. Wormhole switching ensures that

the buffering requirement of each switch is small, where HW space is at a premium [30]. In addition, no virtual

channel support is assumed, and deadlock-free operation is ensured through the topology and route selection.

The switches/routers have the sole role of transferring data through the network. Each switch is composed of a

fixed number of ports, where each port consists of an input port and corresponding output port. The point-to-

point links between PEs are composed of two unidirectional channels, which together make up a link. Switches

are assumed to be capable of performing arbitration and data forwarding independently for every output port. It

Page 17/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

means that each output port has its own dedicated arbitration and forwarding unit. The arbitration method

impacts the perceived performance of each PE node in the system. However, we are not addressing these

features in our co-synthesis framework and it will be considered in future system generation tools.

The irregular topology generated by the first phase of co-synthesis is unique in the sense that the PEs

requiring any application data transfer are directly connected. In this way, there is no communication-link

conflicts for the 1st phase of co-synthesis as there are dedicated links between communicating PEs. Moreover,

inter-task communication delays don’t have any significant effect. These delays play a significant role in the 2nd

phase of co-synthesis when a regular topology is mapped and there may be indirect connection (multiple hop)

between some communicating PEs.

The co-synthesis approach describes in the previous sections employs a greedy heuristic to explore the

design space of target system architecture. The co-synthesis begins with a single SW-PE system and adds PEs to

the system iteratively to meet the system timing and HW area constraints. The order and type of PE selection for

addition to the target system can affect the overall system architecture. PE selection strategy is critical for the

generation of an efficient and economical system. An unbefitting PE addition to the system can produce an

expensive system that may not meet the timing and HW area constraints. The PE selection mechanism

employed by the co-synthesis methodology is rigorous as it selects the heuristically best available PE in terms of

performance and cost. However, there is a remote possibility that this process can lead to unfeasible solution. To

cater for this rare situation, a remedy is incorporated that can remove any slow and inefficient SW-PE from the

target system as discussed in section 2.2. However, when to remove a slow PE from the target system is a

significant point that has not been considered. For the presented co-synthesis approach, slow and inefficient

SW-PEs are removed when number of PEs in the target system become equal to the number of application tasks

and no further PE can be added to the system. There is a possibility that if inefficient PEs are removed earlier, a

proficient architecture can be produced. A user-defined parameter, k weighs the cost and performance factors for

the target system. This parameter is employed in the PE selection step of co-synthesis and user can vary and

tune this weighing factor, k in equation (8) to produce feasible solution for an application task graph.

Another important heuristic employed during regular topology mapping is the pipeline period reduction in

the 2nd phase of co-synthesis. The pipeline period reduction is not required for most of the real and artificially

generated applications as presented in the experimental results. The need for pipeline period reduction arises

when the communication delay among the PEs hosting the communicating tasks results in a task finish time that

exceed the pipeline period constraint. When this condition occurs, the co-synthesis approach can opt for a

number of alternatives. Two of the options that has been adopted in our co-synthesis approach is to reduce the

pipeline period and re-cosynthesize the application or look for another regular topology that meets the pipeline

period constraint. Another option that has not been employed in our co-synthesis methodology is to re-map the

regular topology in such a way that the pipeline time period constraint is not violated. Even one can opt for the

Page 18/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

last option and employ a complex topology mapping mechanism in the first place, however, it will not guarantee

to meet the pipeline period constraints.

The complexity of the co-synthesis methodology can be evaluated by considering the individual steps of its

both phases. The main parameters to be considered are the number of tasks (n) of the application task graph,

number of different types of PEs (ma) in the PE library and number of PEs (mb) in the current target system.

The co-synthesis starts with one SW-PE in the target system and PE selection step adds PEs to the target system

one by one. The target system can have at the most ‘n’ number of PEs where mb ≤ n. The PE selection

parameter (PESELECT) is calculated for ‘ma’ different types of PEs and its complexity will be in the order of

O(ma). The PE selection computation for each PE considered for addition to the system can be roughly

estimated from equations (1) to (5), which is in the order of O(n×mb). The co-synthesis methodology separates

the PE selection step from task allocation and scheduling. Task allocation and scheduling involves the priority

assignment for ‘n‘ tasks and its order of computation is at the most O(n×mb). Similarly, the start and finish time

calculations for all the tasks can be approximated in the order of O(n×mp). Where ‘mp’ is the average number

of PEs in the system that execute the predecessor tasks for each application task. In this way, the complexity of

the first phase of co-synthesis for an ‘n’ node application task graph, which involves most of the computation

can be approximated by equation (21).

Complexity for the 1st phase of co-synthesis = O(ma × [2(n × mb) + (n × mp)]) (21)

The 2nd phase of co-synthesis has three main steps including regular topology template generation, mapping

of irregular architecture to regular topology and rescheduling to meet the pipelined period constraint. The

complexity of topology template generation depends on the number of PEs in the system, which are equal to

‘mb’. In the case of topology mapping, neighbor traffic is calculated for each PE in the target system for its

allocation to neighbor nodes of the topology and its order of computation can be estimated as O(mb×mb). It may

be adjusted for different regular topologies as these topologies have different number of neighbors. The

rescheduling in the 2nd phase is not as complex as of 1st phase because task allocation performed in the 1st phase

is not disturbed. The additional delay of communication due to multiple hops for the regular topology is added

to task finish time. Therefore, for an ‘n’ task application task graph, the order of computation for rescheduling

can be approximated as O(n×mp). As before, mp is the average number of PEs in the system where predecessor

tasks are allocated for each application task (n). It is also worth mentioning that ‘mp’ is much smaller than the

total number of PEs (mb) in the target system. Pipeline period reduction option in the 2nd phase of co-synthesis

is an expensive option and it has been rarely used for the applications presented next. Our algorithm first looks

for alternative regular topologies that do not require any pipeline period reduction.

Page 19/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

5. EXPERIMENTAL RESULTS

5.1. MPEG Encoder System Generation

MPEG encoder application is used to test and verify our co-synthesis methodology. MPEG video encoding

standard employs block-based motion compensation to reduce temporal redundancies and DCT (discrete cosine

transform) based compression for spatial redundancies [31]. It produces three types of coded frames known as I-

frames (intra-coded frames), P-frames (predictively-coded frames) and B-frames (bi-directional predictively

coded frames). MPEG encoder is specified as a data-flow task graph shown in Fig. 6. It is a coarse-grain task

graph consisting of 21 nodes with each node representing a block of computation. Numbers at the edges indicate

the amount of data transfer among tasks in bytes for each frame of the video sequence. The video sequence is

assumed to be in RGB format where ‘Initialize’ task performs initialization and maintains a state machine to

determine the coding type (I, P or B) required for the current frame. ‘YCbCr Conversion’ task converts the

current image block and reference images (B and P frames) from RGB to YCbCr format. ‘Sub-Sample’ task

performs sub-sampling of colour difference components (Cb and Cr) for the block of current image. ‘Split Fwd

Ref Image’ and ‘Split Bwd Ref Image’ tasks split the forward and backward reference images into four

overlapping regions to perform motion vector search over these regions concurrently. FS1-FS4 and BS1-BS4

tasks perform the motion vector search over forward and backward reference images respectively. ‘Fwd Motion

Vector’ and ‘Bwd Motion Vector’ tasks select the best forward and backward motion vectors respectively.

‘Interpolate’ task interpolates the forward and backward motion vectors for bi-directionally coded frames. DCT

task calculates discrete cosine transform for an image block or motion-predication error block. ‘Quantize’ task

performs quantization and ‘DCAC Coding’ task codes the dc and ac components of quantized discrete cosine

transformed block. ‘Entropy Encode’ task performs Huffman encoding and ‘Finalize’ task packs the Huffman-

coded symbols into a compressed bit stream.

The co-synthesis approach assumes that execution time of task for each PE is available. For HW-PEs, this

information can be obtained manually or by using other techniques [32]. Software execution time for these tasks

is calculated by executing each task for two different variants of Nios-II CPU, one standard Nios-II PE and the

other with dedicated hardware multiplier. Motion vector search, DCT, quantization and DC/AC Coding tasks

are also implemented as dedicated hardware modules. Each of these tasks has been implemented in Verilog and

synthesized for Altera’s Stratix FPGA. Execution time is acquired in terms of clock cycles required to complete

the task. The hardware area cost associated with each PE (SW as well as HW PEs) is the number of logic

elements (LEs) needed to implement it on an Altera Stratix FPGA. Table 2a lists the hardware area of PEs in

terms of LEs, while worst execution times for all the tasks for each PE are listed in Table 2b. The execution

times are listed in terms of clock cycles where SW-PEs (Nios-II CPU) as well as HW-PEs execute at 50MHz

clock. These values of HW area in LEs and execution time in clock cycles are the actual and real values

obtained by implementing all the tasks both in either in software, hardware or in both.

Page 20/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

MPEG encoder task graph along with task execution times and HW area (for each PE) is fed to the co-

synthesis algorithm. A range of constraints is also used to obtain a number of target systems. The co-synthesis

algorithm produces a regular system topology consisting of heterogeneous PEs and a pipelined schedule for the

tasks. Main parameters of the output consist of HW area (cost) of the system, number of PEs, system pipeline

period and number of pipeline stages created by the co-synthesis methodology. The algorithm is executed for

time period constraints varying from 6.5 x106⇒172x106 clock cycles. The constraints for HW area ranges from

4000 to 38000 logic elements. The lower hardware area constraint can be estimated by assuming that the task

graph can be implemented on one SW PE, and in this particular case it may be a Nios-II CPU having 3662 logic

elements.

TABLE 2 (a) PEs Library Info for MPEG Encoder

Name Description Type Cost
(area)

NIOS_MUL Nios CPU with Multiplier SW 4065
NIOS Nios CPU SW 3662

FWD/BWD MVS _ENG Motion Vector Search Core HW 615
DCT_ENG DCT Core HW 1008

QUANT_ENG Quantization Core HW 712
DC/AC_ENG DC AC Coding Core HW 453

 TABLE 2 (b) Task Execution Times for MPEG Encoder

Execution Time (Cycles)
Task Software

NIOS_MUL
Software

NIOS
Hardware

Initialize 1194178 1245890 -
YCbCr-Conversion 6141804 11261292 -

SubSample 122539 199147 -
Split Fwd Ref Image 1338842 1338842 -
Split Bwd Ref Image 1338842 1338842 -

FS1-FS4 19983314 20025208 131524
BS1-BS4 19983314 20025208 131524

Fwd Motion Vector 52161 90945 -
Bwd Motion Vector 52161 90945 -

Interpolate 149770 304906 -
DCT 377600 775136 936

Quantize 145537 260677 468
DCAC Coding 620181 620181 1214

Entropy Encoding 164918 242688 -
Finalize 256904 334876 -

The target system results produced by the co-synthesis algorithm are given in Table 3. Additional PEs are

integrated into the target-system as the time constraint becomes tighter. The pipeline stages also increase as the

system pipeline time-period decreases. The target system that meets the tightest constraint (6.5x106 cycles)

consists of seven SW-PEs and eleven HW-PEs and tasks execute in five pipeline stages. On the other extreme,

system corresponding to the slowest timing requirement is around 26 times slower and it consists of one

software-PE (NIOS_MUL). Another important characteristic of the resulting systems is the interconnection of

PEs in a regular topology. Table 4 provides the characteristic of the system for some representative test cases. It

Page 21/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

also illustrates the overhead involved in arranging the PEs to a particular topology as well as the number of

missing communication links in each topology as compared to the irregular topology. There is no extra PE

needed to map the system to the regular topology. Fig. 7 illustrates the design space exploration corresponding

to various test cases.

Initialize

YCbCr
Conversion

Sub-
Sample

Split Fwd
Ref Image

FS1 FS2 FS3 FS4

Fwd Motion
Vector

DCT

Quantize

DCAC
Coding

Entropy
Encode

Finalize

BS1 BS2 BS3 BS4

Split Bwd
Ref Image

Bwd Motion
Vector

Interpolate

4097 4097
257

8449

97 97 97 9797708 708 708 708 708 708708708 97 97 97

196

196 196

196 196
196 196

196

195 195

193

5

193

193

385

771

Fig. 6. MPEG Encoder Task Graph

It can be observed from the target system results that as the system timing constraints become tighter,

overhead and the number of missing links (LinksM) increase. For MPEG encoder, no extra PE was required and

our co-synthesis methodology produces various topologies for different constraints. Mesh topology has the

lowest overhead for test case 1, and target system consists of 18 PEs and five pipeline stages. Fig. 8 depicts an

irregular interconnection structure of PEs before they are mapped onto a regular topology. The regular topology

and corresponding schedule map for each task is depicted in Fig. 9. It provides the scheduling of all the tasks

along with the details of task allocation. The vertical axis of Fig. 9b lists the MPEG encoder tasks along with

their allocated PEs in the form of task_name(PE_name). Figures 10 and 11 provide similar details for the test

case 4, where PEs are arranged in a hypercube topology. Similarly, Figures 12 and 13 provide details for test

case 5, where a quad-tree topology is selected due to lower overhead.

Page 22/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

TABLE 3 Target Systems Generated for MPEG-Encoder

Constraints System Results Test
Case Time x106 Hardware

Area x103 Time x106 Hardware
Area x103 PEs

Pipeline
Stages

SW
PEs

HW
PEs

1 7 38 6.42 36.5 18 5 7 11
2 8 17 7.46 16.3 11 3 3 8
3 9 17 7.59 16.3 11 3 3 8
4 10 17 8.81 16.3 11 3 3 8
5 25 15 21.5 14.7 9 4 3 6
6 40 15 40 14.6 7 4 3 4
7 45 13 41.5 12.8 6 4 3 3
8 55 13 53.9 12.2 5 3 3 2
9 61 12 60.4 11.6 4 4 3 1
10 63 12 61.4 11.4 3 3 3 0
11 95 8.0 90.5 7.73 2 2 2 0
12 172 4.2 171.8 4.07 1 1 1 0

TABLE 4 Topology Information for MPEG-Encoder

Tree Topology Mesh Topology Hypercube
Test Case Time x106

Constraints OverheadTOP LinksM OverheadTOP LinksM OverheadTOP LinksM
Selected
Topology

1 7 24051 27 13037 18 14696 24 MESH
2 8 6201 15 7978 19 5394 15 H-CUBE
3 9 6201 15 7978 19 5394 15 H-CUBE
4 10 5946 16 9681 16 4017 13 H-CUBE
5 25 2034 9 7458 14 2647 9 TREE
6 40 2329 10 4746 12 2942 10 TREE
7 45 936 5 3163 7 1549 6 TREE
8 55 1880 6 2710 4 2295 5 TREE
9 61 2490 4 2905 3 2905 3 TREE

10 63 999 2 999 2 999 2 Any

Fig. 7. Design Space Exploration for MPEG Encoder

Page 23/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

NIOS_
MUL

NIOS_
MUL

NIOS

NIOS

MVS_
ENG1

MVS_
ENG3

MVS_
ENG2

MVS_
ENG4

NIOS

MVS_
ENG5

MVS_
ENG6

MVS_
ENG7

MVS_
ENG8

NIOS

DCT_
ENG

QNT_
ENG

DCAC
_ENG

NIOS

Fig. 8. Irregular PE Topology (Test case 1)

NIOS_
MUL NIOS

MVS_
ENG1

NIOS

NIOS_
MUL

MVS_
ENG3

MVS_
ENG5

MVS_
ENG6

NIOS

MVS_
ENG2

NIOS

DCT_
ENG

NIOS

MVS_
ENG4

QNT_
ENG

MVS_
ENG7

MVS_
ENG8

DCAC
_ENG

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Time (time units)

FINALIZE (NIOS4)

 ENTROPY_ENCODE (NIOS4)

 DC_AC_CODING (DCAC_ENG)

 QUANTIZE (QUANT_ENG)

 DCT (DCT_ENG)

 INTERPOLATE (NIOS2)

 BWD_MOTION_VECTOR (NIOS3)

 BS4 (MVS_ENG8)

 BS3 (MVS_ENG7)

 BS2 (MVS_ENG6)

 BS1 (MVS_ENG5)

 FWD_MOTION_VECTOR (NIOS2)

 FS4 (MVS_ENG4)

 FS3 (MVS_ENG3)

 FS2 (MVS_ENG2)

 FS1 (MVS_ENG1)

 SPLIT_BWD_RI (NIOS1)

 SPLIT_FWD_RI (NIOS0)

 SUBSAMPLE (NIOS_MUL1)

 YCBCR_CONVERT (NIOS_MUL1)

 INITIALIZE (NIOS_MUL0)

(a)

(b)
Fig. 9. (a) MPEG Encoder PEs Arranged as Mesh (b) PE Schedule for the Mesh

MVS_
ENG1

MVS_
ENG2

MVS_
ENG3

MVS_
ENG4

MVS_
ENG5

MVS_
ENG8

MVS_
ENG6

MVS_
ENG7

NIOS
_MUL

NIOS
NIOS

Fig. 10. Irregular PE Topology (Test case 4)

Page 24/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

NIOS
_MUL

MVS_
ENG5

MVS_
ENG1

MVS_
ENG2

MVS_
ENG8NIOS

MVS_
ENG3

MVS_
ENG4

MVS_
ENG6

NIOS

MVS_
ENG7

(a)

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Time (time units)

FINALIZE (NIOS1)

 ENTROPY_ENCODE (NIOS1)

 DC_AC_CODING (NIOS1)

 QUANTIZE (NIOS1)

 DCT (NIOS1)

 INTERPOLATE (NIOS1)

 BWD_MOTION_VECTOR (NIOS1)

 BS4 (MVS_ENG8)

 BS3 (MVS_ENG7)

 BS2 (MVS_ENG6)

 BS1 (MVS_ENG5)

 FWD_MOTION_VECTOR (NIOS1)

 FS4 (MVS_ENG4)

 FS3 (MVS_ENG3)

 FS2 (MVS_ENG2)

 FS1 (MVS_ENG1)

 SPLIT_BWD_RI (NIOS0)

 SPLIT_FWD_RI (NIOS_MUL0)

 SUBSAMPLE (NIOS1)

 YCBCR_CONVERT (NIOS_MUL0)

 INITIALIZE (NIOS_MUL0)

(b)

Fig. 11 (a) MPEG Encoder PEs arranged as Hypercube (b) PE Schedule for the Hypercube

NIOS

MVS_
ENG3

NIOSNIOS

MVS_
ENG5

MVS_
ENG6

MVS_
ENG4

MVS_
ENG1

NVS_
ENG2

Fig. 12. Irregular PE Topology (Test case 5)

NIOS

NIOS MVS_
ENG5

MVS_
ENG6

MVS_
ENG4

NIOS
MVS_
ENG1

NVS_
ENG2

MVS_
ENG3

 (a)

0 5000000 10000000 15000000 20000000 2500000

Time (time units)

0

FINALIZE (NIOS0)

 ENTROPY_ENCODE (NIOS0)

 DC_AC_CODING (NIOS0)

 QUANTIZE (NIOS0)

 DCT (NIOS0)

 INTERPOLATE (NIOS0)

BWD_MOTION_VECTOR (NIOS1)

 BS4 (NIOS3)

 BS3 (NIOS1)

 BS2 (MVS_ENG6)

 BS1 (MVS_ENG5)

 FWD_MOTION_VECTOR (NIOS0)

 FS4 (MVS_ENG4)

 FS3 (MVS_ENG3)

 FS2 (MVS_ENG2)

 FS1 (MVS_ENG1)

 SPLIT_BWD_RI (NIOS1)

 SPLIT_FWD_RI (NIOS0)

 SUBSAMPLE (NIOS3)

 YCBCR_CONVERT (NIOS0)

 INITIALIZE (NIOS0)

(b)

Fig. 13 (a) MPEG Encoder PEs Arranged as Quad-Tree (b) PE Schedule for the Quad-Tree

We have conducted some additional experiments to compare the performance of our co-synthesis approach

with the iterative co-synthesis technique proposed by Wolf [12]. Wolf’s co-synthesis method is implemented to

design the same MPEG encoder system. The hardware area constraints are relaxed for the Wolf’s approach by

keeping the same timing constraints. The MPEG encoder system generated by Wolf’s approach is compared

Page 25/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

with the system generated by our methodology and the results are presented in Table 5 for both approaches. Our

co-synthesis approach generates regular topology based efficient systems for tighter timing constraints due to

pipelined task allocation and scheduling. Moreover, it produces regular topology architectures in contrast to

irregular structures generated by Wolf’s approach. Generally, irregular topology architecture for the same target

system has lower hardware area as compared to regular structures generated by our methodology. In spite of

regular topology systems generated, our method outperforms the Wolf’s approach for large scale multiple PE

systems (> 8 PEs). Regular topology structures can also use a number of off-the-shelf IPs for efficient and fault-

tolerant inter-PE communication structures. Our co-synthesis method also outperforms for large scale embedded

systems consisting of 50⇒400 tasks in practical co-synthesis execution times as presented in the following

section.

TABLE 5 Comparative Systems Generated by Wolf’s Co-synthesis Approach

No.
Constraints Wolf’s Co-synthesis

Approach
Our Co-synthesis

Approach

 Time x106 HW Area x103 PEs HW Area x103 PEs HW Area x103
1 7 42 19 41.6 18 36.5
2 8 20 12 19.96 11 16.3
3 10 17 11 16.3 11 16.3
4 25 15 10 14.7 9 14.7
5 40 15 7 14.6 7 14.6
6 45 13 6 12.8 6 12.8
7 55 13 6 12.8 5 12.2
8 61 12 4 11.6 4 11.6
9 63 12 3 11.4 3 11.4

5.2. Co-synthesis of Artificially Generated Task Graphs

 A number of experiments are also conducted by performing co-synthesis on random task graphs that

provide further insight about the regular topology overhead as well as the benefits of pipelined task allocation.

These graphs are generated by randomly varying the number of predecessors and successors for each task, depth

of the task graph and amount of data transferred among tasks. An in-house tool is used for generating these task

graphs. Successors and predecessors for a task are varied from 2 to 20. Number of PEs available for the system

are also randomly selected and both hardware and software PEs are considered. Task execution time depends on

the type of PE. Large-scale random task graphs are generated to conduct the experiments. Results for five

different types of graphs created having 50⇒400 nodes are presented here. Multiple graphs for each type are

used and each task graph is then tested for a range of HW area and timing constraints. Timing constraints are

varied from 25000 to 70000 time units for different task graphs (graph ‘a’ to ‘e’) of 50 nodes each. Area

constraints range from 1800 to 16500 area units. Various regular topologies are considered for different cases

and it can be concluded from our experiments that overhead for regular topologies increases with smaller

pipeline period.

Page 26/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

Table 6 lists the target systems’ pipeline period time, hardware area with the number of PEs and pipeline

stages for 50 node task graphs while Table 7 provides the topology information. It can be observed from the

results that for tighter timing constraints extra PEs are required as number of missing links and inter-PE

communication increase. It is also observed that number of missing links increase for tighter constraints and

with the larger number of tasks in the graph. For tighter constraints, extra PEs are required to cater for possible

delays introduced by the regular topology mapping.

TABLE 6 Time and Area Results for 50 Node Task Graphs

Constraints Results Task
Graph Time Area System Time System

Area PEs Pipeline
Stages

SW
PEs

HW
PEs

a 25000 8500 22574 8492 8 8 6 2
a 40000 5300 30884 5268 4 4 4 0
a 50000 2700 46840 2634 2 2 2 0
a 70000 1400 66795 1317 1 1 1 0
b 25000 14200 24851 14131 8 8 6 2
b 30000 9600 27336 9529 6 7 4 2
b 40000 7000 35579 6903 3 3 3 0
b 50000 5000 40417 4602 2 2 2 0
c 25000 16500 23594 16456 8 7 6 2
c 30000 11000 29092 10742 5 5 4 1
c 35000 8100 33442 8031 3 3 3 0
c 40000 5500 39606 5354 2 2 2 0
d 25000 11500 24144 11390 10 6 6 4
d 30000 9600 28298 9512 8 5 5 3
d 40000 5300 38595 5232 3 3 3 0
d 45000 3500 43813 3488 2 2 2 0
e 30000 11000 26350 10075 5 6 5 0
e 40000 8100 34844 8060 4 4 4 0
e 45000 6100 42934 6045 3 3 3 0
e 50000 4100 49468 4030 2 2 2 0

TABLE 7 Topology Information for 50 Node Task Graphs

Tree Topology Mesh Topology Hypercube
Topology Extra Graph Time

Constraint OverheadTOP LinksM OverheadTOP LinksM OverheadTOP LinksM

Selected
Topology

1PEs
a 25000 30573 30 29057 26 17419 24 HYPERCUBE 2
a 40000 15117 6 7475 4 7475 4 HYPERCUBE 1
b 25000 21260 27 23021 22 17601 23 HYPERCUBE 1
b 30000 9834 14 10866 13 9452 11 HYPERCUBE 0
b 40000 6755 2 6755 2 6755 2 TREE 0
c 25000 28498 29 25701 26 17140 24 HYPERCUBE 3
c 30000 13322 9 13210 7 13227 8 MESH 2
c 35000 7341 2 7341 2 7341 2 TREE 0
d 25000 27041 37 31235 33 22872 30 HYPERCUBE 2
d 30000 21888 22 24441 18 20920 18 HYPERCUBE 1
d 40000 8756 2 8756 2 8756 2 TREE 0
e 30000 12597 12 17438 10 13475 10 TREE 0
e 40000 9450 6 7626 4 7626 4 HYPERCUBE 1
e 45000 5958 2 5958 2 5958 2 TREE 0

Page 27/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

5.3. Co-synthesis Algorithm Execution Time

Time taken by the co-synthesis approach for a multiprocessor embedded architecture is an important

parameter for its effectiveness. To study and investigate this effect, execution time of the algorithm for each test

case (a, b, c, d and e) is recorded with varying number of tasks (50⇒400 nodes). The co-synthesis algorithm is

of iterative nature and its execution time does not solely depend on the number of tasks. Tighter hardware and

timing constraints require a large number of iterations. Fig. 14 presents the minimum, average and maximum

execution times for a wide range of task graphs. Our co-synthesis approach is able to provide final output with

in 2.5 seconds for the largest task graphs (400 tasks). Worst-case execution time to co-synthesize the application

task graphs with 100 nodes is lower than 500 milliseconds when executed on a Pentium-IV based workstation.

This clearly shows that the cosynthesis methodology is practical and applicable to various types of applications.

For example Chatha’s co-synthesis algorithm took 30 minutes for a 30-node task graph when executed on a

comparable working station [17]. We have also executed the Wolf’s co-synthesis technique [12] for 50 to 400

node task graphs and its execution time is in the range of hundreds of seconds as compared to around two

seconds for our co-synthesis approach.

Fig. 14. Co-synthesis Algorithm Execution Time

6. CONCLUSIONS

A co-synthesis approach for multiprocessor embedded architectures is presented in this paper. The application

is specified as an acyclic task graph and the co-synthesis algorithm has access to a library of PEs with the

profiling information for each task. The timing and hardware area constraints are also fed to the algorithm. The

co-synthesis methodology selects suitable PEs and creates pipeline stages for task execution. It performs co-

synthesis by adding PEs to the target system in an iterative manner. The novel features of our approach are the

Page 28/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

creation of pipeline stages during task allocation and scheduling as well as producing regular-topology

architectures including hypercube, mesh, trees, etc. The initial irregular architecture generated by our approach

can be considered for application specific MPSoC architectures. Our co-synthesis formulation can be also be

extended to include shared memory multiple busses communication networks rather than a point-to-point

communication network employed in this paper.

 Different experiments have been conducted to demonstrate the efficacy of our approach. In the first

experiment, MPEG encoder architecture is produced, which is tested with a wide range of timing and area

constraints and our co-synthesis technique is able to generate pipelined architecture as well as PE schedules in

less than a few seconds. Other experiments are also conducted for embedded system presented by large-size

random task graphs consisting of 50 to 400 tasks. The methodology assumes coarse-grained task graphs,

therefore graph with 400 tasks represent large-scale and complex embedded applications. Our co-synthesis

algorithm is capable of generating efficient and sub-optimal embedded architectures. It is also compared with

the Wolf’s architectural co-synthesis technique [12] and for large-scale embedded systems, our co-synthesis

framework produces better results in terms of regular topology and economical systems.

ACKNOWLEDGMENT

This research is partly supported by a grant from NSERC Canada. The authors would like to acknowledge the
support from CMC in terms of co-design tools and prototyping systems. The authors appreciate the constructive
comments from anonymous reviewers that have improved the paper.

REFERENCES

[1] G. De Micheli, “Computer aided hardware-software co-design,” IEEE Micro, vol. 14 pp. 10-16, 1994.
[2] T. Benner, R. Ernst, D. Herrmann, T. Scholz and W. Ye, “The COSYMA system,” in: HW/SW-Codesign:

Principles and Practice, Kluwer Academic Publishers, Boston, 1997.
[3] D. Gajski, F. Vahid, S. Narayan and J. Gong, “SpecSyn: An environment supporting the specify-explore-

refine paradigm for hardware/software system design,” IEEE Tran. on Very Large Scale Integration
Systems, vol. 6, pp. 84-100, 1998.

[4] F. Balarin, A. Sangiovanni-Vincentelli, K. Suzuki, P.D. Giusto, A. Jurecska, C. Passerone, E. Sentovich,
B. Taabbara, M. Chiodo, H. Hsieh and L. Lavagno, “The POLIS approach,” in: HW/SW-Codesign of
Embedded Systems, Kluwer Academic Publishers, Norwell MS, 1997.

[5] T.Y. Yen and W. Wolf, “Performance estimation for real-time distributed embedded systems,” IEEE
Trans. on Parallel and Distributed Systems, vol. 9, pp. 1125-1136, 1998.

[6] L. Cai and D. Gajski, Transaction level modeling: an overview, in: Proc. IEEE/ACM/IFIP Int. Conf.
Hardware Software Codesign and System, October 2003, pp. 19-24.

[7] K. Van Rompaey, D. Verkest, I. Bolsens and H. De Man, “CoWare–a design environment for
heterogeneous hardware/software systems,” in: Proc. European Design Automation Conference, September
1996, pp. 252-257.

[8] S. Vercauteren, B. Lin and H. De Man, “Constructing application-specific heterogeneous embedded
architectures from custom hardware/software applications,” in: Proc. Design Automation Conference, Las
Vegas, NV, June 1996, pp. 521-526.

[9] S. Prakash and A.C. Parker, “SOS: Synthesis of application specific heterogeneous multiprocessor
systems,” Journal of Parallel and Distributed Computing, vol. 16, pp. 338-351, 1992.

[10] B.P. Dave, G. Lakshminarayana and N. K. Jha, “COSYN: Hardware-software co-synthesis of
heterogeneous distributed embedded systems,” IEEE Tran. on VLSI Systems, vol. 7, pp. 92-104, 1999.

Page 29/30

An International Journal Design Automation for Embedded Systems Vol. 12, No. 4, pp. 313-343, December 2008

[11] B.P. Dave and N.K. Jha, “COHRA: Hardware-software cosynthesis of hierarchical heterogeneous
distributed embedded systems,” IEEE Tran. on Computer Aided Design of Integrated Circuits and
Systems, vol. 17, pp. 900-919, 1998.

[12] W. Wolf, “An architectural co-synthesis algorithm for distributed, embedded computing systems, IEEE
Tran. on VLSI Systems,” vol. 5, pp. 218-229, 1997.

[13] S. Banerjee, T. Hamada, P.M. Chau and R.D. Fellman, “Macro pipelining based scheduling on high
performance heterogeneous multiprocessor systems,” IEEE Tran. on Signal Processing, vol. 43, pp. 1468-
1484, 1995.

[14] Yu-Kwong Kwok and I. Ahmad, “Dynamic critical-path scheduling: an effective technique for allocating
task graphs to multiprocessors,” IEEE Tran. on Parallel and Distributed Systems, vol. 7, pp. 506-521,
1996.

[15] P.D. Hoang and J.M. Rabaey, “Scheduling of DSP programs onto multiprocessors for maximum
throughput,” IEEE Tran. on Signal Processing, vol. 41, pp. 2225-2235, 1993.

[16] S. Bakshi and, D.D. Gajski, Partitioning and pipelining for performance constrained hardware/software
systems,” IEEE Trans. on Very Large Scale Integration Systems, vol. 7, pp. 419-432, 1999.

[17] K.S. Chatha and R. Vemuri, “Hardware-software partitioning and pipelined scheduling of transformative
applications,” IEEE Tran. on Very Large Scale Integration Systems, vol. 10, pp. 193-208, 2002.

[18] A. Jerraya and W. Wolf, Multiprocessor System-on-Chips, Morgan Kaufman Publishers, 2005.
[19] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-on-chip,” ACM

Computing Surveys, vol. 28 pp. 1-51, 2006.
[20] D. Bertozzi, A. Jalabert, S. Murali, R., Tamhankar, L. Benini and G. De Micheli, “NoC synthesis flow for

customized domain specific multiprocessor systems-on-chip,” IEEE Tran. on Parallel and Distributed
Systems, vol. 16, pp. 113-129, 2005.

[21] S. Murali and G. De Micheli, “SUNMAP: A tool for automatic topology selection and generation for
NoCs,” in Proc. Design Automation Conf., San Diego, California, 2004, pp. 914-919

[22] A. Jalabert, S. Murali, L. Benini and G. De Micheli, “XpipesCompiler: a tool for instantiating application
specific network-on-chip,” in Proc. Design Automation and Test in Europe Conf., 2004, pp. 884-889.

[23] R. Duncan, “A survey of parallel computer architectures,” IEEE Computer vol. 23, pp. 5-16, 1990.
[24] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,” IEEE Computer vol. 35, pp. 70-

78, 2002.
[25] D. Wiklund and D. Liu, “SoCBUS: switched network on chip for hard real time embedded systems,” in

Proc. Int. Symp. Parallel and Distributed Processing, 2003, pp. 78-85
[26] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched interconnections,” in Proc.

Design Automation Test Europe Conf., 2000, pp. 250-256.
[27] F. Karim, A. Nguyen, S. Dey and R. Rao, “On-chip communication architecture for OC-768 network

processors,” in Proc. Design Automation Conf., 2001, pp. 678-683.
[28] G.N. Khan , J. Levman and J. Alirezai, Hardware-software co-Synthesis of fault tolerant heterogeneous

embedded computer systems,” in Proc. IEEE Canadian Conf on Electrical and Computer Engineering,
Ottawa, May 2006.

[29] G. N. Khan and U. Ahmed, “Hardware-software cosynthesis of multiprocessor embedded architectures,” in
Proc. 4th IEEE Int. Symp. Embedded Computing. (AINA-Workshops) Niagara Falls, Canada, pp. 804-810,
21-23 May 2007.

[30] K. Goossens, J. Dielissen and A. Radulescu, “Aethereal network on chip: Concepts, architectures, and
implementations,” IEEE Design and Test of Computers, vol. 22, pp. 414-421, 2005.

[31] D. Le Gall, “MPEG: A video compression standard for multimedia applications,” Communications of the
ACM vol. 34, pp. 46-58, 1991.

[32] J. Henkel and R. Ernst, “High-level estimation techniques for usage in hardware/software co-design,” in
Proc. Asia South Pacific Design Automation Conf., Yokohama, Japan, 1998, pp. 353-360.

Page 30/30

	Introduction
	Cosynthesis Of Multiprocessor Embedded Architectures
	2.1. Overview
	2.2. Processing Element Selection for Addition to the System
	2.3. Pipelined Task Allocation and Scheduling

	Regular Interconnection Structure
	3.1. Topology Generation and Addressing
	
	FOR node = 0 to SYS_PE -1 {

	3.2. Task Scheduling
	3.3. Pipeline Period Reduction

	Assumptions, Limitations and Complexity of Co-syntheis Methodology
	Experimental Results
	5.1. MPEG Encoder System Generation
	5.2. Co-synthesis of Artificially Generated Task Graphs
	5.3. Co-synthesis Algorithm Execution Time

	6. Conclusions
	Acknowledgment

