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ABSTRACT

This thesis presents two new methods of image analysis, which 
have been applied to the problem of guiding an endoscope inside 
the human colon. In the human colon, there are two types of 
useful information: curved contours and darker regions.

The first method concerns contour extraction. Traditionally contours 
are extracted by detecting edge points, thresholding, and then 
linking them sequentially. While retaining the traditional approach, 
this new method departs from these techniques in a number o f 
ways. A simple edge detector is used to prepare an edge map. In 
contrast to normal detection methods, the weak edges are not 
removed because they may be a significant part of the contours. 
Instead an attempt is made to group them into short line segments 
by filtering on the basis of perceptual criteria. The grouping process 
is local, highly data directed, and it is implemented in parallel. Next 
the line segments are linked, perceptually and hierarchically, into 
contours. The method employs perceptual grouping in a unified 
way, relying on the bottom-up organisation of edge data. It has 
been tested experimentally on a number of endoscopic images and 
the results are very encouraging.

The second method is based on region extraction and introduces the 
use of variance in a pyramid structure for detecting coherent 
regions. The method has been extended for general purpose 
segmentation and tested on a variety of medical images including 
endoscopic colon images. The novel feature of both methods is their 
parallel implementation on a pyramid based computer architecture.

The regions and contours are represented in a new world and 
search space representation (QL-Tree) for navigational purposes. 
The QL-Tree representation consists of a series of planes 
represented by quadtrees and it can be incrementally constructed 
by integrating information from a sequence of images. Ease of 
updating, access, and efficient search make this representation 
ideal for navigation.
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PREFACE

Machine vision is a field of research which has many goals and 
objectives. A primary goal has been to build a computer vision 
system that can provide information to general purpose robots 
about their surroundings in the same way as we receive 
information from our own visual system. The research described 
in this thesis takes an important step towards a similar but 
restricted goal of providing sensing capabilities for an automatic 
endoscope. The machine vision techniques that have been 
developed in the course of this research detect navigational 
landmarks for guiding the endoscope inside human colon. These 
landmarks are detected from monochrome colon images in the 
form of occluding contours formed by the inner colon muscles and 
darker regions which correspond to the deeper and obstacle free 
areas in the colon.

A second major goal of machine vision research is to provide a 
computational understanding of human vision. This research has 
many implications in understanding the human vision particularly 
in the area of perceptual organisation and the grouping 
phenomena of human vision studied in depth by the Gestalt 
psychologists. An attempt has also been made to relate this 
computational work to the relevant areas in the psychology of 
vision and neurophysiology. In Chapter 2, there is a review of the 
early visual data organisation in animal vision from the point of 
view of neurophysiology. The psychology of human vision is also 
explored, particularly in the area of perceptual organisation and 
grouping.

One of the most important conclusions arising from this research 
is that partial image segmentation, in terms of contour and region 
extraction, can commonly be achieved without having a 
knowledge of the scene and there is no need to assume a certain 
type or level of noise in the images. In Chapter 3 and 4, one of the
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segmentation methods developed during three years of this 
research is described. This method partitions images by detecting 
the boundary contours. Perceptual grouping plays a vital role by 
providing direct relations among two-dimensional features (edges, 
line segments etc.) of an image. These grouping processes are 
employed hierarchically to filter out image features due to noise 
and for extracting relevant contour structure. Their performance 
is compared with the existing techniques quantitatively and 
qualitatively. In Chapter 5, a second method to detect darker 
regions is presented. The dark region extraction is very closely 
related to region based image partitioning and the method has 
been shown to work well for general purpose image partitioning. 
It employs a variance-average pyramid representation. The 
grouping based on proximity and similarity in grey level is 
utilised for image partitioning. The hierarchical and parallel 
nature of these two visual processing techniques makes them 
applicable to real-time image analysis.

In Chapter 6, the endoscope navigation system is described in an 
effort to integrate our machine vision research with the 
navigation of endoscope. A new world and search space 
representation is proposed which can be constructed from the 
information provided by the vision system. In Chapter 7, some 
final conclusions are made and the overall research plan for 
endoscope navigation is presented.

The thesis can be easily divided into two main sections: contour 
extraction and region based image partitioning. After reading the 
first two chapters, the reader can approach these sections 
individually. For example, Chapter 5 can be read before Chapters 
3 and 4.
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C H A PTER  1

INTRODUCTION

1.1 Machine Vision and Endoscope Navigation

Computer vision deals with enabling the computer to understand 
the environment from visual information. How the information is 
processed and which intermediate representation is used to 
achieve ultimate understanding, are very significant factors in the 
overall structure of a vision system. The key ideas behind the 
development of a high performance computer vision system are 
its competence and structure. In contrast to many computing 
tasks, the performance of a vision system on an unseen set o f 
images cannot be guaranteed. The competence with which it w ill 
deal with the new information will depend in part on th e  
representations it uses to describe the world. The structure of a 
vision system is generally taken to be a sequence of levels of 
representation. One of the well known structures for computer 
vision was proposed by Marr [1976, 1982] in the form of a raw 
primal sketch for early visual processing, and a sketch at
the intermediate level of visual processing.

There is a lot of controversy over, whether the processing in a 
vision system should be data-driven or goal-driven. Normally 
early visual processing is data-driven while higher levels are 
controlled by goals and expectations. Intermediate levels are often 
a combination of goal-driven (top-down) and data-driven 
(bottom-up) operations, both to compensate errors and to avoid 
computational overload. Intermediate processes are divided 
between low and high level processing and they have received 
little attention from computer vision researchers until recently. 
Due to this lack of research, plenty of the work done on early
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processing is independent and difficult to integrate with the 
higher levels of the system.

Most of the vision systems can be categorised on the basis of their 
use which may be assembly (manufacturing), inspection, 
navigation, or recognition. The computer vision techniques 
described here have been developed as part of an autonomous 
guidance system for an endoscope which will enable the 
instrument to navigate inside the human colon. Navigation of the 
endoscope inside the human colon is a complex task. The colon is 
analogous to an unlit tunnel, closed at the far end, and with many 
bends, twists and pockets. The endoscope is like an articulated 
chain being pushed at the rear end. When it bears on the colon 
wall it will in some cases distort the shape of the colon, and 
produce paradoxical behaviour at the tip. The cross section of the 
colon is not uniform and can be completely collapsed in certain 
places, making the centre line difficult to see. The endoscope 
navigation is in no way similar to that of mobile robots or 
autonomous vehicles.

This is the first attempt at applying computer vision to the 
automation of endoscopy. The work is mainly directed towards 
colonoscopy, but the techniques are general enough to be used in 
most applications of endoscopy. Although the majority of 
endoscopes provide coloured images, all of the work presented in 
this thesis is based on grey level image analysis. Colour may well 
prove to be a useful property for guidance, however, it can 
increase the computing time required to process the image by a 
large factor. There is, as we shall see, plenty of useful information 
available in the grey scale images. As a first stage of the research, 
a detailed study on the application of computer vision in 
endoscopy has been carried out [Khan and Gillies 1987].

1.2 The Endoscope

The endoscope is a medical instrument used for observing the 
inner surfaces of the human body. It is typically used for
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d ia g n o s in g  d if fe r e n t  c o lo n  and upper g a s t r o in te s t in a l  d i s e a s e s  

in c lu d in g  ca n cer . M ore sp e c ia lise d  in stru m en ts are a lso  u sed  for  

o b se rv in g  and d ia g n o s in g  co n d it io n s  in  d ifferen t d iv is io n s  o f  t h e  

b ron ch u s and b ilia ry  d u cts. F ib r e sc o p e s  are th e  m o st c o m m o n ly  

u sed  instrum ents but n ext g en era tion  o f  e n d o sc o p e s , b a sed  on the  

u tilisa tio n  o f  a C C D  v id e o  ch ip  at the tip , h a v e  r e c e n t ly  b e e n  

in t r o d u c e d .

A  fib resco p e  c o n s is ts  o f  a head  w ith  e y e  p ie c e  and con tro l, and a 

f le x ib le  shaft w ith  a m an oeu vrab le tip (se e  F igure 1 .1 ). T he h e a r t  

o f  the sco p e  accom m od ates an op tica l sy stem  for  v ie w in g , c o n tr o l  

w ir es  for  tip  m o v e m e n t, and tw o  or m ore o p e r a t in g  c h a n n e ls

a llo w in g  p a ssa g e  o f  f le x ib le  in stru m en ts  such  as b io p sy  fo r c ep s . 

T he head o f  the sco p e  is  con n ected  to a unit con ta in in g  a c o ld  lig h t  

sou rce  and air and w ater su p p lie s . T h e  v id e o  e n d o s c o p e s  w h ic h  

h a v e  r ecen tly  b een  d e v e lo p e d  by m o st o f  the m an u factu rers are 

based  on C C D  v id e o  cam eras. T h ese  cam eras p la ce  an im a g e  sen sor  

at the fo ca l p lan e o f  the im a g e  form ation  len s in  the front portion  

o f  the cam era , and the d e tec ted  im a g e  data is  tra n sm itted  o v er  

w ir e s  to  th e  o u tp u t p o rtio n  o f  th e  sy ste m . In th is  w a y  th e

e n d o s c o p e  can  b e  c o n tr o lle d  by  lo o k in g  at th e  im a g e s  on  a 

m on itor , rather than lo o k in g  through the e y e  p ie c e  c o n t in u o u s ly  

during the w h o le  d ia g n o stic  p r o c ess . T he tip  o f  the instrum ent is  

c o n tr o lla b le  by  co n tro l w h e e ls  p r o v id in g  u p /d ow n  and l e f t / r i g h t  

tip  m o v em en t in  so m e  e n d o sc o p e s  or w ith  a jo y  s t ic k  in  o th ers, 

w h ile  the sh aft transm its the rotary m o v em en t to  the tip .

U s in g  a c o n v e n tio n a l e n d o sc o p e  for  c o lo n o s c o p y , th e  c o n su lta n t  

in se r ts  th e  e n d o sc o p e  by e st im a tin g  th e p o s it io n  o f  the c o lo n  

cen tre lin e , ca lled  the lum en , from  the shape o f  the c o lo n  m u scu la r  

cu rv es  and from  th e apparent d eep est reg ion  o f  the im a g e , w h ich  

he see s  e ither through the e y e  p ie c e  or on a T V  m onitor. H e th e n

steers  the tip  a p p r o p r ia te ly . T h is  ta sk  r e q u ir e s  s im u lta n e o u s

m o v e m e n t o f  tw o  co n tro l w h e e ls  in  ad d ition  to  p u sh  p u ll and

rota tion a l op eration s on the e n d o sc o p e  its e lf . C o n seq u en tly  a h ig h  

d eg ree  o f  sk ill is  required in  u tilis in g  the instrum ent.
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B io p s y  ch an n el

E y e p ie c e

S u c tio n  button

A ir /w a te r  b u tton

\> x
V \

\  \  
\  \  
#  /  

J  /

V 7 7
S h a ft  /

n

B en d in g  tip

L e f t / r ig h t

U p /d o w n
— T ip  co n tro ls

T o lig h t source

Figure 1.1: A typical  endoscope.

1.3 Endoscope Image Analysis

In the current g en era tio n  o f  e n d o sc o p e s , there is  o n ly  a s in g le  

cam era , and thus there is  no d irect m easu rem en t o f  depth  in the  

im a g e . T h e r e fo r e  d ep th  m u st b e  e s t im a te d  fr o m  th e  tw o -  

d im e n sio n a l in fo rm a tio n . In the fu tu re , depth  m ea su rem en t m ay  

b e  in corp ora ted  in to  the e n d o sc o p e , e ith er  by m ea n s o f  stereo
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v is io n  or by the in trod u ction  o f  a d ed ica ted  depth  sen so r  on the  

e n d o sc o p e  tip . T h ese  p o s s ib ilit ie s  are currently  b e in g  in v estig a ted , 

and m ay or m ay not prove fe a s ib le . S in ce , there is  o n ly  a rem ote  

c h a n ce  o f  u t il is in g  s te re o sc o p y  or d irect depth  m ea su rem en t for  

o b ta in in g  th r e e -d im e n s io n a l sh a p e , it  h a s b e e n  n e c e s s a r y  to  

in v e s t ig a te  o th er  tec h n iq u e s .

T ra d itio n a l m eth o d s b ased  on the u se  o f  a s in g le  cam era , for  

e x a m p le  sh a p e  fr o m  sh a d in g , are s t i l l  in s u f f i c i e n t ly  w e l l  

d e v e lo p e d  to be u sed  for n o isy  c o lo n  im a g es. M o reo v er , they  are 

far to o  e x p e n s iv e  in  p r o c ess in g  tim e to be u se fu l in  a rea l-tim e  

n a v ig a tio n  a p p lica tio n  and th ey  a lso  requ ire sp e c ia l illu m in a tio n  

arran gem en ts and other sh ap e co n stra in ts  w h ich  are n o t fe a s ib le  

at the current le v e l  o f  d e v e lo p m e n t o f  e n d o sc o p e s . S h ap e from  

cam era  m o tio n  is  another p o s s ib ility  w h ich  at fir st s ig h t appears  

to  be w orth  in v e s t ig a t in g . H o w e v e r , for  the t im e  b e in g , the  

p la n n e d  a u to m a tic  e n d o s c o p e  in se r t io n  w il l  o n ly  c o n tr o l the  

d irection  o f  the tip . T he push  p u ll and ro ta tion a l op eration s w ill  

s t ill  be carried  out by  the m ed ica l practitioner and the n av iga tion  

sy ste m  w ill  th erefore  have no  con tro l on  the forw ard , backw ard, 

or r o ta t io n a l m o v e m e n ts  o f  th e  in s tr u m en t tu b e  w h ic h  are  

tran sm itted  d ir e c t ly  to  the tip . It fo l lo w s  that the e x a c t  th ree-  

d im en sio n a l m o v em en t o f  the tip , w h ere  the cam era  is  e f fe c t iv e ly  

sited , is  not k n ow n . In addition  to that, the n on -r ig id  structure o f  

c o lo n  p resen ts  further d if f ic u lt ie s  for depth  e stim a tio n  u s in g  the  

cam era  m o tio n .

A  h ig h er  c o n f id e n c e  for  im a g e  a n a ly s is  can  be a c h ie v e d  by  

in tegra tin g  in form ation  from  a seq u en ce  o f  im a g e s , p ro v id in g  the  

a n a ly s is  is  ca rr ied  ou t s u f f ic ie n t ly  q u ick  to  e n su r e  that no  

su b sta n tia l c h a n g e s  o ccu r  in  th e  im a g e . T h is  m ea n s that the  

p r o c e ss in g  o f  the im a g e s  m u st b e  a c h ie v e d  in a fra c tio n  o f  a 

seco n d , and id e a lly  w ith in  the v id e o  fram e rate.

T he co lo n  is  illu m in ated  by a p o in t lik e , ligh t sou rce  at the tip o f  

the e n d o sc o p e  during d ia g n o sin g . S o m e e n d o sc o p e s  h a v e  m u ltip le  

l ig h t  so u rces  but th ey  are so  c lo s e  to each  o th er that for  a ll 

p ra ctica l p u rp o ses  a s in g le  p o in t lig h t  so u rce  can  be a ssu m ed .
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M oreover  the d ista n ce  betw een  the ob ject and lig h t sou rce  is  very  

sm a ll. U n d er  th e se  i l lu m in a t io n  c o n d it io n s  th e  c o lo n  su r fa c e s  

w h ich  are nearer to the lig h t source are m ore b righ tly  illu m in a ted  

than th e farther su r fa ces . T h ere fo re  in  m o st o f  the e n d o sc o p ic  

im a g e s  the d ark est area co rresp o n d s to the d e e p e st  and o b sta c le  

free  reg io n .

S e c o n d ly , the in n er w a lls  o f  a hum an c o lo n  con ta in  circu lar  r in gs  

o f  m u sc le . T h ese  rings are c lea r ly  d istin g u ish a b le  in  the e n d o sc o p e  

im a g e s  s in c e  th ey  form  o cc lu d in g  e d g e s . W hen  the e n d o sc o p e  is  

directed  a long  the centre lin e  o f  a straight sec tio n  o f  the c o lo n , the  

m u s c le  r in g s  ap p ear  as c lo s e d  c u r v e s  in  th e  im a g e . M ore  

c o m m o n ly , o n ly  part o f  th e  m u sc le  c u r v e s  are v is ib le ,  the  

rem ainder b e in g  h id d en  e ith er  by  b en d s, other m u sc le s  c lo se r  to  

the en d o sco p e  tip , or by irregularities in  the c o lo n  w a ll. In the case  

o f  c lo se d  cu rv es, the centre c o in c id e s  w ith  the correct d irection  o f  

in sertio n , n am ely  the cen tre lin e  o f  the co lo n . In other c a se s  an 

estim a te  o f  the in sertion  d irection  can be m ade from  the average  

cen tre  o f  cu rvatu re o f  the v is ib le  cu rv es . T h e  nearer r in g s  o f  

m u sc le s  are n o t d if f ic u lt  to  s e e  b e c a u se  o f  the p r o n o u n c e d  

o c c lu s io n  cau sed  by their contours.

It is  c lea r  from  th e a b o v e  d is c u s s io n  that tw o  ty p es  o f  im a g e  

fe a tu r e s , th e  darker r e g io n s  and th e im a g e  c o n to u rs , req u ire  

ex traction  from  the en d o sc o p ic  im a g es . A lth o u g h  later a n a ly s is  o f  

c o n to u rs  is  u se d  fo r  e x tr a c tin g  so m e  c lu e s  a b o u t th e th ird  

d im e n s io n , th e se  fe a tu re s  are g e n e r a lly  tw o -d im e n s io n a l. T h e  

en d o sc o p ic  c o lo n  im a g es  are p ro cessed  to extract p r im itiv es  in the  

form  o f  ed g e  seg m en ts  and coh eren t reg io n s, ob ta in in g  a m a p -lik e  

rep resen ta tio n  w h ich  is  s im ila r  to  th e M arr's prim al sk e tch . T o  

extract the con tou rs, the ed g e  p o in t rep resen ta tion  is  then refin ed  

by a p p ly in g  a p ercep tu a l grou p in g  p r o c e sse s . D iffe r e n t p r in c ip les  

fr o m  p e r c e p tu a l o r g a n is a t io n  are  u s e d  f ir s t  d u r in g  th e  

co n stru ctio n  o f  the in itia l rep resen ta tion  and then in the re fin in g  

p ro cess  at h igh er le v e ls .
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1.4 Perceptual Organisation

H um an p e r ce p tio n  a llo w s  us to rec o v e r  r e le v a n t r e g u la r it ie s  or

stru ctu re  from  an im a g e  w ith o u t th e prior  k n o w le d g e  o f  the  

co rresp o n d in g  sc e n e . T he fa c t that th is  is  p o s s ib le  su g g e s ts  that 

there are id e n t if ia b le  p rop erties  o f  the sce n e  w h ich  can  b e u sed  

by the v isu a l sy ste m  to  c o n n e c t  p r im itiv e  fe a tu re s . T h e se  are 

term ed  p e r c e p t u a l  c r i t e r i a , th ey  are u sed  to form  p e r c e p t u a l  
g r o u p i n g s , and the structure th ey  im p o se  is  c a lle d  p e r c e p t u a l  
organ i sa t i on .

U n d er sta n d in g  and d e f in in g  th e  d e sc r ip t io n  o f  th e  p e r c e p tu a l  

criter ia  w h ic h  th e  hum an v isu a l sy ste m  u se s  to  ex tra c t groups

from  im a g es  is  o n e  p o s s ib le  approach to  the d e v e lo p m e n t o f  an 

e f f e c t iv e  and g e n e ra l p u rp o se  c o m p u te r  v is io n  s y s te m . A fte r

id e n t ify in g  the se t o f  p ercep tu a l p r im itiv e s , the m ain  task  is  to  

p ro v id e  the com p u ta tion a l tech n iq u es for their r ec o v e ry  from  the  

raw  im a g e  data. T h e is s u e s  c o n c e r n in g  the u se  o f  p ercep tu a l  

o r g a n isa tio n  in  m a ch in e  v is io n  are far from  fu lly  r e so lv e d  and  

cu r re n tly  are b e in g  p u rsu ed  a c t iv e ly  b y  r e se a r c h e r s  in  th e  

c o m p u te r  v is io n  f ie ld .  R e c e n t  w o rk  on th e  a p p lic a t io n  o f  

p e r c e p tu a l o r g a n is a t io n  h a s c o n c e n tr a te d  on  tw o  ty p e s  o f  

approaches w h ich  d iffer  in  the w ay  th ey  depend  on the nature o f  

the p ercep tu a l p r im itiv e s .

In the first o f  th ese  approaches the p r im itiv es  d escr ib e  the scen e  

s p e c i f ic  fe a tu r e s  and a ttr ib u te s . T h e r e fo r e  th e  e a r ly  v is io n  

p r o c e s s e s  are c o n c e r n e d  w ith  th e  r e c o v e r y  o f  e n v ir o n m e n ta l

reg u la ritie s  (e .g . r ig id ity , a x es  o f  sym m etry  e tc .)  w h ich  are u sed  

by the c o g n it iv e  p r o c e sse s  at la ter  s ta g e s . T here h a v e  b een  a 

num ber o f  su g g e s t io n s  abou t the p o s s ib le  p ercep tu a l p r im itiv e s  

s in c e  the la te  1 9 7 0 s . B arrow  and T en en baum  [1 9 7 8 ] p ro p o sed  a 

co m p u ta tio n a l fram ew ork  for  th e r eco v ery  o f  p o in t p rop erties  o f  

the v is ib le  sce n e  surfaces in term s o f  their orien tation , re flec ta n ce , 

in c id en t illu m in a tio n , and range. T he b asis o f  their argum ent is  in  

th e  fa c t  th at h u m an s n o r m a lly  r e c o v e r  th e s e  c h a r a c te r is t ic s  

r eg a r d le ss  o f  th e ir  fa m ilia r ity  w ith  th e  sc e n e . T h e se  in tr in s ic  

im a g e  p ro p ertie s  are m ore m e a n in g fu l than th e im a g e  in te n s ity
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and th ey  a lso  d e scr ib e  th e im a g e  fo rm a tio n  p r o c e ss . K a ss  and  

W itk in  [1 9 8 5 ] h a v e  g o n e  further by  u s in g  the d e c o m p o s it io n  o f  

tw o -d im e n s io n a l im a g e  in te n s it ie s  in to  m ore or le s s  in d ep en d en t  

p r im itiv es  in  the form  o f  f l o w  f i e l d s .  T h e f lo w  fie ld s  are u sed  to  

d escr ib e  th e o r ien ted  pattern in  an im a g e  w h ich  are p rod u ced  by  

p rop agation , accretion , or deform ation . Z u ck er [1 9 8 5 ] has p rop osed  

th e  d e sc r ip t io n  o f  p e r ce p tu a l fe a tu re s  w h ic h  a ls o  d e p e n d  on  

o r ie n te d  p a tte r n s . T w o  ty p e s  o f  fe a tu r e s , o n e -d im e n s io n a l  

co n to u rs  and tw o -d im e n s io n a l f lo w s , h a v e  b e e n  m e n tio n e d . T h e  

o n e -d im e n s io n a l c o n to u rs  u n d e r lie  th e  p e r ce p tio n  o f  o c c lu d in g  

e d g e s  and sh a d o w  b o u n d a r ies  w h ile  th e  tw o -d im e n s io n a l f lo w s  

are re la ted  to  th e p ercep tio n  o f  su r fa ces  s im ila r  to  fu rs, hairs, 

w h eat f ie ld s , grass, w ater fa lls , and sn o w . Separate com p u ta tion a l 

a p p ro a c h e s  fo r  id e n t ify in g  th e se  d e sc r ip t io n s  h a v e  a ls o  b een  

p rov id ed . T here are other p r o c esse s  w h ich  shape the w orld  and a 

lo t  o f  e ffo r t  has been  put in to  d e c o m p o s in g  so m e o f  the b a sic  

p a ttern s in  natural s c e n e s  in to  parts. W itk in  and T en en b a u m  

[1 9 8 3 ] h ave  a c k n o w led g ed  the ro le  o f  s ce n e  structure in  m ach in e  

v is io n . P e n tla n d  [1 9 8 6 a , 1 9 8 6 b ] p r o p o se d  a th eo ry  b a se d  on  

in ter m e d ia te  ty p e s  o f  m o d e ls  w h ich  are in -b e tw e e n  th e  p o in t-  

w is e  p r im itiv e s  o f  B arrow  and s p e c if ic  o b jec t m o d e ls , and are 

k n o w n  as p arts . T h e se  p r im it iv e  m o d e ls  can  b e th o u g h t o f  

a n a lo g o u s  to a lum p o f  c la y  w h ich  can  be d eform ed  or sh ap ed  

w ith o u t c h a n g in g  the m ain  p ercep tu a l n o tio n  o f  the p r im it iv e  

m o d e l. T h e  th r e e -d im e n s io n a l g e o m e tr ic  p r im it iv e s  are an oth er  

p o s s ib ility  w h ich  h a v e  b een  e m p lo y e d  in  h igh er  le v e l  p r o c e sse s .  

M arr and N ish ih a r a  [1 9 7 8 ]  h a v e  su g g e s te d  s im ila r  p r im it iv e s  

b a se d  on  g e n e r a lis e d  c y lin d e r s  w h ic h  th e y  id e n t ify  fro m  the  

prim al and 2 V 2 -D  sk etch .

T he seco n d  approach a ssu m es that p artition in g  o f  the im a g e  in to  

co h eren t r eg io n s  is  the m ain  g o a l o f  the p ercep tu a l o rg a n isa tio n . 

T h e  p er ce p tu a l p r im it iv e s  in  th is  c a s e  d ep en d  on the im a g e  

co n ten t rather than the corresp on d in g  sc e n e . T h ese  tech n iq u es  are 

b a s e d  o n  th e  o r g a n is in g  p r in c ip le s  p r o v id e d  b y  G e s ta lt  

p s y c h o lo g is ts  [W ertheim er 1 9 2 3 , K o ffk a  1 9 3 5 ] , w h ich  ig n o re  the  

co n cep ts  o f  sce n e  g eom etry , illu m in a tio n  e tc . T he G esta ltis ts  have  

prov id ed  a h ig h ly  c o n v in c in g  set o f  organ isin g  la w s w h ich  in d ica te
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h o w  h u m an s p e r c e iv e  an o b jec t from  a sc e n e , and th e se  are 

la r g e ly  a c c e p te d  as v a lid  part o f  th e  p e r ce p tio n  p r o c e s s . T he  

G e s ta lt  la w s  e x p la in  h o w  h u m an s g ro u p  s t im u lu s  e le m e n ts  

to g e th er  during p ercep tio n , and th ey  in c lu d e:

P r o x i m i t y : T h e  e le m e n ts  that are c lo s e  to g e th er  

tend  to be p erce ived  as a group.

S i m i l a r i t y :  S im ilar e lem en ts tend to  b e  grouped.

C o n t i n u i t y :  T he group w h ich  m in im ise s  ch a n g e  or 

d isc o n tin u ity , and thus m a x im ise s  g o o d  co n tin u ity  

is  p referred .

C l o s u r e :  S tim ulu s e lem en ts  tend to  b e grouped in to  

c o m p le te  f ig u res .

S i m p l i c i t y :  W hen m ore than on e grouping ex ists  and  

th er e  is  c o m p e t it io n  b e tw e e n  g r o u p s , th en  th e  

a m b ig u ity  ten d s to  b e  r e so lv e d  in  fa v o u r  o f  the  

s im p le s t  a lte r n a tiv e .

S y m m e t r y : L in e  d raw in gs and r eg io n s  b ou nded  by  

sy m m e tr ic a l  b o rd ers  ten d  to  b e  p e r c e iv e d  as 

c o h e re n t fig u re s .

C o m m o n  Fa t e :  T h e e lem en ts  w h ich  m o v e  togeth er  

w ith  a un iform  v e lo c ity  through a f ie ld  o f  s im ilar  

s ta tio n a ry  e le m e n ts , are p e r c e iv e d  as a c o h e re n t  

g r o u p .

S o m e  p resen ta tio n s  o f  the G esta lt p r in c ip le s  d is t in g u ish  b e tw een  

the la w s o f  figu re  ground segregation  and the law s o f  group in g . In 

te x tu r e  d is c r im in a t io n  th e  m a in  e m p h a s is  is  in  s e g r e g a t in g  

d if fe r e n t  fe a tu r e s  and th en  in s e r t in g  p a r t it io n in g  b o u n d a r ie s  

w h ere  the textu re is  d ifferen t. P sy c h o p h y s ic a l s tu d ies  on hum an  

textu re p ercep tio n  has le d  to  the d isc o v e r y  o f  so m e c o n sp ic u o u s  

fea tu res  (te x to n s)  w h ich  are d e tec ted  by the p re -a tten tiv e  v is io n
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sy ste m  in sta n ta n eo u sly  and w ith ou t any e ffo r t [J u lesz  1 9 8 3 ] . T h is  

supp orts the e x is te n c e  o f  seg reg a tio n  p h en o m en o n  w h ich  id e n t i f y  

th ese  featu res at the very  early  stage. It has a lso  b e e n  s u g g e s te d  

that hum an v isu a l a n a ly s is  is  fu n c tio n a lly  d iv id e d  in to  an early  

p r e -a tte n t iv e  le v e l  o f  p r o c e s s in g  w h e r e  s im p le  fe a tu r e s  are  

d e te c te d  in  p a r a lle l, and a la ter  s ta g e  in  w h ich  th e fo c u s  o f  

atten tio n  is  ap p lied  to  jo in  th ese  fea tu res  in to  co h e re n t o b j e c t s  

[T reism an  1 9 8 5 ].

A lth o u g h  it  is  v ery  im p ortan t to  id e n t ify  w hat to  m ea su re  by  

lo o k in g  in to  the hum an v isu a l sy stem , the m ore im portant step  is  

h o w  to  c o m b in e  th e se  m e a su r em e n ts  in to  m e a n in g fu l i m a g e  

e n t it ie s .  T h is  p r o c e s s  o f  c o m b in in g  ca n  s o m e t im e s  a ls o  b e  

e m p lo y e d  in  id e n t ify in g  th e s ig n if ic a n t  ea r ly  p r im it iv e s  fr o m  

d iffe re n t a ltern a tiv es . S te v e n s  [1 9 7 8 ] has a ttem p ted  to s o lv e  th is

p r o b le m  in  order to  id e n t ify  lo c a l ly  p a r a lle l s tr u c tu r es . H e  

p ro p o sed  an a lgorith m  for  se le c tin g  s ig n if ica n t v irtua l lin e s  for a 

p articu lar  n e ig h b o u rh o o d . In it, an or ien ta tion  peak  is  determ in ed  

by h isto g ra m m in g  the or ien ta tion s o f  the virtual l in e s . T hen  the

virtual lin e  w h o se  orien tation  is  c lo se s t  to  the peak  is  s e le c te d  as 

the s ig n if ica n t v irtual lin e . In th is w a y  the group in g  p ro cess  it s e lf  

is  u se d  to  c h o o se  th e  s ig n if ic a n t  p e r c e p tu a l p r im it iv e s .  M o re  

g e n e r a lly , research ers h ave  u sed  an in it ia l p r o c ess  to  la b e l the

im a g e  p ix e ls  accord in g  to their lo c a l im a g e  p r o p e r tie s  ( in te n s ity ,  

ed g e  typ e, co lou r , or lo c a l tex tu re). T h is  p rod u ces a rep resen ta tion  

sim ilar  to  the raw prim al sk etch  d escr ib ed  by M arr. T h e la b e lle d  

p ix e ls  are k n ow n  as p l a c e  m a r k e r s  [A ttn ea v e  1 9 7 4 ] or p l a c e  
t o k e n s  [Man* 1 9 7 6 , 1 9 8 2 ]. M arr has su g g e ste d  a m ore  o rg a n ised  

la b e l l in g  p r o c e ss  in  w h ic h  e d g e s  are id e n t if ie d  at d if fe r e n t

r e so lu t io n s  (u sin g  d ifferen t s iz e  e d g e  d e te c to r  m a sk s) and th o se  

e d g e s  w h ich  e x is t  at m ost o f  the r e s o lu t io n s  are s e le c te d . T h is  

s e le c t io n  p ro ced u re  is  in a d eq u a te  in  th e e x tr a c tio n  o f  a ll the  

s ig n if ic a n t  ed g e  structures as ex p la in ed  in  S ec tio n  3 .5 . T he p la ce  

tok en s are d e fin ed  as the s ig n ifica n t p la ces  in  the im a g e , and they  

can be ch o sen  in a variety  o f  w ays such as short lin e  segm en ts, th e  

end poin ts o f  lin es  ( i f  the lin es  are not too  short), b lob  p o s it io n s , or 

a h ig h er  order grou p  o f  p la c e  to k e n s . T h e  lo c a l  g e o m e tr ic a l  

re la tio n s  (o r ien ta tio n , p o s it io n , and sep ara tion  o f  s im ila r  ad jacen t
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e le m e n ts )  b e tw e en  th ese  to k en s  are m a d e  e x p lic it  by  in ser tin g  

v irtu a l lin e s  w h ich  jo in  nearby p la c e  to k en s. T h ese  p la c e  tok en s  

are th en  grou p ed  in to  co n tig u o u s  r e g io n s , or c o h e re n t co n to u rs. 

T h is  p r o c ess  is  m ore  rea d ily  k n ow n  as im a g e  seg m en ta tio n  and  

has b een  r ec o g n ise d  as a central p rob lem  o f  com puter v is io n .

1.5 Image Segmentation and Perceptual Grouping

T h e seg m en ta tio n  o f  im a g es  is  d e fin ed  as the p ro cess  o f  iso la tin g  

and id e n t ify in g  the r eg io n s  o f  in terest or p artition in g  the im a g e  

in to  m e a n in g fu l sh a p e s . D is c o n t in u it ie s  in  the s c e n e  p ro p ertie s  

(e .g . d ista n ce , m aterial co m p o sitio n , or m o tio n ) are the m ain  c lu es  

for p o ss ib le  p la ces  w h ere  to in sert a partition . T he critica l is su e  in  

im a g e  se g m e n ta tio n  is  that o f  r e la t in g  th e  in te n s ity  v a r ia tio n s  

w ith  th e c o r r e sp o n d in g  p h y s ic a l  d is c o n t in u it ie s  in  th e  s c e n e .  

M an y  se g m en ta tio n  te c h n iq u e s  h a v e  b een  p ro p o sed  and a ll o f  

th em  are b ased  on e ith er  d e te c tin g  s im ila r it ie s  or d isc o n tin u it ie s  

in  so m e  p ix e l v a lu e  (e .g . in ten sity , co lou r , or range). O ne o f  th ese  

tech n iq u es  u tilis e s  the co n cep t o f  s im ila r ity  by ex tractin g  un iform  

r e g io n s  and then  ob ta in in g  the b ou n d aries o f  th o se  r eg io n s . T h is  

m eth od  is  kn ow n  as r eg i on  b a s e d  s e g m e n t a t i o n  and it d isco v ers  

u n ifo rm  r eg io n s  and in  c o n se q u e n c e  th eir  b ou n d aries. A  seco n d  

m eth od  u ses  the c o n c ep t o f  d isco n tin u ity , and w orks by  d e tec tin g  

e d g e  p o in ts  w h ic h  are th o se  w h e r e  th e  p ix e l  v a lu e s  c h a n g e  

a b ru p tly . T hen  th e e d g e  p o in ts  are g ro u p ed  in to  b o u n d a r ies  

b e tw e e n  h o m o g e n e o u s  r e g io n s  o f  so m e  p rop erty . T h e se  im a g e  

p artition in g  tech n iq u es based  on ed g e  d e tec tio n  are carried  out in 

a w a y  w h ich  is  th ou gh t to  be a n a lo g o u s  to  the b io lo g ic a l v isu a l 

sy s te m s  and th ey  a ssu m e that m o st o f  the u se fu l in fo rm a tio n  is  

em b ed d ed  in  the bou n d aries b e tw een  d iffe re n t r eg io n s .

In im a g e  seg m en ta tio n , w h eth er w e  adop t the e d g e  d e te c tio n  or 

the reg io n  based  m eth od , grouping o f  p ix e ls  is  at the heart o f  the 

p r o c e s s  in  is o la t in g  u n ifo rm  r e g io n s  and  th eir  b o u n d a r ie s . In 

r e g io n  b ased  seg m en ta tio n , the ad jacen t p ix e ls  are m erg ed  in to  

u n ifo rm  r eg io n s , w h ile  in  ed g e  d e te c tio n  tech n iq u es, e d g e  p o in ts  

are g r o u p e d  in to  l in e a r  or c u r v e d  s e g m e n ts  to  fo rm  the
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boundaries of the objects. Perceptual grouping is a process which 
belongs to the early and intermediate levels of vision. It can be 
employed in grouping any of a large number of possible 
primitives including edges, bars, short segments, and corners or 
at the symbolic level, place tokens and virtual lines, to build a line 
drawing of the scene. Grouping can also be employed for three- 
dimensional reconstruction from surface patches with depth 
information. Almost all of the grouping processes try to bring 
together those elements in the image, which belong to the same 
part of the same object in the scene. The choice of grouping 
method will determine the primitives which must be generated by 
earlier processes and what information they should carry to aid 
the grouping. This will apply both at the early and intermediate 
levels.

The psychology community has carried out many investigations of 
human performance on specific grouping problems but most of the 
research is focused on performance rather than the mechanism of 
grouping.

Perceptual grouping based on proximity was the first criterion 
used to cluster dots. In following the Julesz's [1962] view that 
perceptual grouping can be achieved by clustering based on the 
geometrical properties of proximal dots, Zahn [1971] devised an 
algorithm for detecting Gestalt clusters based on proximity by 
using minimum spanning trees. Afterwards the same method was 
applied in identifying space curves by grouping the given points 
or short line segments [Zahn 1973]. Lester [1975] has gone a step 
further by assigning an additional attribute, edge strength to the 
links between proximal dots, based on the location of neighbours 
and the distance between dots. The decisions about the grouping 
of edges into segments and boundaries can be postponed until 
additional information becomes available. This type of delaying in 
grouping decisions was formalised later on by Marr as his 
principle of least commitment. O'Callaghan [1974, 1976] has 
surveyed different techniques of dot grouping and developed a 
local operator for extracting boundaries of different dot patterns.
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Some of his work is also concentrated on edge and line 
organisation.

In the vision theory of Marr [1976, 1982], grouping has been used 
extensively in early visual processing for interpreting the primal 
sketch by partitioning it into unit forms. It was emphasised that 
grouping should be carried out on the basis of length, orientation, 
size, contrast, and spatial density. Two types of orientation based 
groupings were advocated. Using curvilinear aggregation, place 
tokens are merged into a group which preserve their orientation 
while in theta-aggregation similar oriented items (e.g. virtual 
lines) are grouped into a unit whose orientation differs from the 
items. The place tokens are also grouped into regions directly or 
the output contours from curvilinear aggregation are used to 
define the boundaries of the regions. Most of the grouping work 
put forward by Marr is rather speculative, and neither fully 
specified nor implemented in computer programs.

According to Lowe and Binford [1982], the main task of early 
vision is to find meaningful groupings in the image. The 
meaningfulness is defined as the likelihood that a given grouping 
truly reflects an inter-dependence of its elements and has not 
arisen from some accidental alignment of independent elements. 
In this way meaningfulness of grouping is not only domain 
independent but also independent of the world knowledge. The 
groupings which they have considered included collinearity, 
curvilinearity, predominant orientation, repetition and symmetry. 
The authors have suggested that instead of examining all possible 
groupings in an image, a search should be carried out on those 
classes of patterns known to be easily handled by the human 
visual system. These ideas have been implemented using a 
computer program and some results were obtained on the 
detection of meaningful linear groups among random dots.

None of these implementations of perceptual grouping provide a 
unified approach to image segmentation. Their inputs are either 
dot patterns or some very simple images. Therefore it is not 
possible, on the basis of their results, to make any claims as to the
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methods applicability to general purpose image segmentation. In 
this thesis we will discuss the application of perceptual grouping 
in a unified way to achieve the segmentation of endoscopic colon 
images.

1.6 R e se a rch  O b jec tiv e s  a n d  M o tiv a tio n

The main aim of this research is to develop machine vision 
techniques for a computer vision system, which provides sensing 
capabilities for navigating the endoscope. The endoscope vision 
system identifies at least two types of information: curved
contours and darker regions. This information needs to be 
extracted in real-time, which in turn almost certainly means that 
the algorithms must be implementable in parallel.

The image contours are one of the main features used for guiding 
the endoscope and a considerable effort is concentrated on their 
extraction. Traditionally contours are extracted by detecting edge 
points which are then linked sequentially to build contours. A lot 
of effort has been spent on detecting edges starting from the 
development of edge detectors by Roberts [1965], Prewitt [1970] 
and Sobel [Duda and Hart 1973] and continuing with more recent 
work by Marr and Hildreth [1980], Canny [1983], Haralick [1984], 
Nalwa [Nalwa and Binford 1986], and Noble [1988]. Most of the 
edge detection techniques have been idealised for step edges. 
However, colon images have a variety of edges. Therefore any 
approach based on detecting step edges will not extract all the 
useful information available to construct the contours from colon 
images.

The motivation behind applying perceptual organisation in 
contour detection arose when simple edge detectors (e.g. Sobel, 
Prewitt, or Isotropic) produced unsatisfactory output, despite the 
fact that when the same image was presented to humans, they 
perceived the image contours without any difficulty. This led to a 
belief that some more complex perceptual organisation was being 
applied to the images by humans, and if it could be formalised, a
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better segmentation method would result. Accordingly, some of 
the perceptual grouping criteria have been implemented to extract 
image contours from the output of any reasonable edge detector. 
No assumptions have been made about the level of noise in the 
images, since, as we shall see, perceptual grouping provides a 
highly effective noise filtering. Similarly, no assumptions have 
been made about the level at which edge points have been 
detected.

The key feature of this new algorithm for contour extraction from 
endoscopic images is the use of a simple edge detector from which 
an edge map is prepared without any significant thresholding. 
Thus, most of the intensity change information, including useful 
weak edges and edges due to noise, is retained. Then perceptual 
grouping is applied in building contours from the edge map. 
Different perceptual grouping techniques are applied at a number 
of hierarchical levels of refinement. As far as we know this is the 
first algorithm in which the perceptual grouping has been used for 
filtering edges and line segments from the processed image data. 
Previous implementations of perceptual grouping have, as 
mentioned earlier, been confined to dot patterns and other 
artificial data.

Normally in existing contour detection techniques, the edge point 
detection is assumed to be a local and parallel process. While the 
grouping is assumed as a global and sequential process. We will 
see that most of the early and intermediate level grouping 
techniques are implementable in parallel by following the 
psychophysical findings which suggest a purely local relationship 
between proximity and similarity in orientation and brightness 
[Zucker et al. 1982, Zucker 1983]. The contour extraction method 
described here is implementable in parallel using pyramid 
computer architecture [Khan and Gillies 1989a].

Region based segmentation is the more appropriate method for 
extracting the dark lumen from colon images in cases where it is 
directly visible. We have developed an algorithm for dark region 
extraction which uses a pyramid structure and is also
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implementable on pyramid architecture based parallel computers 
[Khan and Gillies 1989b]. A variance-average pyramid is 
constructed starting from the bottom level and moving to the top 
and during this process the coherent darkest square region is also 
identified. The recursive variance calculation is formulated in such 
a way that for calculating the variance of the parent block, only 
the mean and variance of its children are employed. The whole 
process of dark seed region extraction is worked out in a single 
pass at the completion of the pyramid. To obtain an accurate 
region, the identified dark region can be used as a seed and 
similar neighbouring regions are merged with it. The method has 
been extended to general purpose region based segmentation and
tested experimentally on a variety of images.

The next objective is to devise a suitable world and search space 
representation which can be incrementally constructed by 
integrating information from a sequence of images. Generally in 
most of the navigation systems two different representations for 
world and search space are used. But a mapping between the
world and search space representation is required, which may
make the updating of representations expensive. A single
representation for world and search space called the QL-Tree , 
based on a linked-list of quadtrees, is proposed which has the 
inherent features of easy updating, access, and search for 
navigation.
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C H A PTER  2

VISUAL DATA O RG A N ISA TIO N  AND G RO U PIN G

2.1 I n t r o d u c t io n

There is now a widely-held belief among the computer vision 
community that it is impossible to proceed from the pixel level 
image data to image understanding in a single step. However, this 
was not always the case. In the 1970s a cognitive approach was 
adapted to computer vision, which avoided a large amount of 
computation at image level and employed symbolic manipulation. 
This turned the machine vision research towards representing and 
manipulating facts about a particular domain and exploiting the 
domain specific knowledge. But the available techniques proved 
inadequate to bridge the gap between the pixel level image data 
and the desired symbolic description. Therefore in 1974 Marr's 
work at MIT directed attention towards the search for a collection 
of intermediate representations known as the raw primal sketch 
and 2 V2 -D sketch, which would ultimately bridge the gap. Later 
on, Barrow and Tenenbaum [1978] termed these types of 
representations intrinsic images.

Almost all of the recently proposed vision systems are based on 
the signal-to-symbols paradigm, in which we start from the pixel 
level signals and describe successively more organised attributes 
of the data. The representation gap between the pixel level data 
and symbolic descriptions is filled by a set of visual data 
representations which are arranged in an hierarchy of increasing 
abstraction. At each level of this hierarchy, we need to define a 
vocabulary of primitives which makes the information explicit for 
recognition or utilisation at the next hierarchical level. One of the 
most important factors in defining these intermediate visual 
representations are the transformational processes which
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translate one representation to the other. These representations 
depend on the way in which the data is organised at each level 
and the processes that are used at different levels of hierarchy. It 
is clear that grouping and organisational processes are essential 
parts of these intermediate representations and therefore they 
must be studied in detail to obtain a better set of visual 
representations. Psychology and neurophysiology provide models 
of organic vision and they have influenced research in machine 
vision. From the point of view of organisation and grouping of 
pictorial data, most of the existing computer vision models do not 
follow those advocated in psychology or neurophysiology. Neural 
networks or connectionist models are the only systems 
constructed to make use of some of the organisational principles 
that are thought to be used in the brain. The psychology models 
usually deal with the overall input and output of perceptual 
behaviour in a much broader sense. The research in this area does 
not provide a general solution to the problems in vision. For 
example it is not clear how features in an arbitrary image are 
mapped to an interpretation. On the other hand there is little 
known about the models of neurophysiology. For example, Hubei 
and Wiesel's [1977] pioneering experimental work was aimed at 
determining how the low level image data is organised and 
aggregated into a tabular format in the visual cortex of monkey. 
Although, it cannot^ be stated definitely that these principles 
constitute the information used by humans for shape analysis, we 
can explore the organisation and architecture of visual cortex by 
employing the different aggregation principles discovered so far.

2.2 E a rly  D a ta  O rg a n isa tio n  in  B iological V ision

Human vision seems so simple and effortless that we rarely 
realise the complexity and difficulty of the problem. The biological 
vision system may be considered as a process which transforms 
the input image intensities into perception. The world is created 
from a series of images projected onto the retina. The high-level 
retinal processing is related inversely to the intelligence and 
evolutionary complexities of animals. In the case of frogs, most of
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the feature detection is performed at retinal level while in 
mammals and other higher vertebrates, geometric feature 
detection takes place in the visual cortex. The eyes of various 
mammals are generally similar and for experimental purposes 
cats and monkeys have been studied rather than humans. From 
the experimental data we only have a basic knowledge of the 
early stages of image data organisation and processing, which 
itself is not completely understood.

2.2.1 Low Level Feature Detection

Some very interesting experiments have been performed with 
frogs, cats, and monkeys which explain the nature of groups of 
neurones capable of extracting various edge like features from the 
input image [Lettvin et al. 1959, Hubei and Wiesel 1962, 1963, 
1968, 1977]. It appears that these features are organised in an 
hierarchical manner. The visual systems of animals are divided 
into two broader classes. The first of which are the visual system 
of frogs, rabbits, squirrels, and other lower vertebrates. The 
ganglion cells in their retina perform low level feature detection. 
The visual detectors of these animals are sensitive to edges, 
orientation, and directional movements.

The second category of visual systems are associated with higher 
vertebrates including cats, monkeys, and humans and their 
ganglion cells are only responsible for measuring contrast and 
colour. The eye of higher vertebrates serves as a sensor while the 
visual cortex is the main place in brain where the actual vision 
mechanism takes place. The eyes have two distinct types of visual 
systems based on two types of photo-receptors, rod cells and cone 
cells. In a general sense, the rod and cone photo-receptors are the 
transducing elements which transform the focused image on the 
retina into electrical energy signals. The cone cells extract colour 
information and are used for detailed vision. They are smaller in 
size and densely populate the centre of retina. In the foveal region 
they communicate with the brain (visual cortex) through bipolar 
and ganglion cells (see Figure 2.1). The rod cells are more sensitive 
to light and their density is greater in the periphery of retina.
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They work in groups and feed the visual cortex through a much 
smaller number of bipolar and ganglion cells. It is observed that 
rod cells also detect movement and other anomalies in the visual 
field and then cone cells are used for detailed analysis by slewing 
and focusing the eye. In the dark, rod cells perform the task of 
night vision and take over the additional responsibilities of shape 
perception. The On-Centre and Off-Centre type contrast sensitive 
concentric receptors exist at the retinal and lateral geniculate level 
of cats and monkeys. A line stimulus produces a significant 
response if it covers a large part of the centre and only a small 
part of the surround. These cells respond well to lines of any 
orientation due to their circular symmetry. Their outputs are 
connected to the primary visual cortex which is also known as 
area 17.

There is plenty of evidence from neurophysiology that at the 
cortical level of cats and monkeys, geometrical edge features are 
computed. Ideally we are interested in knowing what happens in 
the human's visual cortex but it is not possible with the existing 
techniques to ethically perform experiments on humans. Most of 
the experiments on the visual cortex of cats and monkeys are due 
to Hubei and Wiesel and it is usually assumed that a similar image 
processing takes place in the human brain. The visual cortex 
seems to be structured in an hierarchy of computation 
complexities. In the cortex of the monkey a large number of 
concentric cells are found which behave like geniculate cells. 
These cells also have circular symmetric fields and it appears that 
these less sophisticated cells are immediately connected to the 
inputs from lateral geniculate nucleus (LGN) and retina. All of 
these cells are located in the lower part of one layer in the cortex, 
known as layer IV. In addition to these concentric cells three 
distinct types of receptive fields have been observed in the visual 
cortex named as simple, complex, and hypercomplex cells.

Simple Cell

The simple cells, which are at the lower level of hierarchy, are 
located in the so called area 17 of cortex. It seems that these cells
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receive their input directly from groups of cells with centre- 
surround symmetrical receptors: the type of cells found in layer 
IV of cortex. They are sensitive to bars, slits, and edges of specific 
orientations.

Complex Cell

The complex cells can be understood by supposing that they 
receive inputs from many simple cells, all with the same 
orientation preference. These feature detectors are at the next 
hierarchical level, also found in the area 17 of cortex and they 
respond to spatially oriented bars and edges. A complex cell is 
probably just as precise in its orientation specificity as the simple 
cell but it is less particular about the positioning of the bar. In 
other words the complex cells are invariant to translation but not 
to rotation. It produces a strong response if a line is kept in the 
optimal direction and is moved across the receptive fields.

Hypercomplex Cell

These are the receptive fields at the highest point of hierarchy in 
the cortex. Hypercomplex cells resemble the complex cells but if 
the line extends beyond its region of response, its response is 
reduced or completely abolished. There are two categories of 
hypercomplex cells: type I and II. The type I cells respond to 
moving, oriented, and directionally selective lines. They 
specifically respond to ends of lines. The hypercomplex II cells 
respond to corners. Actually both of these cells underlie the 
importance of the physical terminations of input patterns.

We have discussed the functioning of the low level feature 
detectors cautiously due to the experimental paradigm in 
neurophysiology. It is not clear whether the functions of these 
biological receptive fields are programmed at birth or learned in 
the early stages of contact with the environment. It seems clear 
that low level vision in animals is characterised in terms of line 
segments and edges moving in specified directions and 
orientations. How this data is organised so that we are able to
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perceive different shapes, is not yet clear. A possible answer, 
using the neurophysiological view, is presented next.

2.2.2 Visual Signals, Pathways and Organisation

It appears that the organisation of the different features described  
in the previous section takes place at the initial stages of im age  
analysis. This point can be argued mainly from the results of 
neurophysiological experimental data. The research by Hubei, 
Wiesel, and others has provided some clues about the organisation 
of data in the visual cortex. It is still an open question whether or 
not the aggregating principles which have been discovered so far 
underlie the initial process in shape perception.

Rod and 
cone cells

Right
eye

Left
eye

Bipolar Simple & centre

Figure 2.1: Schematic diagram of the path from retina to 
visual cortex.
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We start by tracing visual signals from the ganglion cells, which 
provide inputs to the LGN cells from both the left and right eyes. 
The path from the retinal cells through the ganglion cells is shown 
schematically in Figure 2.1. The individual LGN cells are dedicated 
to process inputs from only one eye. An organisation of image data 
also takes place at LGN level in terms of the field of view. The 
input signals to the left of the LGN originate from the right side of 
the visual field and vice versa. There are six distinct monocular 
layers of the cells in both the left and right side of the LGN. Figure 
2 .2 a explains these layers of cells in terms of their physical 
locations and origin of their input signals. The cells in layer 1, 4, 
and 6 are fed from the eye on the same side while layer 2, 3, and 
5 are connected to the signals from the eye of opposite side. A 
high degree of order in the spatial relationship between cells has 
been found. Along the vertical section of these layers of cells, it is 
observed that the receptive fields originate in the same spatial 
neighbourhood of the field of view.

The visual cortex cells are at the next level of hierarchy. There are 
six layers in the visual cortex which are shown in Figure 2.2b. The 
outputs of the centre-surround cells from LGN are connected to 
the centre-surround or simple cells in the bottom part of the layer 
IV of visual cortex. Crick et al. [1980] have hypothesised that 
these signals are a high resolution filtered version of the image. 
From the bottom of the layer IV, the outputs of the cortical and 
LGN centre-surround cells form groups to feed simple cells which 
are also found in layer IV. The processing in the layer IV is still 
monocular. The complex cells have been found in four of the other 
layers II, III, V, and VI. This is the place in visual cortex where 
the data from both eyes converge as input signals to single 
binocular complex cells. Almost half of the complex cells are fed 
from binocular data while others get monocular data. In the case 
of binocular cells two inputs generally produce the same output 
signal with respect to bar pattern, orientation, and directional 
movement but the strength of the output varies when the same 
stimulus is presented to the left and right eye individually. From 
one cell to the other, all degrees of ocular dominance has been
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VI Complex cells

V Complex cells
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VISUAL
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(b)

Figure 2.2: Block diagram of the layers in monkey's LGN 
and visual cortex.
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reported, from complete dominance of one eye through equality to 
complete dominance by the other eye. The way the grouping of 
cortical cells has taken place is clear in the sense that the cells o f  
similar complexity are grouped, with the centre-surround cells in 
the bottom of layer IV, the simple cells above them and the  
complex cells in layers II, III, V, and VI. These different layers 
have been organised by keeping in view the destination of their 
signals. For example, the deepest layer VI projects mainly back to 
the lateral geniculate body, layer V conveys its signals to the 
superior colliculus (a visual station in brain), and layer II and III 
send their signals to other parts of the cortex.

The next thing in the study of visual cortex is the position of its 
receptive field in the visual field. The spatial ordering in LGN 
described earlier is maintained in the visual cortex producing a 
cortical map of the visual field. This means that a structural 
relationship is maintained from the photo-receptors in the retina 
to the cells in the visual cortex. The visual cortex is made up of a 
number of layers and to study its properties it is necessary to 
investigate the cells in two directions. First is the perpendicular 
direction to the surface of the cortex while the second is in the 
horizontal or oblique plane. If one travels in the perpendicular 
direction passing cell after cell into the deeper layers, the 
receptive fields mostly overlap with each new field heaped on all 
the others. There is some variation in the size of these fields but
each bar detector is tuned to the same angular orientation. Hubei
and Wiesel [1977] referred these columns of receptive fields as 
aggTregate fields. The variation in the size of the aggregate field 
depends on the distance of its cell's receptive field from the centre 
of the field of view. The investigation in the oblique direction of 
cortex surface has revealed slightly displaced aggregate fields and 
after every one to two millimetres, there is always a new
aggregate field.

The visual cortex can be conceptualised as being subdivided into
roughly parallel columns of tissue which may be swirled rather 
than planar as shown in Figure 2.3, approximately 1mm * 1mm in
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orientation 10 apart

Figure 2.3: An elementary volumetric unit of the
visual cortex.
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cross section and two millimetres deep. These volumetric units 
correspond to one aggregate field and originate from only one area 
of the visual field. Each of these units (except layer IV) contains a 
complete set of orientation columns and is partitioned into 50 }im 
thick slabs with similar receptive field orientation. The adjacent 
slabs have a 10° shift in their line orientation. Slabs are arranged 
into coherent blocks with each block containing a right eye 
dominant and a left eye dominant column. Blocks near to the 
centre of gaze have tiny receptive fields while the peripheral 
blocks have larger receptive fields. It appears that the visual field 
is sampled to get the edge orientation and then the data is 
collected in a cortical table for further processing.

The organisation of the primary visual cortex (area 17) is 
explained in Figure 2.4 in the tabular form. Three variables: 
orientation, relative position of the aggregate field, and the ocular 
dominance are filled in the table which may be utilised by some 
higher level process in the brain. Apart from the vertical column 
structure, there is no experimental evidence about the use of this 
tabular organisation for high level perception. Additionally there 
is no answer to the question why the data is organised in this way, 
but it has been observed that this is a compact and efficient way 
of storing information. Perhaps the table is used to obtain 
histograms to use in some type of transformation (like a Hough 
transform) [Levine 1985] for recognising shape but this is pure 
speculation.

2.3 P y ra m id a l A rc h ite c tu re  a n d  O rg a n ic  V ision

Fast detection of global structures from digital images is an 
essential component of real-time machine vision. The real-time 
performance of human perception on complex images indicates 
that our visual system does not use conventional parallel 
processing. Reaction time experiments on human beings show that 
the recognition of complex objects is completed within roughly 
400 to 800 milliseconds. There is also some evidence that the
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more complex the object, the longer it takes to be recognised. The 
experiments on the monkey's temporal cortex also reveal that
they respond to a face or a particular face in only 70 to 200
milliseconds. This high speed for recognition is achieved despite
the fact that the brain's basic processing elements, the neurones 
take about 1.5 millisecond to fire and send their response to other 
neurones. The contrast with machine vision is striking, vision 
programs take minutes or even hours to process a simple static 
scene. This is despite the fact that logic gates in today's computers 
are one to several hundred times faster than a neurone.

The brain is massively parallel but crucial to its success is the fact 
that it has a parallel-serial and hierarchical structure. It consists 
of millions (in the order of 1010 to 1011) of basic processing 
elements, the neurones which are organised in sets of columns
side-by-side through all six layers of cortex. About 2/3 rds of the 
columns of neurones are pyramidal cells whose processes rise 
vertically through different layers of cortex and whose axons link 
to other cortical and sub-cortical areas. The actual links found 
between cortical areas and the other results of physiological 
experiments suggest a parallel-serial structure of cortex rather 
than a strict hierarchy. The information flows from visual cortex 
through at least twenty other visual and non-visual brain areas 
which are involved in perception. The overall structure of these 
areas also appears to be a parallel-serial hierarchy with each area 
richly linked to other areas. There is also evidence that by moving 
up through these areas, more and more abstract and complex 
features in larger regions of the retinal field are detected.

Perception is obviously a massively parallel process. The organic 
retina has million of rod/cone cells. For machine vision, the TV 
camera will also provide thousands, or millions of individual 
pixels. Only massively parallel architectures are likely to be fast 
enough to process the large resulting image arrays and successive 
resulting structure of image information. The parallel-hierarchical 
pyramid structure is among the most attractive candidate. 
Although a multi-computer designed in the form of pyramid is far 
simpler than the brain's perceptual system, it still keeps, in
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abstract and simplified form, many of the brain's essential 
features and more importantly its spirit.

A pyramid in its most basic form consists of successively smaller 
arrays of computers stacked over one another and linked via a 
tree as shown in Figure 2.5. The largest array is at the bottom of 
the stack and is known as retinal input and the smallest array 
(generally consisting of one processor) is at the top and called, the 
apex output. The links inside an array provide an efficient 
implementation of parallel local operations upon a small window, 
while the logarithmic based links between arrays of consecutive 
levels reduce the distance of order N (for an N*N image or retinal 
size) between nodes in each of the array to the order of log2(N).

The pyramid-style parallelism provides a much faster method of 
parallel computation to achieve fast recognition of global patterns. 
When implemented in parallel on suitable cellular pyramid 
hardware, most of the image analysis techniques require 
processing times of the order of the logarithm of image diameter. 
The contours are one of the most important global features in an 
image. Similar global patterns cannot be reliably recognised using 
the conjunction of local features. Pyramid or multi-resolution 
techniques provide different means of explicitly extracting the 
global structure in the image. When a fragment of contour is found 
at the lower level, the information can be passed up along with 
whatever more detailed information may be needed to specify 
exactly where that fragment started and ended. In this way the 
parents can stitch it properly with other fragments and pass that 
information up.

In chapter four the techniques based on pyramid processing of 
contour data (line segments and curves) will be described. 
Pyramids are often used to generate course to fine methods in 
edge and contour detection. The other image feature detection 
method is based on pyramid processing of intensity data (grey 
level or colour) or a local property map derived by applying 
feature detection operators to intensity arrays. A similar approach
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for region based image segmentation using the pyramid will be 
described in chapter five.

Apex output

Retinal input

Figure 2.5: The pyramid architecture.

2.4 Psychology of Vision

2.4.1 Background

The main aim in discussing the psychology of vision here is to 
explore some of the algorithmic techniques used by human visual 
system. These techniques can only be judged by their failures and 
successes in interpreting both natural and artificial images.
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There are two main sources of information which can be employed 
by humans for visual perception. The first is the available sensory 
information and the second is relevant past experience and 
knowledge. There is a lot of controversy over the relative 
importance of these two factors. Gibson [1966] emphasises the role 
played by the stimulus information while Gregory [1970] and 
others argue for the constructive and hypothesis testing processes. 
The main focus of the Gibson theory is to provide an explanation 
of how humans perceive the environment in a veridical way. A 
radically different approach is argued by several theorists 
including Gregory and others. They regard perception as an active 
and constructive process. According to Gregory, the perceptual 
experiences are constructions from the data provided by sensors 
and drawn from the brain memory. This approach can readily 
account for perceptual errors and many visual illusions. But it 
seems that visual perception largely follows the bottom-up 
approach adapted by Gibson when the viewing conditions are 
good. It may involve top-down processes argued by Gregory and 
others, increasingly as the viewing conditions deteriorate.

2.4.2 Form Perception

One of the most obvious and interesting facts of visual perception 
is that it is almost always organised. The important part of this 
organisation is the partitioning of the visual field into two parts 
figure and ground. The figure usually appears to be nearer than 
the ground which is extended uniformly behind the figure. This 
figure-ground organisation is one of the names given to perceptual 
organisation and it comes about fairly automatically. The parts of 
a scene may correspond to objects already seen but normally it is 
impossible to see the same object in the same configuration, 
illumination, and from the same perspective in space. This means 
that humans must be able to partition a scene into coherent, 
organised, and independently recognisable entities without prior 
knowledge.
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The next question is how humans partition the scene into 
independent parts without knowing what might be present. The 
Gestalt psychologists argue that it reflects the basic and innate 
functioning of the human visual system. The Gestaltists were 
interested in some of the ways in which visual perception is 
organised. Their fundamental principles of perceptual organisation 
are a set of generic criteria which underlie the procedures 
discovered by nature for partitioning the visual field. One of the 
earliest and intuitively most acceptable collection of such laws are 
proposed by Wertheimer in 1923 and then elaborated by Koffka 
[1935]. These laws are based on a single fundamental principle 
(the law of Pragnanz) which is described by Koffka as follows:

"Psychological organisation will always be as good 
as the prevailing conditions allow. In practice a 
good form is the simplest ot most uniform and 
organised of the available alternatives."

The laws of organisation have been formulated on the basis of 
their use in identifying ambiguous patterns similar to those shown 
in Figure 2.6. They will be seen to underlie the rules for 
perceptual grouping. These Gestalt laws include:.

The Law of Proximity

The stimulus elements which are closer tend to be perceived as 
one entity. It will be observed that the closer elements in Figure 
2 .6a can be perceived as groups forming vertical columns.

The Law of Similarity

Similar elements of a stimulus tend to be part of a unit. This 
similarity may be in grey level, colour, orientation, or shape as 
shown in Figure 2.6b.
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Figure 2.6: The laws of organisation.
(a) Proximity, (b) Similarity, (c) Continuity.
(d) Closure, (e) Symmetry.
(f) Simplicity; From two different projections of 
cube, the simpler (3-D) interpretation is perceived.
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The Law of Good Continuity

Stimuli tend to form a group which minimises a change or 
discontinuity as demonstrated in Figure 2.6c, which is perceived 
as two lines with first order continuity.

The Law of Closure

The stimulus elements tend to be grouped into complete figures 
which are most commonly known. The stimulus in Figure 2.6d will 
be generally perceived as a circle despite the fact that some part 
of it is missing.

The Law of Symmetry

The regions which are surrounded by symmetrical borders are 
perceived as coherent figures in the scenes shown in Figure 2.6e.

The Law of Simplicity

In the stimulus where more than one figure can be perceived, the 
ambiguity is resolved in favour of the simplest alternative. For 
example if a smaller number of different angles or lines are 
required to interpret a figure as three-dimensional instead of two- 
dimensional, the observer will normally choose the three- 
dimensional alternative. This effect is shown in Figure 2.6f.

The Law of Common Fate

If a group of elements are moving with a uniform velocity through 
a field of similar elements, the moving elements are perceived as 
part of a coherent group. In the study of obtaining structure from 
motion, Ullman [1979] has used this law of common fate.

The major problem with the above set of laws is their lack of 
explanatory power. It is possible to argue that all perceptual 
tendencies are implied explanations of how sensed data relates to 
the scene content. One of the explanations is that any partitioning
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decision must satisfy the criteria of completeness, stability, and 
limited complexity. This viewpoint provides a broader basis for 
understanding Gestalt laws. Some additional ideas about the 
nature of perceptual organisation, such as the existence of a pre- 
attentive visual system and a vocabulary of perceptual primitives 
has been discussed in the previous chapter.

2.5 Classification of Grouping Processes

In machine vision, organisation of the intermediate levels receive 
image level features from low level image data and produce 
different intermediate representations. The main process in 
building intermediate representations from different types of 
features is to group them. The perceptual organisation can also be 
defined as the basic capability in human vision to derive relevant 
groupings from an image where groups of features lead to 
structures. Many areas of research in computer vision, e.g. 
structure from motion or stereo matching, are basically grouping 
problems where the pixels are grouped into sets of related 
features. The grouping processes establish relations between 
different elements of the image which hopefully will survive at 
the higher levels of vision. The best rules for grouping lead to 
those groups which are retained intact during the higher levels of 
the machine vision process. This principle is similar to the Marr's 
[1976] principle of least commitment.

There are two distinct classes of grouping. One is based on 
expectations and a-priori knowledge. Hough techniques are a good 
example of this category. An assumption is made as to the 
probable shape of the group, which is usually a first or second 
order curve. Then a search is made for the instances of that shape.

The second class of grouping is based on perceptual organisation 
and uses the different laws of organisation described in the 
previous section. This type of grouping is currently supported by 
Witkin, Tenenbaum [1983] and Lowe [1985] and is based on the 
argument of non-accidental. This is the degree to which an image 
relation is not arisen by accident. It is normally assumed by
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psychophysical researchers that there is little, or no chance of any 
regular relation existing in the image by accident. The non­
accidental argument in the first instance, seems to eliminate 
expectation but actually it only reduces the importance of the role 
of prior knowledge of the scene content at early and intermediate 
stages of vision.

2.5.1 Perceptual Grouping

The perceptual grouping is carried out on the basis of image 
content and does not require any scene specific knowledge. This 
means that this type of grouping is very useful and effective for 
the development of a general purpose and domain independent 
vision system. As these grouping processes do not utilise any  
domain specific knowledge, they can only be used as an early or 
intermediate level processes. However, they can be used to play a 
very important role in reducing the amount of image level data 
effectively without loosing any useful information. Following 
perceptual grouping some knowledge of the scene can be 
employed for recognition.

The aim of this research is to use perceptual grouping for partial 
segmentation of colon images and thus avoid exhaustive search 
procedures. In this approach, the perceptual grouping is a part o f  
early and intermediate processing which produces different 
intrinsic characteristic images.

In the case of segmentation through edge detection, perceptual 
grouping has not been employed significantly in the previous 
work. The different laws of perceptual organisation have only 
been used for dot grouping or for segmenting a very simple class  
of images. In the next two chapters, we will see that these laws 
can be applied to extract early features similar to those found in 
animal vision (e.g. linear edge segments) and then to group these 
features into contours. The edge level linear segments can b e 
extracted at different resolutions by grouping on the basis of 
similarity in edge orientation, magnitude and edge pixel value in 
addition to proximity, continuity, and connectivity. At higher

- 4 9 -



levels, in contour extraction, linear segments can be grouped at 
different resolutions by using the principles of collinearity, 
curvilinearity, and theta-aggregation. Most of the laws of grouping 
define those image relations which are independent of any 
changes in viewpoint and therefore lead to a predictable structure 
in the scene.

2.5.2 Hough Techniques

As mentioned earlier, the Hough techniques belong to that class of 
grouping which is based on expectations and a-priori knowledge. 
In contrast to the perceptual groupings which are mostly data- 
driven, grouping based on Hough techniques utilise the knowledge 
of important scene structures. These techniques are well 
developed and more than 150 research, development, and
application projects on them have been reported since the time
Hough [1962] introduced the transform. The Hough techniques 
include a vast variety of clustering, histogram analysis and
estimation strategies. They transform data in such a way that the 
shape of interest will form into clusters. The Hough transform was 
first developed for grouping features into simple geometric lines 
[Duda and Hart 1972] and curves but more recently it has been 
generalised and can be implemented to group two or three- 
dimensional features [Ballard 1981]. A comprehensive survey of 
Hough techniques has been completed recently [Illingworth and 
Kittler 1988], which can be consulted for detailed applications of 
Hough transform.

Basically the Hough transform is a mapping from one
representation (e.g. primal sketch which includes edge 
information) into a new space in which elementary shapes or 
shape features are easy to extract. The simplest form of the Hough 
transform is described for line detection. Consider the line
equation:

x Cos0 + y Sin0 = p (2.1)
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Suppose we have detected features with a local edge orientation 
and a measure of edge contrast.

For a line we can define a (p, 0) parameter space. Restricting 0 in 
the interval [0 , k] and p in the interval [-■j/Xx2+y2) < p < j/Tx2+y2)].

A line in x-y plane will map to a point in (p, 0) plane as shown in 
Figure 2.7 with different points (xj, y{) on the line which map to 
the same point in (p, 0 ) space.

Figure 2.7: The (p, 9) parameterisation of the line in 
Hough transform.
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This relation between image space and parameter space can be 
formally extended to the following algorithm for line detection:

-Quantise parameter space for maximum and 
minimum values of (p, 0).

-Form an accumulator array Ac(p, 6 ) with its initial 
value as zero.

-If the edge contrast exceeds some threshold, for 
each such edge point (xj, yj), increment each array 
element along the appropriate line.

i.e. Ac(p, 0) = Ac(p, 0) + 1

for p and 0 satisfying the line equation.

p = x Cos0 + y Sin0

-Local maxima in the accumulator array w i l l  
correspond to collinear points in the image array.
The values of the accumulator array give the 
number of points on the line.

Generally this technique can be extended to other curves and 
shapes represented by a function F(X , P ) where P is the 
parameter vector and X represents the initial representation. For 
example to detect a circle parameterised by the equation.

(x -  a)2 + (y -  b)2 = r2 (2.2)

The parameter vector, P will be: 

P = (a, b, r)

and the Cartesian vector X is:

X = (x, y)
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The major draw back of the Hough techniques is that their 
computation cost and the size of the accumulator array increases 
exponentially with the increase in number of parameters for 
complex shapes. There are, however, a number of extensions 
which can be employed to reduce the computation, for example 
we can utilise gradient direction in detecting conics like circles and 
ellipses. Similarly magnitude of edge contrast can be utilised as a 
heuristic in incrementing the accumulator.

Brady [1983] has criticised Hough techniques as means for 
obtaining representations at intermediate level vision due to the 
following factors.

-Widely spread weak evidence can become strong 
evidence after transformation.

-In some cases a small portion of contour can 
guarantee the presence of an object. However,
Hough's voting system may reject the detection of 
that object due to its small number of votes.

-It does not provide means for detecting localised 
imperfection, in the objects.

Most of this criticism of Hough transform is of the representation 
that it provides, rather than its use as a grouping process. The 
biggest criticism against the Hough transform, in the context of 
perceptual organisation, is that it entirely ignores the proximity 
criterion for grouping. This drawback has been overcome in the 
implementation which will be described in the next chapter.
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C H A P T E R  3

EXTRACTION OF CURVED LINE SEGMENTS

3.1 Introduction

In machine vision, the boundary of a uniform region is usually a 
very important image feature. Boundaries provide u s e f u l  
information for segmenting images into meaningful regions. There 
is also a widely held belief that humans isolate object boundaries 
in a scene before recognising them. In endoscopic colon images, 
the contours due to the occluding edges of the inner muscles of 
human colon, can be used for guiding the endoscope. These 
contours also provide clues for building a three-dimensional 
representation of the inner colon. There are a number of 
approaches to form a representation of object boundaries or 
contours in an image. One approach is to extract uniform regions 
and then process them for their boundaries. These region based 
techniques always form closed boundaries. An alternate approach 
assumes that a series of edge points define the boundary. The 
edge points are detected by sensing where the pixel v a l u e  
(intensity, colour, texture, or range) changes abruptly. These edge 
points can be linked into lines or curves. Computation of the 
gradient in pixel intensity or any other image property, can be 
achieved by some differentiation operator. The spatial and other 
relationships among the edges are utilised to infer more global 
entities in the form of boundaries.

The approach to extract curved contours and boundaries, 
described in this thesis, utilises a bottom-up organisation of edge 
point data. Our method of organising the image data uses the 
information presented in the data itself and perceptual 
organisation rules which are domain independent. Most of the 
boundary extraction techniques link edge points into boundaries 
directly and sequentially without an intermediate representation.
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An alternative strategy is to form an intermediate representation 
of the desired contours before obtaining a final representation. 
This will not only limit the use of domain specific knowledge at 
the early stages of visual data organisation but will also reduce 
the amount of data to be processed at higher levels. The straight 
line segment representation is a good candidate to be formed from 
edge point data. An hierarchical line segment representation has 
been used at two resolutions by grouping edge points in different 
sized image windows. The grouping is directed by employing the 
different laws of perceptual organisation described in the previous 
chapter. It is easy to perform these processes on a local basis, and 
they are highly effective in filtering out noisy edges. Moreover, 
these grouping operations are amenable to parallel computation. 
When the line segments have been obtained, they are grouped 
hierarchically using a pyramid structure to form curved contours. 
This last part also allows parallel implementation on a pyramid 
based computer architecture. The step of extracting short line 
segments plays the central role in our method. Its ability to filter 
out noisy edges and to produce significant line segments has a 
considerable influence on the later, higher level, process of 
boundary formation. The perceptual grouping of edge points into 
straight line segments is treated in detail in this chapter before 
describing the overall contour extraction algorithm.

3.2 Motivation and Problem Definition

The motivation behind the introduction of the straight line 
segment representation for curved boundary formation comes 
mainly from the neurophysiological studies of early data 
organisation in animal vision. This subject has been discussed 
extensively in the previous chapter. The experimental data about 
the different processes in the visual cortex of cats and monkeys 
indicates that a line segment representation is formed by simple 
and complex cells in the visual cortex. The straight line segments 
are detected by grouping the point data supplied by contrast 
sensitive centre-surround cells in lateral geniculate nucleus (LGN) 
and the visual cortex. The well known signal to symbol paradigm
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a lso  supports the id ea  that an in term ed ia te  rep resen ta tio n  sh o u ld  

b e  form ed  as the first step in  form in g  a boundary rep resen ta tion  

o f  an im age.

S h o r t l in e  s e g m e n ts  are g o o d  c a n d id a te s  fo r  fo r m in g  an  

in te r m e d ia te  r e p r e s e n ta t io n . C le a r ly , th e y  ca n  b e  u s e d  to  

rep resen t the bou n d aries o f  p o ly h ed ra l o b jec ts . M o reo v er , cu rv ed  

o b jec t bou ndaries can  a lso  b e  app rox im ated  by p ie c e -w is e  stra ight 

l in e  segm en ts. T h ey  thus have the a b ility  to  represent any type o f  

co n to u rs  and b ou n d aries.

F rom  th e co m p u ta tio n a l p o in t o f  v ie w , any rep re sen ta tio n  in -  

b e tw e en  the e d g e  p o in t data and bou ndary  con tou rs w il l  red u ce  

the im a g e  data to be p ro cessed  at h igh er le v e ls . G en era lly , th o se  

in te r m e d ia te  r e p r e se n ta tio n s  w h ic h  can  b e fo r m e d  b y  lo c a l ,  

in d ep en d en t and p a ra lle l p r o c e sse s , are preferred  for  early  v isu a l 

p r o c e s s in g . S h ort l in e  seg m en ts  ca n  b e ex tra cted  in d ep en d e n tly  

and in p a ra lle l. M oreover , th eir  ex tra c tio n  d o es  n o t requ ire any  

d o m a in  s p e c if ic  k n o w le d g e . M arr [1 9 7 6 ]  has a lso  in c lu d e d  the  

short lin e  seg m en ts  and bar lik e  fea tu res in h is w e ll  kn ow n  raw  

prim al sk e tch . W e b e lie v e  that short lin e  seg m en ts  ex tra cted  at 

d if fe r e n t  r e s o lu t io n s  p r o v id e  e n o u g h  in fo r m a tio n  fo r  fo r m in g  

c o m p le te  con tou rs and bou n d aries.

T h e con tou rs in  e n d o sc o p ic  im a g e s  are form ed  by the o cc lu d in g  

e d g e s  o f  r ings o f  m u sc le  and do n o t c o m e  from  the fin er  texture  

d eta ils  and other artefacts o f  the hum an co lo n . T he m ain prob lem  

w ith  the ex traction  o f  th ese  con tou rs is  the inh erent n o ise  in  th is  

ty p e  o f  m ed ica l im a g e s . O ther p ro b lem s appear du e to sp ecu lar  

r e f le c t io n s , u n e v e n  su rfa ce  tex tu re , and th e p r e se n c e  o f  oth er  

m atter in  th e env iron m en t o f  the c o lo n . In a s in g le  im a g e  fram e, 

v is u a l in sp e c tio n  can  o n ly  lo c a te  o n e  or tw o  r in g s o f  m u sc le  

u su a lly , and at the m ost four to f iv e  r in gs. T h ese  are o n ly  partia lly  

v is ib le  due to b en d s, tw ists , and other irregu larities in the co lo n . 

O n e u se fu l fact about occ lu d in g  contou rs is  that th ey  cannot cross  

ea ch  other. A t the n earest po in t on e  con tou r w ill end  on another. 

T h ere fo re , the con tou rs are w e ll  apart, and so , in  order to  fin d  

s tr a ig h t l in e  s e g m e n ts  w h ic h  a p p ro x im a te  th e c u r v ed  m u sc le
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r in g s , w e  h a v e  a ssu m ed  that, in  a sm a ll square w in d o w  o f  the  

im a g e , there e x is ts  o n ly  a s in g le  lin e  segm en t. T h e w h o le  im a g e  is  

broken  up  in to  sm a ll w in d o w s w h ich  are p r o c essed  in d ep en d en tly  

o f  each  other. M any o f  the r in gs o f  c o lo n  m u sc le  h a v e  v ery  lo w  

co n tra st d u e  to  u n ev en  illu m in a t io n . T h erefo re , in  ea ch  w in d o w  

w e  are lo o k in g  for  a m e a n in g fu l l in e  w h ich  m ay  b e  w e a k  but 

p e r c e p tu a lly  s ig n if ic a n t . T h e  c o rn ers  and jo in ts  o f  th e  a c tu a l 

con tou rs can  be f i l le d  in  afterw ards by  u sin g  e d g e  p o in t data. T he  

s iz e  o f  the w in d o w  is  d eterm in ed  by the am ount o f  d e ta il w h ich  

o n e  w an ts to  ex tract in  a g iv e n  im a g e . W e h a v e  fo u n d  that the  

grou p in g  o f  e d g e  p o in t data at tw o  se le c te d  s iz e s  o f  w in d o w s is  

ad eq u ate  for  ex tra ctin g  r ea so n a b le  b ou n d aries.

3.3 P rev io u s  W o rk  on E x tra c tin g  L ine S egm ents

A s argued  in  th e  p rev io u s  se c t io n , the d e te c tio n  o f  short lin e  

seg m en ts  by grou p in g  ed g e  p o in t data is  an im portant and in itia l  

step  tow ards contou r extraction . W e w ill  n ow  rev ie w  the prior lin e  

e x tr a c t io n  te c h n iq u e s  b e fo r e  d e s c r ib in g  a n o v e l  a p p r o a c h ,  

d e v e lo p e d  for  d e te c tin g  short lin e  seg m en ts . T here are tw o  m ain  

ca teg o r ies  o f  e d g e  p o in t grouping techn iq ues: g lo b a l and lo c a l ed g e  

l in k in g . T h e  te c h n iq u e s  u s in g  g lo b a l c r iter ia  fo r  lin k in g  are  

d i f f i c u l t  to  im p le m e n t  in  p a r a l le l .  T h e y  a ls o  b e c o m e

co m p u ta tio n a lly  e x p e n s iv e  w hen  the am ount o f  e d g e  data is  large. 

S o m e  o f  the g lo b a l ed g e  lin k in g  tech n iq u es are b a sed  on graph  

th eo re tica l search  m eth od s w h ere  the e d g e s  are v ie w e d  as n o d es  

o f  a graph and a c o st  factor  is  a sso c ia ted  w ith  each  lin k  b etw een  

n o d es [M artelli 1 9 7 6 ]. T he c o st  can be a fu n ction  o f  the p rox im ity  

and d irection  o f  the ed g e  e lem en ts . T he m in im um  c o st  paths in  the  

graph are tak en  to  corresp on d  to  the d esired  b o u n d a r ies. R am er  

[1 9 7 5 ]  h as u se d  an h e u r is tic  search  te c h n iq u e  to  f in d  p a th s. 

A lth o u g h  th is  w as b a sica lly  a g lo b a l m eth od , h e  n eed ed  to  u se  an 

in term ed ia te  o r g a n isa tio n  b a sed  on  streak s w h ic h  w ere  d e te c ted  

b y  sea r c h in g  th e e d g e  p o in t data  b i-d ir e c t io n a lly . Z ahn [1 9 7 1 ]  

b u ilt  a m in im u m  sp an n in g  tree in  the graph to  d e te c t  c lu ste r s . 

R e c e n tly  th e  m in im u m  sp a n n in g  tree w a s  u se d  fo r  e x tr a c tin g  

c u rv ilin ea r  fea tu res at g lo b a l and lo c a l w in d o w  le v e ls  [S u k  and
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S o n g  1 9 8 4 ]. T he resu lts  in d ica te  a d eter iora tion  o f  b ou n d aries in  

the lo ca l w in d o w  m ode. T he g lo b a l ed ge  lin k in g  m ethods co p e  w ith  

n o is e  by  u s in g  d om ain  s p e c if ic  k n o w le d g e  and h eu r is tic s  w h ic h  

m a k e  th em  le s s  a p p lic a b le  to  e a r ly  and  in te r m e d ia te  v is u a l  

p r o c ess in g  for  gen era l p u rp ose v is io n . D u e  to their  g lo b a l nature, 

the com pu tation al co st is  a lso  n ot lo w  enough  for their u se  in  r ea l­

tim e ap p lica tion s lik e  the autom ation  o f  an en d o sco p e .

In the c a se  o f  lo c a l ed g e  lin k in g , w e  w ill  restrict o u rse lv es  to  the  

ex traction  o f  o n ly  short straight lin e  seg m en ts  as an in term ed ia te  

s tep  for co n to u r  ex tra c tio n . T h e p rob lem  o f  l in e  e x tra c tio n  by  

grouping e d g e  p o in ts  has been w orked  on , s in ce  the early  days o f  

sce n e  a n a ly s is . R oberts [1 9 6 5 ] lin k ed  e d g e s  in to  stra ight seg m en ts  
lo c a lly  in a 4 x 4  w in d o w  and e d g e s  due to  n o ise  w ere  e lim in a ted

by ignorin g  th ose  w h ich  do not have  at lea st one neighb our w ith  a 

d ir e c t io n  w ith in  a f ix e d  to le r a n c e  ( 2 3 °  o f  to le r a n c e  w a s  

m en tio n ed ). G riffith  [1 9 7 3 ] u sed  a m ore co m p lica ted  tech n iq u e  for  

lin k in g  e d g e s  in to  stra igh t l in e s .  T w o  se ts  o f  fea tu re  p o in ts ,  

v e r t ic a l and h o r izo n ta l e d g e s , w ere  u sed  as in p u t to the l in e  

e x tr a c tio n  a lg o r ith m . T h e v e r t ic a l and h o r iz o n ta l e d g e s  w ere  

projected  on the y -a x is  and the x -a x is  r e sp e c tiv e ly  by rotating  the  

a x e s  to  a b o u t 2 0 0  a n g le s . T h e  d ir e c t io n  o f  th e  l in e s  w a s  

d eterm in ed  b y  h isto g ra m m in g  the occu rren ce  o f  e d g e s  for  ea ch  

d ifferen t an g le  o f  the axes.

T h e H ough  transform , w h ich  has been  in trod u ced  in the p rev io u s  

chapter as a grou p in g  p r o c ess , p ro v id es  an in terestin g  m ean s o f  

s tr a ig h t  l in e  e x tr a c t io n .  T h is  m e th o d  is  b a s e d  on th e  

tra n sfo rm a tio n  o f  p o in ts  in to  stra igh t l in e s  u s in g  a p aram eter  

sp a ce . T here are a num ber o f  param eterisation  sch em es d e v e lo p e d  

for im p lem en tin g  the H ou gh  transform  and w e  w ill  n o w  d isc u ss  

so m e  o f  th em  here. In itia lly  the lin e  w as param eterised  in  term s  

o f  its  s lo p e  and in ter c ep t [H o u g h  1 9 6 2 ] . T h e s lo p e - in te r c e p t  

p a r a m e te r  s p a c e  is  u n b o u n d e d  w h ic h  c o m p l i c a t e s  i t s  
im p le m e n ta t io n .  T h e  a n g le -r a d iu s  ( p ,  0 )  p a r a m e t e r i s a t io n ,  

d isc u sse d  in chapter tw o , w as p rop osed  to o v erco m e th is prob lem  
w here the radius, p is the d istan ce o f  lin e  from  the origin  and 0 is 

the a n g le  o f  its  norm al [D uda and Hart 1 9 7 2 ]. G en era lly , for a
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g iv e n  fe a tu re  p o in t th e  p v a lu e  is  co m p u ted  fo r  ea ch  o f  the  

q u a n tised  v a lu e s  o f  0 u s in g  eq u ation  (2 .1 ) . T he v a lu es  o f  p are 

then  q u an tised  in to  a f ix e d  num ber o f  in terv a ls  o f  w id th  A p . In 

th is  w a y , the im a g e  is  d iv id e d  in to  bar sh ap ed  w in d o w s . T h e  

s e le c t io n  o f  o p tim a l q u a n tisa tio n  o f  th e  a n g le -ra d iu s  p aram eter  

sp ace  is  a d iffic u lt  prob lem  in itse lf . T he reso lu tion  o f  lin e s  for a 
g iv e n  q u a n tisa tio n  c h a n g e s  w ith  0 and p . A n ex ten s io n  o f  a lin e  

peak  n o t o n ly  dep en d s on its  len g th  and w id th , but a lso  on  the  

q u a n tisa t io n  o f  th e  p a ra m eter  sp a c e . T h e  f in e r  q u a n tisa t io n  

red u ces the ex ten t o f  the p eak  and it a lso  en h an ces the e f fe c t  o f  

im a g e  q u a n tisa tio n . V an V e en  and G roen  [1 9 8 1 ] h a v e  d isc u sse d  

q u an tisa tion  errors in the H ou gh  transform .

W a lla ce  [1 9 8 5 ] has p rop osed  a n ew  param eterisation  in w h ich  the  

lin es  are represen ted  by tw o  p o in ts  on the op p o site  en d s o f  im age  

boundary. T h e im a g e  is  a ssu m ed  to be bou n d ed  b y  a rectan gu lar  

b o x  w h o se  s id es  are p ara lle l to  the x -a x is  and y -a x is , ex ten d in g  
from  the orig in  to the vertex  (X m ax, Y m ax). A  lin e  p assin g  through  

the im a g e  is  p aram eterised  by the tw o  c ro ss in g  p o in ts  w here the  

l in e  in ter sec ts  the b ou nded  b o x . T he in ter sec tio n  p o in t param eter  

sp a ce  is  e x p la in ed  in  F igu re  3 .1 , w h ere  P I  and P 2  are the tw o  

in tersectio n  p o in ts  for a g iv en  lin e . T he p o in ts  can be rep resen ted  

s im p ly  b y  th eir  d ista n ces  d l  and d 2  from  the or ig in  a lo n g  the  

p er im eter  o f  the b o u n d in g  b o x  su ch  that d l  is  le s s  than d2. 

F orm an  [1 9 8 6 ]  has argu ed  fo r  a h y b r id  p a r a m e te r isa tio n  in -  

b etw een  the an g le-rad iu s and W a lla ce  param eters. H is a n g le -p o in t  

p aram eterisa tion  is  based  on the lin e  d irection  and its  in tersec tio n  

p o in t  w ith  th e  im a g e  b o u n d a r y . T h e  f o o t  o f  n o r m a l  

param eterisation  w as p rop osed  by D a v ie s  [1 9 8 6 ], in  w h ich  the lin e  

is  p aram eterised  by its p o in t o f  in tersec tio n  w ith  a norm al v ecto r  

fr o m  th e  im a g e  o r ig in . It is  a ls o  s u g g e s t e d  th a t th is  

p aram eterisa tion  is  su itab le  for  sm all im a g e  w in d o w s.

W e have adapted  the W a lla c e  param eter sp ace  for grou p in g  ed g e  

p o in ts  p ercep tu a lly  to extract lin e  seg m en ts . T he m ain  ad van tages  

o f  this param eter space are its su itab ility  for app lication  to 

r a ste r ise d  im a g e s , th e  c o n sta n t l in e  r e so lu t io n  th ro u g h o u t th e
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d2 -  S +  X max + Y max

F igure  3 .1 :  Line  p a ra m e te r i s a t io n  in te rm s  o f  the  
two intersection  po in ts  P I  a n d  P2  be tw een  the line 
and  the bounding box.

im a g e  s p a c e , and  its  lo w  c o m p u ta t io n a l c o s t  b e c a u s e  n o  

tr ig o n o m etr ic  fu n c tio n s  are in v o lv e d . In a d d itio n  to  that, it  is  

h ig h ly  su ita b le  fo r  e x tr a c tin g  lin e  s e g m e n ts  in  sm a ll im a g e  

w in d o w s due to tw o  m ain reasons:

-It is  e a sy  to d e c id e  and co m p u te  w h ich  fea tu re  

p o in t v o te s  for  w h ic h  lin e  w ith in  the p aram eter  

sp a ce . T h ere fo re  s id e lo b e s  [B row n  1 983] and b ias  

[C ohen  and T ou ssa in t 1977] inherent in  the or ig in a l 

H ou gh  transform  can be reduced .

-F or a sm all im a g e  w in d o w , w here the accu racy  o f  

l in e  en d  p o in ts  is  n o t im p ortan t, the in te r se c t io n
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p o in ts  can be u sed  as the en d  p o in ts  for the lin e  

extracted . T h is  e lim in a tes  th e n eed  for com p u ta tion  

o f  end  p o in ts  req u ired  in  the tra d itio n a l H o u g h  

s p a c e .

A s d iscu ssed  in  the p rev iou s chapter, H ough  tech n iq u es h ave  been  

c r it ic i s e d  on th e  v io la t io n  o f  p r o x im ity  c r ite r io n  w h ic h  is  

e x te n s iv e ly  u se d  by  hum ans in  c o llin e a r ity  g ro u p in g . O ’G orm an  

and C lo w e s  [1 9 7 6 ]  tr ied  to  r e c t ify  th e H o u g h  tran sform  lin e  

d e te c t io n  p r o c e s s  by  u s in g  g r a d ie n t  d ir e c t io n  to  d e te r m in e  

r e le v a n t e d g e s  fo r  a lin e  in  a g iv e n  d irec tio n . T h eir  g rou p in g  

p r o c e s s  is  b a se d  on  c o l l in e a r ity  and r e je c ts  c o m p le te ly  the  

p r in c ip le  o f  th e ta -a g g r e g a t io n  a d v o c a te d  b y  M arr [1 9 7 6 ] .  

M o reo v er , th ey  h a v e  u sed  a th resh o ld ed  e d g e  m a g n itu d e  in the  

v o tin g  p r o c ess  w h ic h  m ay su p p ress  the co n tr ib u tio n  from  w ea k  

but m ea n in g fu l e d g e s . V an V een  and G roen [1 9 8 1 ] fo llo w e d  the  

O 'G orm an and C lo w e s  app roach  and s u g g e s te d  w e ig h t in g  the  

H o u g h  tran sform  w ith  the p r o b a b ility  d e n s ity  fu n c tio n  o f  the  

g ra d ien t d ir e c t io n .

A lm o st a ll o f  the ab ove  boundary lin e  ex traction  a lgor ith m s have  

b een  d e v e lo p e d  to d e tec t bou ndaries o f  s im p le  p o ly h ed ra l ob jects . 

T heir  p erform an ce is  a lso  dem on strated  on very  s im p le  n o ise  free  

in d o o r  sce n e s  w ith  id ea l illu m in a tio n  c o n d it io n s , c o n ta in in g  o n ly  

b lo ck  and toy  lik e  ob jects . So  w e  see  that th ese  m eth od s require  

c o n s id e r a b le  im p r o v e m e n ts  to  c o p e  w ith  o u td o o r  s c e n e s  w ith  

cu rv ed  o b jec ts .

C anny [1 9 8 3 ] has a lso  lin k ed  the ed g e  p o in ts  in to  short con tou r  

segm en ts  (e d g e ls )  in h is w e ll accep ted  w ork on ed g e  d etection . H is  

m eth od  is  b ased  on co n n ec tin g  e d g e s  in such  a w a y  that so m e  

p ortion  o f  the con tou r  is  a b o v e  a h igh  th resh o ld  w h ile  the rest 

m ust be ab ove a lo w  threshold . T he m ethod is  not g o o d  enough  to  

d etec t a w eak  but m ea n in g fu l lo n g  ed g e . B lich er  [1 9 8 4 ] has a lso  

p o in te d  ou t a s im ila r  p ro b lem  w ith  C anny's e d g e  lin k in g  and  

su g g e ste d  the u se  o f  som e H ou gh  lik e  m eth od  for  lin k in g  ed g e s  

in to  straight lin e s .
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T h e u se  o f  e d g e  or ien ta tion  in stea d  o f  m agn itu d e  in  th e in itia l  

organ isa tion  o f  im a g e  data has rec e n tly  been  a d v o ca ted  b y  B urns  

et al. [1 9 8 6 ]. P rev io u s ly  ed ge  m agn itud e w as u sed  in on e  form  or 

an oth er  as a d o m in a n t m ea su re . T h eir  lin e  e x tr a c tio n  a lg o r ith m  

in v o lv e s  group in g  o f  p ix e ls  in to  lin e  support r eg io n s  based  on the  

s im ila r ity  o f  e d g e  or ien ta tion . T h e lin e s  are ex tra cted  from  each  

reg io n  by fittin g  a p lan e  to  the in ten sity  surface o f  the reg io n . In 

ad d ition  to other p rob lem s m en tio n ed  by the authors, the m eth od  

d o es  not handle the approxim ation  o f  curved  lin e s  by stra ight lin e  

s e g m e n t s .

3.4 P e rc e p tu a l G ro u p in g  o f E dges in to  L ine  Segm ents

T he e x is t in g  tech n iq u es for lin e  seg m en t ex traction  can  n ot co p e  

w ith  d ifferen t ty p es  o f  n o ise  e f fe c t iv e ly . T h ey  are a lso  un ab le  to  

id en tify  th ose  lin e  segm en ts w h ich  are part o f  a curved  con tou r or 

a cu rv ed  su r fa ce . T h ere fo re  a n ew  m eth o d , fo r  g ro u p in g  e d g e  

p o in ts  in to  sh o rt l in e  se g m e n ts , is  r eq u ired . T h e  m eth o d  o f  

group in g  ed g e s  in to  short lin e  seg m en ts , that has b een  d e v e lo p e d , 

can  be carried  ou t in a lo c a l w in d o w  m od e  and the p ro cess  is  

im p le m en ta b le  in  p a r a lle l. A g g r e g a tin g  e d g e  p o in ts  is  an early  

p ro cess  in m ach in e  v is io n  and th erefore  it is  h ig h ly  data d irected . 

T h e in form ation  w h ich  is  u sed  to  group  e d g e  p o in ts , is  m a in ly  

carried  by the e d g e  po in ts th em se lv es  in  the form  of:

-E d ge lo ca tio n .

-E d g e  o r ien ta tio n  and m agn itu d e.

-E d ge p ix e l va lu e  (grey le v e l, co lou r , or range).

In th e  p r e v io u s  ch ap ter , w e  h a v e  d is c u s se d  d if fe r e n t  la w s  o f  

o rg a n isa tio n  w h ich  can be u t ilise d  to group im a g e  data. A m o n g  

th e m , th e  p r o x im ity , c o n n e c t iv i t y ,  and  s im ila r ity  in  e d g e  

o r ien ta tio n , m a g n itu d e , and e d g e  p ix e l  in ten s ity  h a v e  b een  u sed  

fo r  a g g reg a tin g  e d g e  p o in ts  in to  s ig n if ic a n t  lin e  seg m en ts . T h ese  

grou p in g  criter ia  se e m  very  s im p le  and ordinary but to  d ate, no  

o n e  has e x p lo ite d  th eir  stren gth  e f fe c t iv e ly  and c o m p le te ly  for  

se g m e n tin g  im a g e s  in  a u n if ie d  w a y . T h e g ro u p in g  p r in c ip le s
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fo llo w  the n o n - a c c i d e n t a l  argum ent, w h ich  is  b a sed  on the fa c t  

that th ere is  a v ery  sm a ll p ro b a b ility  o f  a reg u la r  r e la tio n sh ip  

occu rrin g  by  ch a n ce . T he lik e lih o o d  o f  a l in e  structure, due to  

n o is e  or so m e  o th er  a c c id en ta l p h en o m en o n  d e c r e a se s  w ith  its  

c o n s is te n c y  under th e d ifferen t la w s  o f  p ercep tu a l grou p in g . T he  

p ro b lem s in  u s in g  th ese  a g g reg a tio n  m eth o d s is  th e  la ck  o f  an 

e f fe c t iv e  im p lem en ta tio n . T here is  a lso  the u n reso lv ed  prob lem  o f  

c o m b in in g  th e  r e su lts  w h e n  d if fe r e n t  c r ite r ia  g iv e  d if fe r e n t  

ou tp u ts. It is  d if f ic u lt  to  d e d u c e  w h ic h  cr iter ia  are th e m ore  

e f fe c t iv e . T he in d iv id u a l a g g reg a tio n  m eth od s are d isc u sse d  first, 

and afterw ards w e  sh a ll co n sid er  h ow  to co m b in e  th eir  resu lts.

P r o x i m i t y

T h e  g r o u p in g  b a se d  on s p a t ia l  p r o x im ity  h a s  b e e n  u se d  

e x te n s iv e ly  in  m an y  c lu s te r in g  p r o b le m s . T h e p e r fo r m a n c e  o f  

p ro x im ity  grou p in g  dep en d s on  the accurate lo c a lisa t io n  o f  e d g es. 

T h o se  e d g e  p o in ts  are grouped  w h ic h  are c lo se r  and l ie  on  the  

s tra ig h t l in e . P r o v id in g  that th e  nu m ber o f  v o te s  req u ired  to  

q u a lify  as a lin e  is  su ffic ie n t ly  large, the u se  o f  a sm all w in d o w  

e sta b lish es  the p rox im ity  criterion . In our c a se , the w in d o w  s ize s  
are 1 2 x 1 2  and 6 x 6  p ix e ls  and the m in im um  num ber o f  v o te s  are

e ig h t and four r e sp e c tiv e ly .

C o n n e c t i v i t y

T h is is  an im portant im age  rela tion  s in ce  it is  p reserved  over  all 

p o s s ib le  v ie w p o in ts . T h o se  e d g e  p o in ts  are g ro u p ed  w h ich  are 

con n ected  to each  other on a straight lin e . For the s iz e  o f  w in d o w  

that w e  are u s in g , no  d ista n ce  to leran ce  b e tw een  tw o  e d g e  p o in ts  

is  a llo w e d  fo r  p r o x im ity  g r o u p in g . T h e r e fo r e , c o n n e c t iv ity  is  

a u to m a tic a lly  o b se r v e d .

Sim ilari ty  in Edge  Orientation

T h is  is  the m o st e f fe c t iv e  and w id e ly  u sed  cr iter ion  for stra ight 

l in e  ex traction . A lm o st a ll o f  the p rev io u s lin e  ex traction  m eth od s  

u se  e d g e  o r ie n ta tio n  in  o n e  w a y  or an oth er. O ur m eth o d  is
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in f lu e n c e d  by the w ork  o f  O 'G orm an and C lo w e s  [1 9 7 6 ] but w e  

depart from  th eir  m eth od  in  m any r esp ec ts . T h e p rob lem  w e  are 

fa c in g  is  the ex tra ctio n  o f  cu rv ed  co n to u rs  o f  cu rv ed  su r fa ces , 

w h ich  are ap p rox im ated  by lin e  s e g m e n ts . T h ere fo re , in s te a d  o f  

se le c t in g  th o se  e d g e  p o in ts  w h o se  or ien ta tion  is  p erp en d icu lar  to  

the lin e  seg m en t, a s lo w  drift in  the or ien ta tion  is  a llo w e d  from  

on e e d g e  p o in t to  the n e igh b ou rin g  e d g e  p o in t on the lin e . T h is  

d r ift  h e lp s  in  fo r m in g  p se u d o  s tr a ig h t s e g m e n ts  r e p r e se n tin g  

c u r v e d  s e g m e n ts  in  th e  im a g e . T h e  s lo w  c h a n g e  in  e d g e  

orien tation  as on e  m o v es  a lon g  a curved  boundary is  illu stra ted  in  

F igure 3 .2 . A  lin e  segm en t can be represen ted  by u sin g  an a n g le -  
radius (p , 0 )  p aram eterisa tion  d escr ib ed  ea rlier  b y  the fo l lo w in g  

e q u a t io n :

x C os 0 + y Sin 0 = p (3.1)

Y
▲

E d ge d irection s drifted  by 80

H igh  grey  
l e v e l

►  X

F ig u r e  3 .2 :  G r o u p in g  e d g e s  in to  c u r v e d  l ine
s e g m e n t s .
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B y  fo llo w in g  the O'G orm an and C lo w es  approach, the a n g le  0 a lso  

r e p r e se n ts  th e  e d g e  o r ie n ta tio n  and o n ly  th o se  e d g e s  w h o s e  
orien tation  is  w ith in  a to leran ce  80  o f  the angle 0 (F igu re 3 .3 )  are 

a llo w ed  to v o te  for  the lin e . In our m ethod  o f  orien tation  grouping  

a s lo w  d rift is  a llo w e d  in  the o r ien ta tio n  o f  c o n s e c u t iv e  e d g e s  

a g a in s t  a la r g e  an gu lar  to le r a n c e . In th is  w a y , th e  g ro u p in g  

r e la t io n sh ip  fo rm ed  is  m ore  p e r ce p tu a lly  s ta b le  and reg u la r  for  

e x tr a c t in g  c o n to u r s  d u e to  c u r v ed  su r fa c e s . T h e  r e s u lt s  on  

e n d o s c o p ic  im a g e s  w h ic h  are p r e se n te d  in  th is  ch a p ter  a lso  

support th is c la im .

Y

Figure  3 .3 :  Rela t ion  be tw een  edge  or ien ta t ion  and  
line d irec tion.

T h e a g grega tion  on  the b asis  o f  s im ila r ity  in e d g e  o r ien ta tio n  is  

a lso  a llo w ed  w hether the ch an ge in in ten sity  is norm al to the lin e  

seg m en t or not. T h is is  eq u iv a len t to  Marr's grouping p r in c ip l e  o f  
t h e t a - a g g r e g a t i o n  fo r  l in e  s e g m e n ts . T h e th e ta -a g g r e g a t io n
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p r in c ip le  groups bar lik e  featu res on the b asis o f  p a ra lle lism  and  

c o llin e a r  d isp la ce m e n ts . A ssu m in g  that th e e d g e s  are very  short 

seg m en ts  h a v in g  d ir e c t io n s , th e ta -a g g re g a tio n  is  u se d  to r eco v er  

s ig n if ic a n t  l in e s .  It has b een  o b se r v e d  that th e ta -a g g r e g a tio n  

r e c o v e r s  th o se  s ig n if ic a n t  l in e  se g m e n ts  w h ic h  are g e n e r a lly  

m isse d . T h is  p r in c ip le  is  a lso  c o m b in ed  w ith  c u r v ilin e a r ity  and  

o r ien ta tio n  d r ift to  ex tract u se fu l lin e  stru ctu res. In F ig u re  3 .4  

so m e  s tim u li are sh o w n  to  d em o n stra te  that h u m an s u se  th ese  

group in g  criteria  to recover  cu rves and lin es .

I
I

I
I

(a )

\
\
\

\

\  '

^  \

\  ^

V\

\ /  

'  \

/
\  ^

I
I

✓

( b )

F igure  3 .4 :  (a) T h e ta -A ggrega t ion  p r in c ip le  b a s e d  
s t im u lu s ,  (b )  C o m b in in g  t h e t a - a g g r e g a t i o n  w i th  
curv i l inear i ty  a n d  or ienta t ion drift.
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Sim ilari ty  in Edge  Magnitude

T h is  is  another p r in c ip le  for  grou p in g  e d g e  p o in ts  w h ich  can  be  

u se d  to  f ilte r  ou t n o isy  e d g e s  ir re sp e c tiv e  o f  th eir  stren gth  and  

r eco v er  l in e s  w h ich  c o n s is t  o f  e d g e  p o in ts  h av in g  the sam e ed g e  

m a g n itu d e . T h e  p r o b a b ility  o f  r e c o v e r in g  a s ig n if ic a n t  l in e  

in c r e a s e s  w ith  th e  s im ila r ity  in  e d g e s  w ith in  a s m a ll

n eigh b ou rh ood  on that lin e .

Sim ilari ty  in Edge  P ixe l  Intensity

T h e grouping o f  ed g e  p o in ts  based  on sim ilar ity  o f  in ten sity  u ses  

c o n s is t e n c y  in  in te n s ity  rather than co n tra st. T h e o r e t ic a lly , it  

sh o u ld  p reven t the lin e  seg m en t from  c ro ss in g  o v er  b e tw een  the  

b a c k g r o u n d  and  fo r e g r o u n d  s id e s  o f  th e  b o u n d a r ie s . E d g e  

orien tation  can a lso  b e u sed  to do  th e sam e th ing . G en era lly , the  

g ro u p s o f  e d g e  p o in ts  b a sed  on  e d g e  in te n s ity  are n o t v e ry  

accurate in term s o f  lo ca lisa tio n .

T h e grou p in g  b a sed  on s im ila r ity  in  e d g e  o r ien ta tio n , m agn itu d e  

and ed g e  p ix e l in ten sity  are a ll supported  by  the n o n - a c c i d e n t a l  
argum ent. T here is  a very  litt le  ch an ce  that the ed g e  p o in ts  due to  

n o is e  and  o th e r  a r te fa c ts  w o u ld  h a v e  s im ila r  o r ie n ta t io n ,  

m a g n itu d e, and in ten sity  v a lu es .

3.5 Line Segment Extraction: Implementation Details

T h e tw o  m ain  step s in  ex tra ctin g  lin e  seg m en ts  are e d g e  p o in t  

d e te c t io n  and lo c a l  p e r c e p tu a l g r o u p in g  o f  e d g e  p o in ts  in to  

straight lin es  in a sm all im age w in d ow .

3 .5 .1  E d ge P oin t D etectio n

T h e p u b lish ed  w ork  on ed g e  d e te c tio n  is  so  e x te n s iv e  that it is  

d if f ic u lt  to  d isc u ss  a ll th e  w e ll  k n o w n  te c h n iq u e s  here. A b d ou  

[1 9 7 8 ] and B lic h e r  [1 9 8 4 ] h ave  su rv ey ed  and ev a lu a ted  in  d eta il 

the p a st and current e d g e  d e tec tio n  m eth o d s. M o st o f  th em  are
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based  on d etectin g  id ea l step e d g e s , w h ile  in  the real w orld  scen es , 

step  ed g e s  are a sm all p ercen tage. T hree m ain req u irem en ts o f  the  

ed g e  d etector  have been  p o in ted  out and th ese  are:

-G o o d  d e te c tio n ; w h ic h  n e e d s  a g o o d  s e n s it iv ity  

c r iter io n . In o th er  w o r d s , g o o d  d e te c t io n  m ea n s , 

m a x im isin g  s ign a l to  n o ise  ratio.

-G ood  lo ca lisa tio n  o f  ed g es.

-S in g le  resp on se  o f  a s in g le  ed ge .

A n a d d itio n a l req u irem en t is  the co m p u ta tio n  o f  accu ra te  e d g e  

orien tation  for  w eak  (lo w  contrast) e d g e s . S in ce  sim ilar  orien tation  

is  an im p ortant p ercep tu a l criter ion  u sed  in our m eth od , accurate  

e d g e  d ir e c tio n  co m p u ta tio n  is  v ery  im p ortant for  the s u c c e s s  o f  

the p ercep tu a l grou p in g  p ro cess .

T h e  s im p le st w a y  o f  ex tractin g  ed g e  p o in ts  is  by  u sin g  m asks to  

c a lc u la te  g r a d ie n t  m a g n itu d e  and  d ir e c t io n . B a s ic a l ly  e d g e  

d e te c tio n  is  an i l l-p o s e d  p rob lem . L arge e d g e  m a sk s , w h ich  are 

larger than the im a g e  fea tu res, sm ooth  the im a g e  and so m etim es  

rem o v e  th e r e lev a n t im a g e  fea tu res c o m p le te ly . T h e sm a ller  s iz e  

m ask s id e n t ify  m u ltip le  e d g e s  for  larger  fea tu res . T o  o v e rc o m e  

th e se  d if f ic u lt ie s ,  M arr and H ild reth  [1 9 8 0 ]  u se d  m u ltip le  s iz e  

operators. T hey  a lso  tried to regu larise  ed g e  d e tec tio n  by blurring  

the im a g e  w ith  a gau ssian  filter  in their D O G  operator. In add ition  

to  that th ey  u se d  the zero  c r o ss in g s  o f  th e  sec o n d  d ir e c t io n a l  

d e r iv a t iv e  to  d e te c t  e d g e s , rather than  r e ly in g  on  g r a d ie n t  

m a g n itu d e . T h e y  h a v e  s e t t le d  fo r  th e o r ien ta tio n  in d e p e n d e n t  
L ap lacian  operator ( V 2 G) by assu m ing  a linear variation . T he m ain

prob lem  w ith  the m u ltip le  s iz e  operators is  that their s iz e  sh ou ld  

m atch  w ith  the im a g e  e v en ts  and g en era lly  b e fo re  p r o c ess in g  the  

im a g e  o n e  m ay n o t k n ow  the im a g e  e v e n ts . M o reo v er , M arr and  

H ildreth  d o  not p rov id e  any c lu e  as to h ow  to co m b in e  and group  

the outputs o f  d ifferen t s ize  operators.

- 6 8 -



R id g e -v a lle y  and step  e d g e  d e tec to rs  rep orted  by H ara lick  et al. 

[1 9 8 3 , 1 9 8 4 ] h a v e  b een  tried  on the e n d o sc o p ic  im a g e s  in  t h i s  

stu d y . T h e se  op erators d e te c t e v e n ts  in  th e im a g e  by  f it t in g  a 

c u b ic  su rfa ce  o v er  a p r e -d e fin ed  w in d o w  s iz e . T h ey  w e re  tr ied  

b eca u se  o f  the ex isten ce  o f  r idge lik e  m u sc les  in the c o lo n  im a g es. 

T h e  p er fo r m a n c e  o f  th e se  d e tec to rs  on e n d o sc o p ic  im a g e s  w a s  

poor due to e x c e s s iv e  n o ise . T he output fro m  r id g e -v a lle y  d e te c to r  

w a s sparse and m issed  u se fu l and s ig n ifica n t structures.

A lth ou gh  w e  have the c h o ic e  o f  u sing  any on e o f  the w e ll a ccep ted  

e d g e  d e te c to rs  (e .g . th e  C anny, M arr and H ild reth , or H a ra lick  

O perators), w e  have ch o sen  a s im p le  e d g e  d etector  to  d em on stra te  

th e  c a p a b ilit ie s  o f  grou p in g  ed g e  p o in ts  p ercep tu a lly . T he s im p le  

e d g e  o p e r a to r s  h a v e  th e  a d v a n ta g e  th a t th e y  are e a s y  to  

im p lem en t and can perform  ed g e  d e tec tio n  at v id e o  rate on m o st  

o f  the e x is t in g  im a g e  p r o c e ss in g  hardw are sy ste m s (e .g . Im a g in g  
T e c h n o lo g y  S e r ie s  151 Im age  P r o c e sso r ) . T he b a s ic  3 * 3  e d g e

operator is  d e fin ed  by  tw o  m asks w h ich  com p u te  the e d g e  v a lu es  

in th e  h o r iz o n ta l and v e r t ic a l d ir e c t io n s . S u p p o s in g  th a t th e  

operator is  centred  at a p ix e l lo ca tio n  (x , y ) in the im a g e  and the  
p ix e l v a lu es  in  the surrounding 3 * 3  w in d o w  are d en oted  by:

I(x-l.y-l), I(x,y-1), I(x+l,y-l)
^(x-l.y), ^(x,y), I(x+l,y)
I(x-l,y+l), I(x,y+1), I(x+l,y+l)

as show n in  F igure 3 .5 .

T h e  e d g e  m a g n itu d e  in  the h o r iz o n ta l and v e r t ic a l d i r e c t i o n s  
(term ed as and E v) at the p ixe l (x , y ) is  defined  as:

E h =

^x+l.y-l) “ !(x-l,y-l) +
K x I (x+l,y) ~ K x I(x-l,y) +
I(x+l,y+l) - I(x-l,y+l)- ( 3 .2 )
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+ K x I (x,y-l)
K x I (x,y+l)

+ *(x+l,y-l)]
I(x+l,y+l)]- ( 3 .3 )

^(x-l.y-l) 
^(x-l.y+l) + +

I
(x-l,y-l) 1 (x ,y -l) V + l t f - l )

(X-I,y) 1 (x,y) 1 (x + i,y )

V l . y + l ) 1 (x ,y+ l) 1 (x + l.y + l)

Figure 3.5: A 3 x 3  image w indow  centred  at (x , y).

T he c o e f f ic ie n t  K  is  d ifferen t for  d ifferen t operators. In the ca se  o f  

S o b e l operator [D uda and Hart 1973] its  v a lu e  is  tw o , w h ile  for  
P rew itt [1 9 7 0 ] and Iso trop ic  operator the v a lu es  are o n e  and

r e s p e c t iv e ly .

T he d irectio n a l accu racy  o f  the iso tro p ic  operator is  the b est, but 

d u e to  the flo a tin g  p o in t com p u tation , the S o b e l operator is  o ften  

p re ferred . M o r e o v e r  e x te n s iv e  s tu d ie s  fo r  c o r r e c tin g  th e  e d g e  

m agn itu d e  and orien ta tion  h ave  b een  carried  out and their  resu lts  

can  b e  u sed  to  a c h ie v e  accu rate  e d g e  o r ien ta tio n  [A b d ou  1 9 7 8 , 

K ittler  1 9 8 3 ]. F or the S o b el ed g e  operator, the e d g e  m agn itu d e, E  

in  term s o f  h o r iz o n ta l and v e r t ic a l e d g e  v a lu e s  d e sc r ib e d  in  

eq u ation s (3 .2 )  and (3 .3 )  is:
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E =  / T E h2 +  E v2) ( 3 .4 )

and the ed g e  orientation , a  is :

a  = tan-!{Ey/Eh}

w h en  E v/E k  va lu e  is  w ith in the interval [0 < =  E y /E ^  < =  1/3] 

a n d

a  = tan-1 { (3 E h - l l E v - / T i l 2 E v2 + 1 6 E h2 ~  64E hE v) ) / ( - 7 E h- 9 E V)}  

w h en  E y/E h  va lu e is  w ith in  the interval [1 /3  < E V/E j1 < =  1]

( 3 .5 )

A  m ajor d iffe re n c e  in  our approach from  earlier  w ork  is  that w e  

reta in  the lo w  co n tra st e d g e s , w h ic h  m ay  b e a part o f  th e  

p ercep tu a lly  s ig n if ic a n t  l in e , rather than rem o v in g  them  w ith  an 

arbitrary th resh o ld . O n ly  a fe w  ed g e  p o in ts , b e lo w  a v ery  lo w  

th r e sh o ld , are r e m o v e d  s in c e  th e ir  o r ie n ta tio n  w o u ld  n o t be  

s u f f ic ie n t ly  a ccu ra te .

3 .5 .2  T he G rouping P rocess

A fter  form in g  an ed g e  p o in t rep resen tation  o f  the im a g e , the next  

step  is  to aggrega te  the in d iv id u a l p o in ts  in to  short lin e  seg m en ts. 

T h e m o st s tra ig h t forw ard  m eth o d  fo r  l in e  e x tr a c tio n  is  le a st-  

square f itt in g . T h is m eth od  is  e f fe c t iv e  and fe a s ib le  w h en  fir stly , 

the e d g e  p o in t data is  free  o f  n o ise  and seco n d ly , the ed g e  po in ts  

w h ich  b e lo n g  to a particular lin e  h ave  been  id en tified . H ow ever , in  

m any c a se s , in c lu d in g  ours, th ese  criteria  are n o t m et. M oreover  

our in terest is  n o t ju st  in  f it t in g  stra igh t lin e  seg m en ts  but in  

p e r fo r m in g  p e r ce p tu a l g ro u p in g  a lo n g  w ith  th e  n o is e  f i lte r in g  

p r o c e s s .
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T h e ed g e  p o in t data is  p ro cessed  to ex tract lin e  seg m en ts  through  

tw o  d if fe r e n t  s iz e  w in d o w  c h a n n e ls . T h e  c o n to u r  e x tr a c t io n  

a lg o r ith m , w h ich  w il l  b e  d escr ib ed  in  th e  n ex t ch ap ter  u se s  a 

m u lt i- le v e l  l in e  rep resen ta tio n  in  a p yram id  to  lin k  th e se  lin e  

s e g m e n ts . T h e  im a g e  is  d iv id e d  in to  p r e -s e le c te d  s iz e  sq u are  
w i n d o w s  ( 6 *  6 and 1 2 *  12  are  u s e d  in  th is  p a r t ic u la r

im p le m e n ta tio n ) and a lo c a l g ro u p in g  p r o c e ss  fo r  s tra ig h t lin e  

ex traction  is  ap p lied  to each  square. T h e w in d o w s are o verlap p ed  
by one third o f  their s ize . For ex a m p le  the 1 2 * 1 2  square w in d o w

is  o v e r la p p e d  b y  fo u r  p ix e ls  in  th e  h o r iz o n ta l and v e r t ic a l  

d ir e c t io n s . In th is  w ay  it is  a ssu m ed  that the l in e  ex tra cted  in  
1 2 * 1 2  w in d o w  b e lo n g s  to an 8 * 8  square im a g e  cen tred  at the  

m id d le  o f  the 12*  12 w in d o w . E ach  lo c a l g ro u p in g  p r o c e ss  is  

in d ep en d en t o f  the others, and th erefore  it  can b e  im p lem en ted  in  

p ara lle l. T he m ain  assu m ption  is  that in  any square w in d o w  there  

can  o n ly  be o n e  s ig n if ica n t lin e  seg m en t. T h e fo llo w in g  are the  

d ifferen t step s in v o lv ed , in the group in g  p ro cess .

Step 1:
A p p ly  the m o d ifie d  H ough  transform  for  stra igh t l in e  ex tra ctio n  

in tro d u ced  by W a lla c e  [1 9 8 5 ] , to  ea ch  square w in d o w  o f  the  

im a g e . For each  cand id ate  lin e , the co -ord in a tes o f  its  v o tin g  ed g e  

p oin ts are stored  in  addition  to the tota l num ber o f  v o te s  for  that 

l in e .

Step 2:
From  the ca n d id a te  lin e s  fou n d , s e le c t  at the m o st L m ax lin e s . 

T h o se  lin es  are se lec ted  w h ich  are best (in  the sen se  o f  num ber o f  

v o te s )  from  a ll the cand id ates and w h o se  v o te s  are larger than a 
m in im u m  v o tin g  th resh o ld  V mjn.

Step 3:
F or each  ca n d id a te  lin e  se le c te d  in  S tep  2 , rep eat the fo llo w in g  

g ro u p in g  p r o c e s se s .

P r o x im i ty  P -G ro u p in g :  A p p ly  p rox im ity  grouping on  

the b asis  o f  eu c lid ean  d ista n ce  b e tw een  each  v o tin g  

ed g e  and id en tify  the largest c lu ster  o f  ed g e  p o in ts .
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T h e e d g e  p o in ts  w h ich  are not part o f  the la rg est  

c lu ster  are dropped  from  the v o tin g  strength  o f  the  

p articu lar  lin e . In th is  w a y  the in itia l f ilte r in g  o f  

e d g e  p o in ts  is  p erform ed . I f  the nu m ber o f  e d g e  

p o in ts  in  th e  la r g e s t  c lu s te r  d ro p s  b e lo w  th e  
th resh o ld  for  m in im u m  v o te s  V m i n , it is  a ssu m ed  

that the se le c te d  lin e  seg m en t is  not s ig n ifica n t and  

further grou p in g  is  aborted  for that particu lar lin e . 

It is  n o t n e c e s sa r y  to  h a v e  a sep ara te  te s t  for  

p ro x im ity  w h ich  is  e s ta b lish e d  b y  the c o n n e c tiv ity  

grou p in g  d escr ib ed  next.

C o n n e c t i v i t y  C - G r o u p i n g : In th is  p a r ticu la r

im p le m en ta tio n , the c o n n e c tiv ity  o f  e d g e  p o in ts  is  

en su red  by n ot a llo w in g  any gap  b etw een  ad jacent 

p oin ts on the lin e . In the c a se  o f  a sm all w in d ow  the  
v a lu e  o f  th e  m in im u m  v o t in g  th r e sh o ld  V m j n , 

p r o x im ity  g ro u p in g , and c o n n e c t iv ity  are t ie d  to  
each  other. I f  V m i n is  ap p ro x im a te ly  taken as the  

sa m e  as th e  w in d o w  s iz e  th en  p r o x im ity  and  

c o n n e c t iv ity  grou p in g  are e s ta b lish e d  by th e sam e  

c r it e r io n .

O r i e n t a t i o n  O - G r o u p i n g : G ro u p in g  b a se d  on

sim ila r ity  in ed g e  orien tation  is  o n ly  ap p lied  on the 

la rg est c lu ster  o f  co n n e c te d  ed g e  p o in ts . T h e s lo w  

d r ift in  o r ien ta tio n  is  a llo w e d  by c o m p u tin g  the  

d iffe r e n c e  o f  or ien ta tion  for  each  pair o f  ad jacen t 

e d g e  p o in ts . T h is  is  e q u iv a le n t  to  d if fe r e n t ia t in g  

o r ien ta tio n  w ith  re sp e c t to  d is ta n ce  or c a lcu la tin g  

curvature a lon g  the cu rved  lin e  seg m en t. T he ed g e s  

are p a rtitio n ed  in su ch  a w ay  that each  partition  

c o n s is t s  o f  th o se  e d g e  p o in ts  w h o s e  o r ien ta tio n  
ch a n g e  is  w ith in  a to leran ce  8 0 . T h e ed ge  count for  

th e la r g e s t  p artition  is  n o w  taken  as the v o tin g  

strength  o f  that lin e  and is  com pared  w ith  V min to 

test for  the s ig n if ica n ce  o f  lin e . I f  the count is  le ss
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than Vmin, then the se le c te d  lin e  d o e s  n ot q u a lify  

as a s ig n ifica n t lin e  based  on orien tation  grouping.

C o n t r a s t  a n d  I n t e n s i t y  C I - G r o u p i n g :  G r o u p

c o n n e c te d  e d g e  p o in ts  for  a l in e  on  the b a ses  o f  

s im ila r  e d g e  m a g n itu d e  and e d g e  p ix e l  in te n s ity .

T h e  e d g e  p o in ts  w h o s e  e d g e  m a g n itu d e  and  

in te n s ity  are w ith in  th eir  r e sp e c tiv e  to lera n ces  are  

c lu s te r e d  to g e th er . T h e e d g e  m a g n itu d e  to le r a n c e  
8 M , c o m p e n s a te s  fo r  errors in  e d g e  s tr en g th  

co m p u ta tio n  w h ile  in te n s ity  to le r a n c e  81, h e lp s  to  

o v erco m e  errors due to q u an tisa tion  in  grey  le v e ls .

S im ila r  to  the o r ien ta tio n  g ro u p in g  p r o c e ss , e d g e  

poin ts in  the largest c lu ster  are q u a lified  to v o te  for  

a p a rticu la r  l in e  and th eir  c o u n t d e term in es  the

s ig n ifica n ce  o f  lin e .

I f  the s e le c te d  lin e  fa ils  to  q u a lify  in  both  or ien ta tion  and CI-

G rouping, it is  assu m ed  that the lin e  is  not s ig n ifica n t en ou gh  to
p artic ip a te  in  con tou r ex traction

Step 4:
I f  n on e o f  the se le c te d  lin e s  q u a lify  as a s ig n if ic a n t lin e  in  the  

g ro u p in g  p r o c e s se s  o f  S tep  3 then  n o  u se fu l l in e  s e g m e n t is

presen t in  that w in d ow . W hen m ore than on e  lin e  q u a lifie s  in  one  

or both grouping p ro cesses , d ec id e  as fo llo w in g :

-P referen ce  is  g iv e n  to  or ien ta tion  grou p in g  and i f  

m ore than one lin e  q u a lifie s  in  O -G rouping, the lin e  

w ith  m ax im u m  num ber o f  v o te s  is  s e le c te d . T he  

p r e fe re n c e  can  a lso  be g iv e n  to  th e lin e  w h o se  

d irection  is  norm al to the ed g e  orien tation .

-I f orien tation  grouping fa ils  to  id e n tify  a lin e  in a 

g iv e n  w in d o w  then  the lin e s  are te s ted  s o le ly  on  

the b asis o f  C I-G rouping. W e se le c t the lin e  w ith the  

la rg est num ber o f  v o te s .
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T h e a b o v e  s te p s  o n ly  d e sc r ib e  th e m eth o d  in  p r in c ip le . T he  

a lgorith m  has been  im p lem en ted  in  a m ore e ff ic ie n t  w a y . T he CI- 

G r o u p in g  is  o n ly  r e q u ir e d  w h e n  th e  O -G r o u p in g  f a i l s .  

A lte r n a tiv e ly , the a b o v e  p roced u res c o u ld  be im p le m en te d  u sin g  

p a r a lle l p r o c e s s in g  fo r  the in d iv id u a l g ro u p in g  cr iter ia . In our  

im p lem en ta tio n  on e n d o sco p ic  im ages o n ly  10% o f  the u se fu l lin es  

are s e le c te d  on the b a sis  o f  C I-G roup in g  b eca u se  O -G rou p in g  is  

m ore stab le  and it id en tifie s  m ost o f  the s ig n ifica n t lin e  segm en ts.

3 .5 .3  S e le c t io n  o f  T hreshold s

T h e  g r o u p in g  a lg o r ith m  d e sc r ib e d  a b o v e  u se s  a n u m b er  o f  

th resh o ld s at variou s step s and the reader m ay w on d er  about the  

s e le c t io n  o f  th ese  th resh o ld s  and th eir  s e n s it iv ity . H o w e v er , the  

a lg o r ith m  is  rob u st to  th ese  c h o ic e s  and w orks w e ll  on w id e ly  

d if fe r e n t  e n d o sc o p e  im a g e s  w ith o u t c h a n g in g  th re sh o ld s . T h e se  

th resh o ld s have  been  o p tim ised  by  exp erim en ta l resu lts  on a large  

nu m ber o f  e n d o sc o p ic  im a g e s . T h e th resh o ld s m ay req u ire  so m e  

f in e  tu n in g  to en h a n ce  th e p erfo rm a n ce  o f  the a lg o r ith m  for a 

p articu lar  c la ss  o f  im a g e s . T h e e f fe c t s  and th e b a ses  for  th ese  

c h o ic e s  are d iscu ssed  b e lo w .

T h resh o ld in g  o f  ed g e  p o in ts  on the b asis  o f  their strength  is  a lso  

k n ow n  as am p litud e th resh o ld in g . T he am p litu d e o f  resp o n se  from  

an e d g e  operator is  a fu n ctio n  o f  the m agn itu d e o f  the e d g e , its  

o rien ta tion , and its d ista n ce  from  the cen tre  o f  the e d g e  operator. 

E d g e  rem ova l on the b asis  o f  ed g e  strength  a lso  r em o v es  the lo w  

a m p litu d e , p ercep tu a lly  s ig n if ic a n t  e d g e s . It is  v ery  d if f ic u lt  to  

r e ly  s o le ly  on th is th resh o ld  for  filter in g  n o isy  e d g e s . T he n o ise  

a m p litu d e  w il l  n o t be c o n sta n t th ro u g h o u t the im a g e  du e to  

c h a n g e s  in  illu m in a tio n  c o n d itio n  and con trast. In our a lgorith m  

the e d g e  th reshold  is  in ten ded  o n ly  to rem o v e  lo w  accu racy  ed g e  

p o in ts . It can therefore be set for the w h o le  im age. T he va lu es that 

w e r e  u se d  w ere  s ix  to  ten  fo r  c o m p u te r  g e n e r a te d  im a g e s  

(d e p e n d in g  on the am ou n t o f  n o is e )  and around e ig h te e n  for  

e n d o s c o p ic  im a g e s . T h e se  p ro v ed  lo w  en o u g h  to  k e e p  a ll the  

s ig n if ic a n t  e d g e s  but rem o v ed  th o se  e d g e s  w h o se  or ien ta tion  m ay  

not be accurate.
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T h e c h o ic e  o f  m axim u m  num ber o f  l in e s , L max reta ined  from  the  

o r ig in a l H o u g h  tran sform , and th e  m in im u m  n u m b er o f  v o te s ,  
V m in  required for each  lin e , both depend  on the se le c tio n  o f  im age  

w in d o w  s iz e  and the am ount o f  m axim u m  background n o ise  w h ich  

m a y  b e p resen t in  the im a g e . In th is  a lgor ith m , th e m ax im u m  

num ber o f  lin es  se lec ted  is  taken to  be equal to  the im a g e  w in d o w  
s id e . T he m in im um  num ber o f  v o te s , V mjn is  a lso  a ffec ted  by  the  

a m o u n t o f  o v e r la p p in g  o f  w in d o w s  and the t ig h t c o n tr o l on  

g r o u p in g  p r in c ip le s . T h e  m in im u m  v o te s  fo r  q u a lify in g  as a 

s ig n ifica n t lin e  is  f ix e d  at the w in d o w  s id e  m inus the overlap  s iz e  
(e ig h t and four for 1 2 x 1 2  and 6 x 6  w in d o w s  r e sp e c t iv e ly ) .

T h e to leran ce  th reshold  for orien tation  80  determ ines the lim its  on  

the curvature o f  co n to u rs to be ex tra cted . In the c a se  o f  theta-  

a g g r e g a t io n  it a lso  d ep en d s on  th e  p s y c h o lo g y  o f  v is io n . T h e  

o r ien ta tio n  to lera n ce  is  ea sy  to  e s t im a te  from  the p s y c h o lo g ic a l  

s tu d ie s  w h ich  d em on stra te  h ow  m u ch  to lera n ce  hum ans a llo w  in  

o r ien ta tio n  w h en  th ey  group s im ila r  o r ien ted  p attern s. T h e  data  

o rg a n isa tio n  in  v isu a l co rtex  can  a lso  b e u sed  as a c lu e  in  the  

s e le c t io n  o f  or ien ta tion  to leran ce. T h e co rtica l tab le , d escr ib ed  in  

th e  p r e v io u s  c h a p te r , sh o w s  th a t th e  m a x im u m  o r ie n ta t io n  

r eso lu tio n  for lin e  seg m en ts  is  1 0 ° . Our ch o ice  o f  5 °  to leran ce  for  

e n d o s c o p e  im a g e s  and  1 5° fo r  co m p u ter  g en era ted  im a g e s  is  

in flu en ced  by all o f  th ese  factors and has ach iev ed  g o o d  resu lts.

T h e  grou p in g  th resh o ld s 8M  and 51 for  ed g e  m agn itu d e and ed g e  

p ix e l  in ten sity  prod u ce  stab le  resu lts  o v er  a w id e  range o f  scen e  

i l lu m in a t io n . T h e s ta b ility  im p ro v es  w h en  both g ro u p in g  criteria  

are e m p lo y e d  to g e th er . W hen  e m p lo y e d  in d iv id u a lly , th e  p ix e l  

in te n s ity  th resh o ld  is  a ffec ted  c o n s id era b ly  by the errors in ed g e  

lo c a lisa t io n  w h ile  for ed g e  contrast a sm a ll variation  ch a n g es  the  
resu lts  co n sid era b ly . F or both 8M  and 81 the to leran ce  is  f ix ed  at 

th ree . T h ese  th resh o ld s  are a lso  a ffe c te d  by  the errors du e to  

sa m p lin g  and the qu an tisa tion  p r o c e sse s .
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3.6 E x p e r im e n ta l R esu lts  a n d  C o n c lu sio n s

In m any m ed ica l ap p lica tion s o f  im a g e  an a lysis , n o is e  is  presen t in  

th e  d ig i t is e d  im a g e s . T y p ic a l ly ,  p ic tu r e s  o f  in te r n a l o rg a n s  

o b ta in e d  from  r a d io lo g ic a l  im a g e s  or o th e r w ise , h a v e  a great  

d e g r ee  o f  n o is e . T h is  m ean s that to  ob ta in  m e a n in g fu l r e su lts , 

s e g m e n ta tio n  a lg o r ith m s  m u st b e  ta ilo re d  fo r  th e  a p p lic a tio n . 

A lth o u g h  the lin e  ex traction  a lgorith m  w a s d e v e lo p e d  prim arily  as 

part o f  a co n to u r  d e te c to r  fo r  e n d o s c o p ic  c o lo n  im a g e s , it  is  

e x p e c te d  that it  w il l  p rove  to  b e o f  m uch w id er a p p lica b ility . T he  

m eth o d  can  b e  a p p lied  to  th e g en era l p rob lem  o f  l in e  seg m en t  

extraction  in  im a g es  con ta in in g  a variety  o f  unknow n n o ise .

3 .6 .1  A r tif ic ia lly  G enerated Im ages w ith  A dd ed  N o is e

T h e p erform an ce  o f  the tech n iq u e  w as a n a ly sed  by te s tin g  it on  

so m e  com p u ter  gen era ted  im a g es  w ith  kn ow n  am ou n t o f  random  

n o ise . T he resu lts  on one o f  the im a g e s  w ith  v a ry in g  am ount o f  

n o is e  are p resen ted  here. T he im a g e  c o n s is ts  o f  cu rv ed  e llip t ic a l  

co n to u rs  w h ich  are w e ll  apart. T h e random  n o is e  w a s  added at 

each  p ix e l o f  the im a g e  am ounting to  ±10%  for on e  te st im age  and  

± 22%  (o f  th e  a v era g e  s ig n a l le v e l)  for the other. B o th  o f  th ese  

im a g e s  a lo n g  w ith  their S o b el e d g e  d etector  outputs are sh ow n  in  

F igure 3 .6  and 3 .7 . T he im age in  F igure 3 .6  contains ± 10%  random  

n o ise  w h ile  the im a g e  in  F igure 3 .7  con ta in s ±22%  ran d om  n o ise . 

T h e outputs for  the in d iv id u a l grou p in g  op era tion s are p resen ted  
for  tw o  reso lu tio n s  (b ased  on 1 2 * 1 2  and 6 * 6  im a g e s  w in d o w s) in

F ig u res 3 .8  to  3 .11  for dem on strating  the ca p a b ilitie s  o f  perceptual 

g r o u p in g  b a se d  on c o n n e c t iv ity ,  o r ie n ta tio n  d r ift  and th eta -  

a g g reg a tio n , sim ilar ity  in  ed g e  p ix e l in ten sity  and e d g e  contrast.

It can be con c lu d ed  from  th ese  resu lts that for random  n o ise  o f  up 

to ±10% , the grouping based  on c o n n ec tiv ity  filters ou t m ost o f  the  

n o ise  but for  ±22%  n o ise , the output a lso  con ta in s a co n sid era b le  

nu m ber o f  lin e  seg m en ts  due to n o is e . T he o r ien ta tio n  grou p in g  

perform s co m fo rta b ly  w e ll for a large range o f  n o ise , a lthough  its  

p erfo rm a n ce  d eter iorates w ith  the in crea se  in  n o is e . T h is  prob lem  

has been  o v erco m e  in  the resu lts  p resen ted  here by in crea sin g  the
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e d g e  m agn itu d e th resh o ld  from  s ix  to  ten for  ± 22%  n o is e . T h e  

e d g e  p o in t g r o u p in g  b a sed  on  e d g e  p ix e l  in te n s ity  and e d g e  

co n tra st p r o v id e s  better  resu lts  for  ± 10%  random  n o is e  but the  

o v e ra ll resu lts  are poor for larger n o is e  and their p erform an ce is  

n ot com p arab le  to  the orien tation  or co n n e c tiv ity  group in g .

L ine extraction  based  on the O 'G orm an and C lo w e s  m eth od  has 

a ls o  b een  im p le m e n te d  and a p p lie d  to  the sa m e tw o  im a g e s  

c o n ta in in g  ±10%  and ± 22%  ran d om  n o is e . T h e ir  m eth o d  o n ly  

groups th ose  ed g e  p o in ts  w h o se  orien tation  is  p erpend icu lar  to the  

l in e  seg m en t d irectio n  (w ith in  a to lera n ce). T he lin e  seg m en ts  o f  

cu rv ed  con tou rs are d if f ic u lt  to  ex tra ct in  th is w a y  and a h igh  

to le r a n c e  b e tw e e n  th e  l in e  n o rm a l and  e d g e  o r ie n ta t io n  is  

required  for ex tractin g  a ll the u se fu l lin e  seg m en ts , w h ich  m ay in  

turn produ ce lin e  segm en ts  due to  n o ise . T he m eth od  is  o p tim ised  

b y  in crea sin g  the to leran ce  b e tw een  the ed g e  or ien ta tio n  and the 

l in e  norm al d irection  from  ± 5 °  to ± 2 5 ° .  T he m axim u m  to leran ce  is  

u sed  b eyon d  w h ich  the lin e  seg m en ts  due to  n o ise  start appearing  

in  the output. F igu re 3 .1 2  sh o w s the optim um  b est resu lts  for lin e  

se g m e n ts  e x tr a c te d  by  O 'G orm an and C lo w e s  m e th o d  at tw o  

r e so lu t io n s . T h eir  m eth od  m is se s  m ore than 50%  o f  th e u se fu l  

con tou r seg m en ts  com p ared  to our o r ien ta tio n  grou p in g  as g iv e n  

in  T a b le  3 .1 . T h e am ou nt o f  n o is e  f ilte r in g  a c h ie v e d  by  our  

p ercep tu a l grou p in g  tech n iq u e  can  b e estim a ted  by  com p arin g  its  

output lin e  seg m en ts  w ith  the to ta l num ber o f  seg m en ts  ex tracted  

w ith o u t a p p ly in g  p ercep tu a l g ro u p in g . In F ig u re  3 .1 3  the l in e  

se g m e n ts  e x tr a c te d  by  e m p lo y in g  p ercep tu a l g r o u p in g  for  tw o  

r e s o lu t io n s  are sh o w n  w h ile  F ig u r e  3 . 1 4  c o n ta in s  th e  l in e  

se g m e n ts  d e te c te d  w ith o u t a p p ly in g  p er ce p tu a l g r o u p in g . T h e  

r ed u c tio n  in  the l in e  se g m e n ts  e x tr a c te d  by  u s in g  p e r ce p tu a l 

grouping is  con sid erab le  from  4 0  to 75%  dep en d in g  on the am ount 

o f  n o ise  and w ith ou t lo s in g  too  m any u se fu l lin e  structures. T ab le

3 .1  su m m a rises  the to ta l num ber o f  l in e  seg m en ts  ex tra cted  by  

d iffe r e n t grou p in g  p r o c e sse s .
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Figure 3 .6: An artific ia l image having ±10%  a d d ed
noise and the output o f  Sobel edge de tec tor  with thresholding.

fji this and subsequent f ig u re s  the -edge points above a  threshold ore

shown in red.

Figure 3 .7: An artific ia l image having ±22%  
noise and  the output o f  Sobel edge de tec tor

a d d ed
with thresho
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Figure  3 .8: Line segments  ex trac ted  by employing connectiv ity  
g r o u p in g .
(a) For  image containing ±10% noise and  based  on 3 x 3  w i n d o w .
(b) For  image containing ±10% noise and  based  on 4 x 4  w i n d o w .
(c) For  image containing ±22% noise and  based  on d x d  w i n d o w .
(d) F or  image containing ±22% noise and  based  on 4 x 4  w i n d o w .
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Figure  3.9: Line segments  ex trac ted  by  employing grouping  
b a s e d  on s imilarity  in edge p ixe l  intensity.
(a) For  image containing ±10% noise and based  on 6 x 3  w i n d o w .
(b) For  image containing ±10% noise an d  based  on 4 x 4  w i n d o w .
(c) For  image containing ±22% noise and based  on 6 x d  w i n d o w .
(d) F or  image containing ±22% noise and  based  on 4 x 4  w i n d o w .
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Figure  3 .10:  Line segments  ex trac ted  by  employing grouping  
b a s e d  on s imilarity  in edge contrast .
(a) For  image containing ±10% noise and based  on 3 * 3  w i n d o w .
(b) For  image containing ±10% noise and  based  on 4 * 4  w i n d o w .
(c) For  image containing ±22% noise and  based  on 3 X3  w i n d o w .
(d) For  image containing ±22% noise and  based  on 4 * 4  w i n d o w .

- 8 2 -



Figure  3 .11 :  Line segments  ex trac ted  by employing grouping  
b a s e d  on orienta tion drift a n d  the ta-aggregat ion .
(a) F o r  image containing ±10% noise and based  on 3 x 3  w i n d o w .
(b) F or  image containing ±10% noise and based  on 4 x 4  w i n d o w .
(c) For  image containing ±22% noise and based  on 3 x 3  w i n d o w .
(d) For  image containing ±22% noise and based  on 4 x 4  w i n d o w .
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Figure  3 .12:  Line segments ex trac ted  by employing O'Gorman  
an d  C low es  method.
(a) For  image containing ±10% noise and based  on 3 x 3  w i n d o w .
(b) For  image containing ±10% noise and based  on 4 x 4  w i n d o w .
(c) For  image containing ±22% noise and based  on 3 x 3  w i n d o w .
(d) F or  image containing ±22% noise and based  on 4 x 4  w i n d o w .
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Figure  3 .13:  Line segments  ex trac ted  by  employ ing p e rc e p tu a l  
group ing  cr iter ia .
(a) F or  image containing ±10% noise and based  on 3 x 3  w i n d o w .
(b) For  image containing ±10% noise and  based  on 4 * 4  w i n d o w .
(c) For  image containing ±22% noise and  based  on 3 ^ 3  w i n d o w .
(d) For  image containing ±22% noise and  based  on 4 x 4  w i n d o w .
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Figure  3 .1 4 :  Line segments  ex trac ted  wi thout  app ly ing  
p e r c e p t u a l  grouping .
(a) For  image containing ±10% noise and b ased  on 6 * d  w i n d o w .
(b) For  image containing ±10% noise and  b a sed  on 4 x 4  w i n d o w .
(c) For  image containing ±22% noise and  b a sed  on 3 x 3  w i n d o w .
(d) For  image containing ±22% noise and b ased  on 4 x 4  w i n d o w .
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T est Im age Figure 3 .6  F igure 3 .7  

±10%  N o ise  ±22%  N o ise
G rouping Process 8 x 8 4 x 4 8 x 8 4 x 4

L in e  seg m en ts  ex tracted  

w ith o u t ap p ly in g  perceptual 

g ro u p in g  p r in c ip le s .

481 898 721 1728

L in e  segm en ts detected  by  

u sin g  p ercep tu a l grou p in g .

183 535 164 468

L in e  S eg m en ts  found  by  

O 'G orm an and C lo w es m ethod  

o f  co llin e a r ity  group in g .
75 231 63 225

O rien ta tion  grou p in g  w ith  

s lo w  drift in orientation  

and th e ta -a g g r e g a tio n .
177 507 159 461

C o n n e c tiv ity  grou p in g . 238 697 272 961

G rouping b ased  on sim ilar ity  

in  ed g e  p ix e l in ten sity . 84 330 27 168

S im ila r ity  in  ed g e  contrast. 88 207 27 111

Tab le  3 .1 :  O utput  l ine segm ents  f o r  the ar t i f ic ia l  
i m a g e  w i th  v a ry in g  d e g r e e  o f  n o ise  a n d  f o  r  
d ifferent  group ing  p ro c e s se s .

3 .6 .2  E n d o sco p ic  C olon  Im ages

T h e l in e  e x tra c tio n  m eth o d  has a lso  b een  te s te d  fo r  a la rg e  

nu m ber o f  rep resen ta tiv e  c o lo n  im a g e s . T h e im a g e s  h a v e  b een  

d ig it is e d  at 2 5 6  g rey  le v e ls  from  a v id e o  tape o f  c o lo n o s c o p y  

p roced u res. T here are a num ber o f  so u rces  o f  d ifferen t ty p es  o f
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noise in endoscope images which include but are not limited to 
variable specular reflection, texture, and different types of matter 
in the colon. The magnetic media has also left some additional 
noise in the digitised images due to the process of recording. The 
results for three of these images are presented here for 
demonstration purposes.

The test pictures of the inner colon and the output of the Sobel
edge detector for these images are shown in Figure 3.15 to 3.17.
All the edge points with magnitude greater than eighteen are kept 
for further grouping. Our interest is only with the image contours 
due to inner muscles of colon while the images are littered with 
edges due to specularity, texture and noise. For comparison of the 
performance of perceptual grouping against ordinary edge linking, 
different results are presented in Figure 3.18 to 3.26. The line
segments have been extracted at two resolutions which 
corresponds to an 8><8 square and a 4x4 square image windows.
The line segments have also been detected without applying any 
perceptual grouping principles. The lines due to noise dominate
this representation in both resolutions (see Figure 3.21b to 3.26b). 
The perceptual grouping principles described in our algorithm are 
then employed to identify relevant line structures. The results of 
Figures 3.21a to 3.26a demonstrate that most of the line segments 
due to noise are unable to qualify as significant line structures and 
are eliminated.

The performance of connectivity grouping, which filters out noisy 
edges due to random noise effectively in the artificial images, is 
not as effective on the endoscopic images (see Figure 3.18 to 3.20) 
because a large variety of noise is present in these images. The 
extraction of lines on the basis of connectivity and edge
orientation is the most effective way of coping with noise.
O’Gorman and Clowes method of collinearity grouping was also
applied to the same colon images for the purposes of comparing its 
performance against the orientation grouping used in our 
algorithm. For the sake of providing same edge data to both
algorithms, the connectivity grouping was also applied before 
using the O'Gorman and Clowes collinearity grouping. The method
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Figure 3 .15:  First  colon image and the output o f  Sobel edge  
d e t e c t o r  u i t h  t h r e sho ld ing .

Figure 3 .16:  Second  colon image and the output o f  Sobel edge  
d e t e c t o r  with thresholding.
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Figure 3 .17:  Third colon image and the output o f  Sobel  edge  
d e t e c t o r  u>ith threshold ivg.

Figure 3 .18 :  Line segments  ex trac ted  using connectiv ity  
grouping f o r  colon image o f  Figure 3.15.
(a) Based  on d * d  image window.
(b) B ased  on 4 * 4  image window.
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Figure 3.19: Line segments extracted using connectivity 
grouping for colon image of Figure 3.16.
(a) Based on 3x3 image window.
(b) Based on 4x4 image window.
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Figure 3.20: Line segments extracted using connectivity 
grouping for colon image of Figure 3.17.
(a) Based on 3x3 image window.
(b) Based on 4x4 image window.
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Figure 3.21: Output line segments for the colon image of 
Figure 3.15 on the basis of d*d image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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Figure 3.22: Output line segments for the colon image of 
Figure 3.15 on the basis of 4x4 image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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Figure 3.23: Output line segments for the colon image of 
Figure 3.16 on the basis of 3x3 image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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Figure 3.24: Output line segments for the colon image of 
Figure 3.16 on the basis of 4x4 image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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Figure 3.25: Output line segments for the colon image of 
Figure 3.17 on the basis of 3x6 image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.
(d) O’Gorman and Clowes method.
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Figure 3.26: Output line segments for the colon image of 
Figure 3.17 on the basis of 4x4 image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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used by O'Gorman and Clowes filters out those edge points w hose  
orientation is not normal to the direction of the line segment 
(within a tolerance), from participation in the grouping process. 
This type of filtering works well for polyhedral objects with strong 
edges and noise free images but for curved object contours the 
method is unable to identify all the contour structure. Different 
line normal and edge orientation tolerances (from ±5° to ±25°) 
have been tried to optimise the method similar to the previous 
section, but the line segments which are weak yet form a useful 
part of the contours, were missed (see results in Figure 3.21 d to 
3.26d with optimised tolerance). On the other hand, our method of 
orientation grouping which allows a slow drift in edge orientation 
(typically 5°) between consecutive edge points as one moves along 
the curved line segment, gives better results. The results of 
connectivity and orientation grouping based on slow drift and 
theta-aggregation are shown in Figure 3.21c to 3.26c. The line 
segments extracted by our algorithm for the colon and artificial 
images are also overlapped on the original images to determine 
the accuracy of locating these segments. These overlapped 
pictures are presented in the next chapter, where the line 
segments are grouped into curved contours.

3.6.3 Conclusions

It is difficult to judge the performance of different line detection 
methods based on the total number of extracted line segm ents  
alone. Nevertheless, with the help of the output results presented 
already and the statistics of the output of different grouping 
processes, we can gain an insight of the ability of different 
grouping techniques in reducing the image data for varying 
degree of noise and without losing useful information. The total 
number of line segments extracted for the artificial and colon 
images under different grouping methods and resolutions are 
provided in Table 3.1 and 3.2 respectively.

It is easy to see that our perceptual grouping method reduces the 
amount of line data almost to 50% without losing useful image 
line structures. Another interesting feature is that orientation
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Test Image Figure 3.15 Figure 3.16 Figure 3.17

Grouping Process 8x 8 4x4 8x8 4x4 8x8 4x4

Line segments extracted
without applying perceptual 433 1186 346 558 348 784
grouping principles.

Line segments detected by 177 564 118 255 146 400
using perceptual grouping.

Line Segments found by
O’Gorman and Clowes method 44 320 43 171 47 191
of collinearity grouping.

Connectivity & orientation 
grouping with slow drift
in orientation and 160 518 93 230 124 355
theta-aggregation.

The share of CI-Grouping in
total line segments found 17 46 25 25 22 45
by our algorithm.

Table 3.2: Output line segments for colon images 
using different perceptual and other grouping 
processes.

grouping covers up to 90% of the line structures. This is all due to 
the introduction of slow drift in orientation and theta-aggregation. 
Without this, the O’Gorman and Clowes technique is unable to 
extract comparable line segments. The 10 to 15% share of lines 
found due to CI-Grouping supports our argument that the 
effectiveness of CI-Grouping is poor and is sensitive to tolerance 
thresholds.
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In this chapter we have demonstrated the capabilities of 
perceptual organisation at a very early level of vision specifically 
in filtering noisy edges for image segmentation. The application of 
this research is for an on-line image analysis. Therefore during the 
whole development process of these grouping principles the 
possibility of parallel implementation was kept in mind. Custom 
VLSI hardware for the Hough transform [Sher and Tevanian 1984, 
Rhodes et al. 1988] encouraged its use as a part of our method. 
Hanahara et al. [1988] have also reported a real-time processor for 
the Hough transform which takes 0.79 Second for 1024 feature 
points. The implementation described here, in which the feature 
points will not be more than 144 in an image window, can be 
easily achieved below a millisecond. Previously, the Hough 
transform has been mostly used as a global method for contour 
detection. We have utilised it for detecting line segments locally. 
The bias in the Hough transform is prevalent for small image 
windows and precise detection of line segments cannot be 
guaranteed at different orientations. The image window can be 
rotated (e.g. 9°, 18°, 27°, and 36°) to detect more accurate lines but 
in our particular application, line extraction accuracy is adequate 
and we are able to identify all the relevant contours at a 
reasonable accuracy as shown in the results of next chapter. The 
Hough transform for a small window avoids long computation time 
and large memory requirements and thus it is possible to 
implement the whole perceptual grouping process on a single 
VLSI chip. These individual processing elements can serve as a 
part of the pyramid architecture for the contour extraction process 
which is described in the next chapter.
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C H A PTER  4

CONTOUR DETECTION FROM  LIN E SEGM ENTS

4.1  I n t r o d u c t io n

The contours in a single, monocular image provide useful 
information about the content of a scene. Although image contours 
are two-dimensional, they still yield information about three- 
dimensional shape. In the case of endoscopic images the inner 
colon muscles generate occluding contours in colon images, which 
provide unambiguous depth information essential to navigate the 
endoscope. The problem, we are trying to solve is the extraction of 
these contours in noisy images. In the previous chapter, a new 
method was presented to construct a m ulti-resolution  
intermediate representation for contours by perceptually filtering 
noisy edges. The intermediate representation is based on the 
approximation of curves by short line segments. The edge points 
are grouped into line segments by following the different laws of 
perceptual organisation. There is still however a possibility that 
line segments may exist where no meaningful image contour does, 
and conversely lines may be absent where a boundary exists. The 
solution is to apply different perceptual grouping principles for 
linking only the relevant line structures and for resolving 
ambiguities. Lower level image data (line segments at lower 
resolution and edge points) can be employed to fill the gaps for 
fragmented parts of contours.

The pyramid based representation can easily represent the line 
segments at two resolutions in an organised way which supports 
efficient and fast searching of the image data (0 [log(n)] for an n*n
image). It also supports the parallel-pipeline implementation of 
the contour extraction algorithm. If we assume that the PEs 
(processing elements) at different levels in a pyramidal computer
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can perform different operations on the image data then, for 
implementing contour extraction, the PEs at the lowest level of 
pyramid may perform edge detection and feed edge data to the 
PEs at level two and three where perceptual grouping can be 
performed using the Hough transform. The level two PEs detect 
line segments for a 4M  window while PEs at level three extract 
line segments for 8*8  window. Alternatively, the line segments 
can be fed into the pyramid structure as inputs. The second 
alternative was adopted and the contour extraction method was 
implemented using quadtrees to simulate the pyramidal 
architecture. The line segments are grouped into contours by using 
the collinearity, curvilinearity, and theta-aggregation grouping 
principles in an hierarchical manner. The main grouping is 
performed on line segments based on an 8*8  window and lower
line segment data is only utilised when a gap is encountered, or 
for resolving ambiguities between equally significant competitor 
groups. The edge point data can also be employed to fill in short 
gaps between contour ends and corners.

As we have mentioned previously, the contour extraction method 
consists of bottom-up and data-driven processes and it is 
motivated by psychophysical and neurophysiological studies. The 
pyramid structure is employed for grouping line segment data 
hierarchically. The transition gap between signal to symbols (from 
edge points to contours) is traditionally considered a source of 
discontinuity for the flow of information in machine vision. Our 
approach which utilises a multi-resolution representation offers 
the potential for eliminating this discontinuity. The contours are 
detected irrespective of their type and source. The only 
requirement is that the contour should result from a reasonable 
intensity change in the image.

4.2 S hape  and  C o n to u rs

There is no doubt about the power and vividness with which 
contours can depict shape. The main question is how do contours 
create three-dimensional realism? Psychophysics is unable to
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provide any answer to this question. It is not clear whether there 
is only one distinct module in human vision which performs the 
job of shape from contour or there are several modules which are 
jointly responsible for the vividness of contour perception. The 
contour extraction method described in this thesis can only extract 
those contours which correspond to a grey level change in the 
image. However we are concerned with the extraction of many 
types of contours in the image, and it is useful to classify different 
types and how they can provide three-dimensional shape 
information specifically the third dimension (depth).

4.2.1 Contour Types

There are a number of different conditions under which a contour 
can arise in an image, which are:

-Discontinuity in the depth.

-Discontinuity in the surface orientation.

-Change in surface reflectance.

-Different illumination effects in the scene.

The problem of shape from contour becomes more difficult when 
from a single, monocular image one tries to identify different 
sources of contours. The type of a contour in terms of its source is 
essential for conveying information about the shape. The main 
categories of contours for interpretation purposes are occluding 
contours, surface contours, and contours due to change in surface 
orientation.

Occluding Contours

These contours simply occur at discontinuities in the distance of 
the surface from the viewer. They are very useful in providing 
plenty of clues about the shape. For every occluding contour in the 
image, there is a particular curve on the object surface known as
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the contour generator. The contour generator consists of a set of 
points on the surface where the surface normal is orthogonal to 
the direction of view. When humans interpret occluding contours 
there are some a priori assumptions that allow them to infer 
shape from an outline or silhouette. Marr [1977] has described 
three of these assumptions.

-Each point on the contour generator projects to a 
different point in the contour.

-Nearby points on the contour arise from nearby 
points on the contour generator.

-The contour generator lie wholly in a single plane.

When these assumptions are satisfied from a distant viewpoint 
(orthographic projection) and for a smooth surface, the surface can 
be defined by generalised cones. Conversely for a generalised cone 
surface, these three conditions always hold. In other words the 
concavities and convexities in occluding contours are important in 
determining the surface because they are the actual properties of 
the surfaces represented by generalised cones. We are proposing a 
three-dimensional model of the colon in terms of generalised 
cones, which will be described in chapter six. That model promises 
to be useful for the estimation of shape from occluding contours in 
endoscopic colon images. The only exception is when the 
endoscope tip is facing the colon walls (i.e. normal to the colon 
axis), or when the inner colon is viewed from a position where its 
axis is foreshortened.

Surface Contours

These contours are no longer restricted to the silhouette 
boundaries and they can arise within the silhouette. The contour 
generator for the surface contours may be due to internal surface 
markings or different types of illumination effects. The surface 
contours are difficult to analyse because there is no obvious
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source of their regularity which humans can use to infer shape 
from them.

Surface Orientation Contours

The surface orientation contours are along the loci of change in 
surface orientation. Generally they follow the creases on the 
surface. Regarding the recovery of surface geometry from these 
contours, it is difficult to resolve whether the contours correspond 
to concavity or convexity in the surface.

4.2.2 Three-Dimensional Structure from Image Contours

In this section we are concerned with the use of image contours in 
determining three-dimensional geometric structure in the image. 
Lowe and Binford [1981] describe some general and domain 
independent constraints for the interpretation of image contours. 
The bases of these constraints are the non-accidental argument 
and the coincidence assumption for the view point and light 
source positions. These constraints can be used to categorise image 
contours into their distinct classes described in the previous 
section. There may be a large number of constraints and sub­
constraints and some of them are also helpful in the detection of 
contours. Here we are discussing only those constraints which 
interpret image contours in terms of their distance from the 
observer and specifically the contours in colon images. The 
individual situations are also explained in Figure 4.1.

Curvilinear Alignment

When two contours are aligned in an image (even if they are 
separated by a gap), they are also aligned in space as shown in 
Figure 4.1a. The only exception is when contours are parallel and 
the viewer happens to be in the plane of the contours. This 
constraint is very handy in bridging the gaps in curves due to 
errors in the contour extraction method.
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Figure 4.1: Shape from contour: Constraints 
(a) Curvilinear alignment, (b) Termination at a 
continuous contour, (c) Crossing contours.
(d) Contours ending at a common point.
(e) Vanishing point.
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Termination at a Continuous Contour

When an image contour terminates at a continuous curve 
(T Junction), the continuous curve is normally closer to the viewer 
than the terminating contour (Figure 4.1b). This is very useful clue 
for identifying the closest contour in colon images. Because during 
the navigation of the endoscope, the nearest contour should be 
avoided and the tip can be aimed towards the hypothesised centre 
of that contour.

Contour Crossing

When two continuous contours cross one another (X Junction as 
shown in Figure 4.1c), it indicates either an illumination 
discontinuity, a transparency, or a rare combination of surface 
contours. Both of the crossing contours cannot belong to occluding 
geometric boundaries. If one of them is an occluding contour then 
the other must be either a wire or the edge of a partially 
transparent object and it must be closer to the camera. If one 
contour belongs to a shadow boundary then the other must be a 
surface marking on the same surface.

Termination at a Common Point

When two or more contours terminate at a common point in the 
image (L, Y, K, or Higher order Junctions as shown in Figure 4.Id), 
then they also terminate at a common point in space. The 
exception is an accidental coincidence when the viewer is aligned 
in such a way that separate vertices in space project at a common 
point in the image.

Vanishing Point (Parallel Lines)

Due to perspective projection in image formation, the parallel 
straight lines in object space converge to a common vanishing 
point in the image. Once a vanishing point is found for some lines, 
the other lines which are aligned can be assumed to be parallel. 
The vanishing point is very important for solving different
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navigational problems and it has been used in road following [Liou 
and Jain 1987]. In colon images the inner muscle rings yield their 
own vanishing point in terms of reduction in the size of those 
rings as their distance from the observer increases (Figure 4.1e). 
When these muscle rings are partially visible, the length of their 
image contours also provide a distance estimate. Generally a short 
length contour surrounded by longer contours is further away 
from the viewer than the longer contours. Additionally if the colon 
is viewed along its axis the darkest region in the image 
corresponds to the vanishing point and in this way the endoscope 
tip can be guided towards that region.

4.3 D iffe re n t A p p ro ach es  to  C o n to u r  E x tra c tio n

The main purpose of contour or boundary extraction is to make 
some identifications in the image. This phase of machine vision is 
an intermediate step that passes its findings on for post processing 
by a higher level stage. There are a number of approaches to 
contour extraction which use edge points in one way or another to 
form boundaries. All the methods incorporate some sort of 
knowledge into the grouping operations which map edge points 
into contours. For example, the knowledge of where to expect a 
boundary, allows a considerable reduction in the search space. If a 
little is known about the contours, the methods rely on the general 
knowledge and heuristics which are true for most domains. The 
approaches to contour extraction we are examining in this section 
include the use of:

-Linking edge points directly.
-Grouping line segments.
-Multi-Resolution or pyramidal methods.

4.3.1 Grouping Edge Points into Contours

The methods which group edge points into contours directly 
include graph searching, the minimum spanning tree, the Hough 
transform, and relaxation techniques. Graph searching techniques,
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the methods employing minimum spanning tree, and Hough 
techniques have been introduced in the previous two chapters. 
Relaxation is a widely used method at different levels of computer 
vision for refining noisy and impure information. The purpose of 
edge grouping is to find sets of edge points which are consistent to 
each other. This process can be modelled by the probabilistic 
relaxation method proposed by Zucker et al. [1977]. To formulate 
the relaxation process, each pixel is assumed to have n labels 
which correspond to n-1  directions of the edge and an nth label to 
no edge. For every pixel the probability of each label is first 
initialised by applying an edge operator to the pixel. The general 
idea is to compute some probability updating contribution for the 
central edge as a function of the probability of neighbouring 
edges. By overlapping the neighbourhood and iterating the 
decision process, local changes propagate and affect the 
surrounding neighbourhoods. In every iteration the totality of 
changes in the local neighbourhood is used to update the existence 
of each edge. Several iterations may be required for the relaxation 
process to link edges by suppressing noisy edges and enhancing  
long smooth edge lines.

The number of iterations and convergence speed is affected 
considerably by the amount of noise in the image, which is a 
factor to be considered before using relaxation methods in real­
time applications. The idea of refinement by relaxation is closely 
related to dynamic systems which has interesting implications for 
neurophysiology. If more edge properties are added to the 
probability functions for updating, a higher dimensional state 
space results and can cause considerable computational 
difficulties. Another improvement in relaxation can be sought by 
finding global quantities which are optimised in the solution.

4.3.2 Aggregation of Straight Line Segments

There are only a few techniques of image analysis where bottom- 
up organisation of the image data has been adopted successfully. 
Marr [1976] has given a new life to the idea of bottom-up
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organisation in his theory of early and intermediate levels of 
vision. Mainly two types of grouping process have been put 
forward for linking line segments into contours. The grouping 
principles along with the principle of least commitment play a 
central role in organising the raw primal and 2 V2-D sketch.

Theta-aggregation is one of the grouping principles in which a set 
of similarly oriented line segments are glued in a direction which 
differs from the intrinsic orientation of line segments. The 
principle is based on very local grouping measures to form a curve 
or line which has orientation associated with it rather than the 
individual line segments. This principle is also used for combining 
virtual lines and in fact it is not necessary to know individual line 
orientation explicitly. The second grouping principle which Man­
ilas argued for linking line segments is known as curvilinear 
aggregation. In this grouping principle the line segments are 
grouped in such a way that the assembled contours preserve the 
orientation of segments. The results of applying both of these 
principles are given for different images but it is not clear how 
these methods were implemented. It has been mentioned that the 
theta-aggregation principle is more basic and an early process, 
and therefore it should be applied first on the image data. The 
curvilinear aggregation is more successful if applied on the 
resulting line segment data from theta-aggregation.

In another implementation for line extraction Weiss and Boldt 
[1986] have used geometric grouping to form longer straight lines 
by gluing together the shorter line segments. Their grouping 
method is based on the proximity and collinearity. A straight line 
is defined as a sequence of line segments in such a way that 
consecutive pairs of line segments are roughly collinear and have 
similar contrast. The main grouping process has two steps. In the 
first step, those pairs of straight lines are tentatively linked which 
obey proximity and collinearity. The linking based on proximity 
and collinearity is implemented by defining different conditions 
for grouping which are based on the distance between end points, 
overlap, contrast, and orientation of line segments. The main 
purpose of this step is to avoid a combinatorial explosion in the
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search space. In the second step, the paired line segments are 
further merged into longer straight lines and the usage of 
geometric context depends on the search radius which provides an 
upper bound on the length of a sequence of segments tested for 
their straightness. The sequence of lines which passed this test is 
replaced by a single longer line. The authors also describe the 
hierarchy in grouping by defining different planes where each 
plane is divided into a grid whose size depends on the density of 
lines. The main problem with the method is that it cannot cope 
with texture and noisy images and it may over-merge the lines. 
From the contour extraction point of view, this method is 
restricted to detecting straight lines and therefore it is difficult to 
adapt it for extracting curved contours.

4.3.3 Multi-Resolution Based Contour Extraction

Pyramidal or multi-resolution methods have their roots in 
neurophysiology. The main advantage of using these techniques is 
their computational efficiency. In addition to that, the edges at 
multiple scales can be used to analyse the underlying physical 
causes of the brightness changes. Although similar pyramidal 
techniques have been used for the analysis of multi-scale 
curvilinear image data, representing boundaries, we are 
restricting ourselves to hierarchical linking of edge data into 
contours. Their are two alternative approaches to the problem of 
extracting contours using multiple resolutions:

-A grey level pyramid is constructed from the 
given image and boundary points are extracted at 
each scale. Then the grouping rules based on the 
proxim ity, continuation, and sim ilarity in 
orientation and contrast are used to link the 
boundary points locally within each level and 
between adjacent levels of the pyramid.

-In the second approach the input to the pyramids 
can be line segments or curves at each level of the 
pyramid. Normally line or curve segments are fed
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to the retina (bottom level) of the pyramid. Then at 
each level they are grouped into longer lines or 
curves and the result is passed on to the next 
higher level. In this way the contours are formed 
by reaching the root or apex of the pyramid.

Kelly [1971] originated the concept of multi-resolution processing 
for contour detection by employing two scale, coarse to fine 
planning. A coarser image was computed by averaging the pixels 
in every 8><8 window of the original image. The boundary was
detected from the coarse image which was then used to find the 
contours in the original image. This is a sequential approach which 
saves needless work in uninteresting areas of the highest 
resolution image and also serves to verify and localise the results 
obtained. A similar coarse to fine method based on two-resolution 
has been used for detecting lung tumours in chest radiographs 
[Sklansky and Petkovic 1984].

The edge pyramids are also used to extract boundaries of objects 
[Hong et al. 1982]. A pyramid is constructed by reducing the 
resolution of the image at successive levels and then edge 
detectors are applied at each level of the pyramid. The edges 
between adjacent levels and at the same level are linked based on 
their distance and orientation. The extraction of straight lines and 
smooth curves has also been carried out by using overlapped 
pyramid structure [Hong et al. 1983]. In this method the boundary 
curves can be fed into the appropriate levels of the pyramid. The 
contours are approximated by line segments and at each level 
segments from the level below are combined using local position, 
curvature, and direction to form longer contours. These contours 
are then passed on to the higher levels for further grouping. A 
similar approach has also been employed to link lines 
hierarchically for corner detection [Hartley and Rosenfeld 1985].
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4.4 A n H ie ra rc h ic a l M ethod  to  D etec t C o n to u rs

Humans can perceive straight and curved contours easily even if 
they are broken and relatively sparse, or they are obscured by 
other curves. The pyramid-based techniques make the global 
properties of contours local and therefore global operations are 
easy to implement in parallel. The main difficulty in pyramidal 
methods is that by reducing the resolution, there is a chance of 

losing relevant contour information. This problem can be 
overcome if the information at lower levels is readily available 
and used in an informed way. In our contour extraction algorithm, 
the line segments are fed to the lower two levels of pyramid. Then 
higher level processing elements group the line data supplied by 
their children and pass on the grouped segments to higher levels 
for further grouping. In this way contours are constructed in a 
single pass when the pyramid root is reached.

4.4.1 From Line Segments to Contours

The approximation of image contours by line segments simplifies 
their representation at different resolutions by different length 
line segments without losing useful information. The variable 
length line segments are easy to detect by using line detectors at 
different size image windows. A sequential version of the contour 
extraction method which groups line segments only at one 
resolution has also been developed [Khan and Gillies 1988b]. The 
sequential contour tracing uses a number of heuristics to fill the 
gaps in broken parts. The method described here is extended to 
parallel implementation and uses line segments extracted at two 
resolutions.

A line pyramid is constructed in such a way that its two lower 
levels hold line segments extracted for 4><4 and 8x 8 image 
windows. The pyramid is based on 4 x 4 overlapping  
neighbourhoods and each node has four parents and sixteen 
children as shown in Figure 4.2. Each parent performs grouping on 
its sixteen children, but it only keeps the grouped line segments in
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Parent blocks

Children blocks

Figure 4.2: A 4x4 (50%) overlapped pyramid
scheme, where each node has sixteen children and 
four parents. Thick and smaller squares are the 
central 2x2 children, while the larger squares cover 
all the sixteen children.
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its central 2x2 block for passing on to the parents. The bottom 
l e v e l  line segments are only considered when gaps are 
encountered. Rather than using ad hoc heuristics for filling broken 
contours it is better to use lower level data in support of any 
decision.

The grouping is mainly carried out on the line segments found in 
the 8^8 image window. A number of grouping criteria are used to
achieve the aggregation of line segments into contours. Proximity, 
theta-aggregation, curvilinearity, continuity, and similarity in line 
contrast are the main grouping principles used in the linking 
process.

Theta-Aggregation

For theta-aggregation line segments of similar orientations are 
grouped together, whether their individual orientations are 
preserved in the resulting contour or not. The grouping based on 
theta-aggregation has been explained previously. Here we have 
restricted this criterion by grouping only if the resulting contour 
direction is not normal to the individual line segments.

Curvilinearity

In curvilinear aggregation only those line segments are grouped, 
whose orientation is roughly collinear with the contour direction. 
In this way this grouping process preserves the orientation of line 
segments.

Proximity

The proximity of line segments is explicitly defined by the 
distance between their end points for curvilinear grouping and 
perpendicular distance between parallel lines for theta- 
aggregation. If lines are well apart they are not linked 
immediately and support for their grouping is sought from the 
line segments at the bottom level.
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Continuity

The continuity during linking of contour segments is preserved by 
grouping those contour segments whose respective end directions 
(tangent at contour ends to be joined) are compatible.

Similarity in Line Contrast

In deciding between competitor groups of line segments, their 
contrast is also used and similar contrast lines are preferred.

For nodes at an immediate level above the line segment nodes 
three neighbours are considered for linking line segments to form 
a contour segment. One neighbour is in the prior grouping 
direction and the other two are its left and right side neighbours. 
Initially the grouping direction is approximated from line segment 
orientation. For example as shown in Figure 4.3, if the grouping 
direction is NE, then the three neighbours considered are in NE, N 
and E directions. Similarly for N direction the three neighbours are 
NE, N,  and NW. This means that contours can turn up to a 
maximum of 45° over an 8*8 image. For nodes at higher levels
contour segments with compatible end directions are only 
considered and they are grouped if the neighbouring line 
segments from both groups follow one of the grouping principles, 
which are based on theta-aggregation and curvilinearity. During 
the linking process which is performed locally by each parent to 
link its children, thinning can also be performed to eliminate those 
line segments which are parallel to the contour segments and 
located within a pre-defined distance. The detail of the overall 
grouping process along with its parallel implementation is 
discussed in the next section.

4.4.2 The Algorithm

The method of extracting contours in parallel using a pyramid 
structure is divided into following steps:
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Step 1: Construction of a 4*4(50%) Overlapped Pyramid

A 4x4 overlapped pyramid is constructed in such a way that its
nodes at the bottom level (level zero) represent line segments 
extracted on the basis of 4^4 image window, while nodes at one 
level above (level one) carry line segments for 8X8 image window.

NW N NE

N NE NE N NW

Figure 4.3: Typical three-neighbours used to group 
line segments.

-117-



Step 2: Grouping Line Segments

The nodes at an immediate level above the line segments and the 
higher levels nodes perform similar grouping operations, but 
different approaches are followed due to different types of input 
data.

(i) For each node at one level above the line segments (in 
this particular implementation level two) contour segments 
are formed by grouping line segments. The three-neighbour 
strategy described earlier is also performed at each end of 
the segments. The grouping is carried out using proximity, 
theta-aggregation, and curvilinearity from the sixteen 
children as explained below.

-If the grouped line segments do not pass through 
the central 2><2 block, then either no contour exists
in the image area corresponding to that node or 
some portion of the contour which passes through 
the node is missing. Support for the missing portion 
of the contour segment is sought from the bottom 
level line data. If no contour segment is found then 
a no-contour flag is passed to its parents.

-If one or more contours pass through the central 
block then for every line segment, check for the 
possibility of grouping it with neighbouring line 
segments. Group two line segments: if they are 
parallel and located within a pre-defined distance 
D max, or if their directions are at the most 45° apart 
and end points are within the pre-defined distance 
threshold, Dmax. The central block line segments are 
kept as a contour segment along with its tangent 
directions at both ends. The tangent direction at the 
ends of contours formed by theta-aggregation, may 
be different from the individual line orientations.
All contour information is passed on
to the parents for further grouping. This
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information also includes the identification tag for 
those neighbours which are in the outer block and 
have been identified as part of that particular 
contour segment.

(ii) For all the nodes at higher levels, the contour segments 
from the central four children are tested for grouping among 
themselves or with the outer twelve children. This process 
proceeds as follows.

-For every central contour segment, check for the 
possibility of grouping it with other neighbouring 
contour segments. Group two contour segments if 
their respective ends are within a pre-defined 
distance Dmax, end directions (tangents) are
compatible, and the neighbouring line segments of 
both contours follow at least one of the grouping 
criteria (theta-aggregation or curvilinearity). This 
process is repeated on the resulting contours until 
there are no more grouping possibilities. From the 
resulting groups the central children contour
segments are merged into longer contours by
making a single group of line segments and by
modifying end tangent directions. The information 
about the outer children which are part of the 
larger group is also passed on to the parent along 
with the merged contour.

-The central contours, which are not merged with 
any other contour segment, are flagged as 
completed and they are passed on to their parents.
The higher level nodes just pass on these completed 
contours to their parents until the root is reached.

Step 3: Filtering Short Contours

At the root level, the length of all the contours is checked and only 
those with length longer than a threshold CLmjn, are retained.
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An additional step for filling the gaps can be added before step 3, 
where the edge point data can be used for merging close contours. 
At this stage of the contour extraction algorithm, the knowledge 
about the shape and size of contours can also be exploited to 
achieve better results.

4.4.3 Implementation Details of the Algorithm

The contour tracing problem is basically a sequential process but 
we have developed this technique using a pyramid structure in 
such a way that it can be easily implementable on a pyramidal 
computer. There are two approaches which can be followed.

In the first approach the retina or bottom level processing 
elements can extract edge points from the image, while the 
processors at the next level above can be used as links to pass on 
edge point data to be processed at next two levels simultaneously. 
At these two levels, the processing elements can perform 
perceptual grouping to extract line segments for 4*4 and 8*8  
image windows. In a 4><4 overlapped pyramid structure, the
perceptual grouping process can be extended to 6x 6 and 12x 1 2  

windows (if the implementation of the previous chapter is 
followed strictly) or even more. The processing elements at higher 
levels can implement the linking algorithm by forming groups of 
line segments which belong to their sixteen children and pass on 
the resulting aggregate of segments to next higher level of 
processes. In this way, by the time the root of the pyramid will be 
reached, all the groups of line segments can be formed and 
replaced by different contours easily.

The second approach, which has been adopted in our 
implementation, is realised by computing edge points and then 
grouping them perceptually in a classical parallel way. The line 
data is then fed to an overlapped pyramid computer which links 
these line segments hierarchically similar to the first approach. 
The pyramid computer architecture is simulated by constructing a 
quadtree based on 4x4 overlapping neighbourhood. For a 256x25 6
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image size, where line segments are extracted based on 4><4 and 
8 x 8 image windows, the line pyramid has a total of seven levels
labelled from zero to six (see Figure 2.5). The level zero which is 
also the bottom level of the pyramid holds 64x64 array of line 
segments and level one carries 32x 32 array of longer line 
segments.

The higher level nodes require a data structure to keep multiple 
contour segments. A pointer field which points to the contour 
linked-list structure is provided in the node. For each contour 
segment a linked-list of line segments, ordered from one end of 
the contour to the other, is kept. While for multiple contours, a 
linked-list of contours is used and in addition to having the 
contour pointer, it also has fields to keep a record of the end 
directions of that particular contour, the number of line segment 
in the contour, and neighbour information about those outer block 
contour segments which can be grouped to form a longer contour 
at higher levels.

4.5 E x p e r im e n ta l R esu lts  a n d  D iscuss ion

The line segments extracted by using the perceptual grouping 
method of previous chapter are used as input to the contour 
extraction algorithm. The algorithm has been tested on a large 
number of typical endoscopic colon images and the results from 
three of them with different type of contours and noise conditions 
are presented here. In addition to that the results of grouping line 
segments, extracted by employing connectivity grouping on one of 
the artificial images of previous chapter, is also presented. Four 
test images, with line segments overlaid, are shown in Figure 4.4 
to 4.7. Red lines correspond to the line segments extracted on the 
basis of 8X8 image window while the blue lines correspond to 4x4
image windows. The grouped line segments for contours are 
shown in Figure 4.8. These groups have been formed in a single 
pass by traveling from the 2nd level of the pyramid to the top. 
The longer lines, which are based on 8X 8 image window, are 
dominant in these groups because the 4 x 4 window based lines
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Figure 4.4: Line segments  extracted f o r  the f i r s t  colon test 
im a g e .
(a) B ased  on d * d  image window.
(b) B ased  on 4 * 4  image  window.

(a) (b)

Figure 4.5: Line segments  extracted f o r  the second  colon  
test  image.
(a) B ased  on 3 x 3  image  window.
(b) B ased  on 4 X4  image window.
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(a )  ' ( b )

Figure 4.6: Line segments  extracted f o r  the third colon  
test  image.
(a) Based  on 3 x 3  image window.
(b) B ased  on 4 x 4  image window.

(a) ( b )

Figure 4.7: Line segments  ex trac ted  using connectiv ity  
grouping f o r  the artif icia l  test  image.
(a) Based  on 3 x 3  image window.
(b) B ased  on 4 x 4  image  window.
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Figure 4.8: Groups of line segments formed.
(a) For the first colon image line data of Figure 4.4.
(b) For the second colon image line data of Figure 4.5.
(c) For the third colon image line data of Figure 4.6.
(d) For the artificial image line data of Figure 4.7.
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(shown as thicker lines in Figure 4.8.) are only used for filling the 
gaps. The proximity grouping threshold (Dmax), is used as eight 
pixels for line segments which are based on 8><8 image window 
and four pixels for 4x4 lines. If the line end points (for curvilinear 
aggregation) or lines themselves (for theta-aggregation) are 
separated more than this threshold, they are not grouped.

During the grouping of test line data of Figure 4.6, thinning was 
also performed. The group formation process, when combined 
with thinning, produces cleaner groups of lines as shown in Figure 
4.8c. The results without applying thinning are not affected 
considerably because additional contours, which are of shorter 
length, can also be filtered out during the Step 3 of the algorithm. 
The groups of line segments are then replaced by contours which  
are shown in Figure 4.9 overlaid on the images. Only those 
contours are retained whose length is greater than a threshold  
C Lmin, which is chosen to be at least four line segments in the 
results shown.

We now consider the statistics about the amount of visual data,
processed at different levels of hierarchical rep resen ta tion s, 
starting from the edges until contours are formed. The two visual 
data representations between the raw image and contours are 
edges and line segments. Table 4.1 provides an insight to the 
visual data reduction at each level of representations for the colon 
and artificial test images. It also illustrates the amount of filtering 
performed by perceptual grouping of edge points and line
segments. The considerable reduction in image data from pixel to 
the higher level representations justifies our argument for an 
intermediate line segment representation in-between edge points 
and contours.

The main problem with the resulting contours are their lack of 
smoothness and precise location. This has happened mainly due to 
the use of the theta-aggregation principle. It is difficult to locate 
the position of contours accurately when parallel line segments
are replaced by a contour which does not preserve the orientation
of the individual line segments. In the results of Figure 4.9, we
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(C) (d)

Figure 4.9: The output contours over la id  on the images,
(a) Firs t  colon test  image, (b) Second colon test image,
(c) Third colon test  image, (d) Artif icial  test image.

**>vv ;
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have simply placed the contours in such a way that they pass  
through the mid-points of each line segment. Theta-aggregation is 
an important principle which detects significant contours but at 
the cost of imprecision in locating the contours.

Visual
Data
Representations

Artificial 
Image 

Figure 3.6

1st Colon 
Image 

Figure 3.15

2nd Colon 
Image 

Figure 3.16

3rd Colon 
Image 

Figure 3.17

Image Size. 256x256 225x310 225x310 225x310
Number of 
pixels. 65536 69750 69750 69750

Number of 
edges 28688 20925 13398 16406
retained.

Number of 
line segments 
found based on:

8><8 window. 238 177 118 146

4x4 window. 697 564 255 400

Number of 
line segments 
emerged as part 
of contours. 301 137 78 103

Number of
contours
formed. 4 10 5 8

Table 4.1: Image data reduction at the different 
levels of visual representation.
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In addition to that the method is also prone to accidentally 
forming curves due to texture. This problem can be overcome by 
using a higher threshold for the minimum length of contours. A 
similar problem was reported by Weiss and Boldt [1986] in their 
method of extracting straight lines. Nevertheless, this is the first 
successful attempt to use perceptual grouping in detecting 
arbitrary shaped contours from noisy images and the contour 
extraction method can be improved further for other applications.

The closest work to our method has been reported by Hong et al. 
[1983]. They have employed good continuity for merging contour 
segments based on proximity of end points and compatible end 
directions. Our algorithm departs from their method in a number 
of ways. First of all in addition to continuity, we have used two 
very important grouping principles based on curvilinearity and 
theta-aggregation. Secondly to reduce computation, children pass 
on the information to their parents about the prospective contour 
segments which can be grouped to a particular contour. In 
addition to that line segments are not replaced by contours until 
the top level is reached. This in turn helps in applying grouping 
criteria on neighbouring line segments, which belong to two 
different contour segments. The main criterion used by Hong et al. 
for detecting compatibility between contour ends is also not 
general and it depends on the radius of the circle, which they try 
to fit between end points. To achieve good results for straight lines 
the radius of the circle is set to a very high value (typically 1000) 
while for circular curves the radius must be a small value 
(typically 10).

The examples they have chosen to demonstrate their method, are 
very simple synthesised curves and lines. The technique has not 
been tried on real world images. In contrast we have shown how 
our algorithm performs on endoscopic and artificial images which 
contain a large variety of noise. The input to contour extraction 
algorithm contains a number of false line segments and the results 
demonstrate that our algorithm is robust and applicable to a more 
general class of real images.
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CHAPTER 5

ESTIM A TIN G  RELA TIV E D EPTH  BY R EG IO N  EXTRACTION

5.1  I n t r o d u c t io n

In addition to occluding contours, the darker regions in the 
endoscopic colon images provide important depth cues for 
navigating the endoscope in colon. The task of locating these 
regions in colon images is closely related to region based image 
segmentation. The region based methods aim to extract regions of 
similar properties. They partition images by grouping pixels and 
regions on the basis of proximity and similarity in intensity, 
colour, range, or texture. Using these methods, the image is 
divided into uniform and homogeneous sub-regions in terms of 
some property.

The region extraction algorithms presented in this chapter, detect 
a uniform and coherent region of given properties. In the specific 
application of depth estimation in endoscopic images, the darker 
region is the deepest and free of obstacles. The task is to extract 
the lowest intensity region in noisy colon images. The endoscope 
application also requires that the region should be detected in 
real-time. The classical implementations of region extraction 
methods are sequential which makes them less applicable to real­
time image analysis. Consequently, a pyramid structure has been 
used in our technique for region extraction. The use of pyramid 
structure has allowed us to devise a highly parallel
implementation of the algorithm. The image histogram is used to 
estimate the average intensity of the darker region. A variance- 
average pyramid is constructed in which each node consists of the 
comprehensive properties of its corresponding region in the form 
of intensity mean and variance. These properties are calculated 
recursively by using the mean and variance of child nodes. During
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this process a record is also kept for the largest dark and uniform 
region in each sub-tree of the pyramid under construction. In this 
way, starting from the pixel level, when the pyramid is com pletely  
built, the largest dark and uniform square region is identified in a 
single pass. This region may itself be large enough to provide 
insertion direction for the endoscope or, for a more general case, it 
can be used as a seed for the region growing process. The merging 
of regions can then take place to extract the complete region.

An extension of the algorithm is also implemented for image 
partitioning. The same technique is used to extract uniform seed 
regions, which can play an effective role in partitioning any given 
image. The improper selection of seeds can lead to inaccurate 
partitioning of an image. Ideally a seed region should be large and 
uniform. For image partitioning, a similar pyramid is constructed 
but only the record is kept for the uniform square regions which 
satisfy the uniformity criterion in terms of the region intensity 
variance and mean. When the pyramid is completed, the root node 
of each sub-tree in the pyramid contains the address of the node 
which corresponds to the seed region in that sub-tree. The nodes 
of each plane of the pyramid are treated as sub-trees and a link to 
the seed region for each sub-tree is established. An additional top- 
down pass in the pyramid is then initiated in which these seed 
regions are grown in parallel to identify complete uniform regions. 
A specific case of the algorithm is also investigated for detecting 
bright or dark regions without using the histogram information. 
The same pyramid construction steps which extract seed regions 
are employed with an additional restriction. For detecting bright 
regions, during the construction of pyramid when the seed region 
for a parent is selected from the seeds of its children, the brighter 
and larger size seeds are preferred. Similarly the darker region 
can be extracted by preferring darker seeds during the selection 
process.

In the experimental results, the endoscopic images of the human 
colon are presented to demonstrate the dark region extraction 
method. The image partitioning algorithm is applied to other
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medical images and the results are also demonstrated on a variety 
of images including the computer generated images.

5.2 D ep th  fro m  In te n s ity  in C olon Im ages

Depth is the most important information which any navigation 
system needs to know for path planning and obstacle avoidance. 
Humans estimate depth by means of various cues including 
shading, texture and stereo visual processing, while some animals 
such as bats utilise a time of flight method for distance 
measurement.

Although there is a possibility of redesigning the tip layout of the 
endoscope to allow either the use of stereo vision or addition of a 
dedicated range sensor, we are currently assuming that the colon 
scene information is only available from a single camera. In this 
case the properties of the illumination and physical layout of the 
endoscope can be used. The inner body surfaces of the colon are 
illuminated by a single point-like light source. Although there is a 
lot of reflected light due to specularity, we still assume a point 
light source for the purposes of estimating the deepest region. 
Moreover the light source and the viewer are located almost at the 
same position and the light source is near to the colon surfaces. 
This simple illumination model resulting from the physical layout 
of the endoscope tip has led to the development of the method for 
estimating depth inside the colon, described here.

Under this arrangement, the colon surfaces which are nearer to 
the point light source are more brightly illuminated than the 
farther surfaces. When the light source is close to the object, which 
is the case in colon images, the light rays cannot be assumed 
parallel and the reflected light intensity becomes a function of the 
distance between the light source and the surface. The above 
condition is illustrated in Figure 5.1. The normal assumption is 
that the incident light intensity Iinc, varies inversely with the 
square of the distance r, between the light source and the point of 
reflection on the surface.
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Incident light rays

Figure 5.1: The farthest part of the colon receives 
the smaller amount of incident light.
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In other words

W  =Io/r2 (5 .D

where I0 is the light intensity at the light source.

Since the light source and camera are almost at the same location, 
the deepest area in the colon with respect to the viewer 
corresponds to the darkest region in the image. This is illustrated 
in Figure 5.1 and 5.2. In the case of Figure 5.1, the darkest part is 
in the centre. Therefore the endoscope is moved straight forward 
while keeping its tip controlled in the previous direction. For 
Figure 5.2, the darkest part of the endoscopic image is in the 
upper part, therefore the endoscope must be advanced in the 
upward direction and the tip direction is controlled accordingly.

5.3 R eg ion  E x tra c tio n  T ech n iq u es

In region extraction the image is divided into sub-regions on the 
basis of their properties including intensity, colour, texture, or 
range. Zucker [1976] has written an excellent survey on different 
region extraction techniques. These techniques can be categorised 
as merging, splitting, and split and merge.

5.3.1 Region Merging

Merging starts with a uniform region of one or more properties. 
In the simplest case this region can be a single pixel. An attempt is 
made to enlarge the region by searching for the similar properties 
in neighbouring regions, one at a time. The whole process is 
sequential and the resulting region's shape may depend on the 
starting region or pixel, known as seed, and the direction of 
search.
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Figure 5.2: The endoscope approaching a bend.
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Different forms of the basic method have been successfully 
applied. For example, Muerle and Allen [1968] have used a three 
stage approach for region merging: firstly, the entire picture is 
segmented into square blocks (of size 2 x 2 , 4x4 etc.); secondly, a
statistical measure is determined for each of these regions, and 
finally the regional neighbour search method is used to merge the 
blocks of similar statistics. The estimate of the statistical measure 
for a region is updated after every merge operation, which makes 
it an accurate description of regions. Brice and Fennema [1970] 
use the so called atomic regions of constant grey level to start 
with, then these atomic regions are merged by applying 
successively phagocyte and weakness heuristics. These heuristics 
use the properties of the edge boundaries between regions. The 
adjacent regions are merged if the boundary between them is 
weak and the resulting region has a shorter boundary than the 
original regions. Pavlidis [1972] has presented an algorithm which 
divides the image into one-dimensional thin strips. These strips 
are then segmented into a small number of partitions using an 
approximation method. Merging is then performed utilising the 
partitions of every strip. Levine and Shaheen [1981] have grown 
regions by merging as many adjacent pixels as possible based on 
the colour features. The threshold for merging is adapted 
according to the coherence of regions for limiting the growth of 
less uniform regions.

5.3.2 Region Splitting

This is the opposite approach to merging for image segmentation. 
Splitting starts with the whole image which is considered as one 
region. It is then divided successively into smaller regions until 
each smaller region satisfies the uniformity criterion. Normally the 
histogram of a coherent or uniform region is unimodal. Therefore 
when a region has a multimodal histogram, an attempt is made to 
partition it in such a manner that the histograms of resulting 
regions are unimodal.

Like merging, splitting has been used successfully as the basis of 
several algorithms. For example, Robertson et al. [1973] have
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developed an algorithm for partitioning multi-spectral images
recursively. Their criterion for region uniformity, known as G- 
regularity, is based on the mean vector of grey levels. The
algorithm continues to subdivide blocks until a sub-region is 
found whose mean grey level does not differ from that of its 
parents. The histogram information has also been used to 
determine a threshold for separating an object from its
background. The same idea is utilised in a more general sense for 
region splitting. Tomita et al. [1973] have calculated histograms on 
the basis of texture properties, while Ohlander et al. [1978] have 
employed nine colour attributes. These authors have suggested a 
recursive region splitting technique. By using histograms of 
several different feature values of a given region, a threshold in 
one of the features can be used to split the region into sub-
regions. This process is repeated on each split region until all their 
histograms are unimodal.

5.3.3 Pyramid Based Techniques

The first major algorithm to employ a pyramid was due to Horwitz 
and Pavlidis [1974]. They employed the principle of split and 
merge for segmentation. The split and merge process starts from 
any given partition of the image. The adjacent regions are merged 
if they satisfy the uniformity criterion and a single region is split, 
if it is not sufficiently uniform. The process continues until there 
are no regions to merge or split. For a given image, the pyramid is 
constructed whose nodes correspond to square regions and whose 
leaves represent single pixels. Each node has also an associated 
value attached to it which is the maximum and minimum 
brightness functions of the corresponding block. The algorithm 
begins with an arbitrarily chosen cut-set of the nodes (partition of 
the image), which is subsequently refined by splitting and 
merging. Merging of four nodes is performed by removing them 
from the cut-set and replacing them with the single node. The 
pyramidal data structure is abandoned by a grouping process 
which follows the split and merge. The segmentation is further 
improved by combining small regions with their neighbours and
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by merging similar regions of different sizes by using an 
adjacency graph structure.

Other researchers have also employed different pyramidal 
structures for image segmentation [Burt et al. 1981, Hong and 
Rosenfeld 1984]. An overlapped pyramid, defined by 4x4 block
averaging, has been employed successfu lly  for image 
segmentation. Each block has four parents and sixteen children. In 
this way the blocks overlap by 50% on all four sides. The links 
between adjacent levels are weighted and their strength is 
adjusted by recalculating their values iteratively. This process is 
continued until the link strength shows no further changes. The 
links which remain intact provide the sub-trees in the pyramid 
and the leaves of each sub-tree represent a homogeneous region 
in the image [Hong and Rosenfeld 1984]. In a simpler approach, 
each block is linked to that of its parents whose average grey level 
value is closest to its own [Burt et al. 1981]. The values associated 
with each block are recomputed by averaging only those blocks on 
the level below that are linked to it. The links are changed based  
on these new values, if necessary. This process is repeated until 
there are no further changes. Pietikainen et al. [1982] have 
suggested different techniques for splitting and linking th e  
overlapped pyramid. The pyramid structure has also been used 
for determining thresholds for blob detection [Shneier 1983], and 
more recently Blanford and Tanimoto [1988] have reported a 
variety of bright-spot detection techniques.

5.4 T he P y ra m id  S tru c tu re  fo r R egion E x tra c tio n

Region based segmentation techniques 'which employ a two- 
dimensional pyramid based representation are the fastest 
currently available. They are also the most cost effective since, 
with recent developments in VLSI and ULSI technologies, memory 
is cheap and it is unnecessary to save space for the representation 
selected. The important features of a representation are the 
facility for computationally efficient operations and ease of access 
to arbitrary regions. The most common operation is the searching
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for suitable seeds from the entire image for region growing. We 
have found that these operations are best supported by the 
pyramid structure. The root of the pyramid represents the entire 
image and any required region can be reached from the root in a 
few steps. The pyramid based image representations are based on 
the organisation of the interior of a region and can be categorised 
as a collection of maximal blocks which partition a given region of 
the image. They do not follow strictly the maximal block 
representation and their blocks are disjoint and have a standard 
size and location depending on the level of the tree. This provides 
a systematic hierarchical way of representing squared regions in 
the image.

A pyramid architecture computer in its most basic form consists of 
successively smaller planes of processing elements stacked over 
one another in such a way that the largest plane is at the bottom 
and the smallest which consists of a single processing element at 
the top. These planes are linked via a tree (e.g. quadtree). The 
internal links of each plane provide efficient implementations of 
parallel and local operations, while the logarithmic based 
connections between planes of consecutive levels reduce the 
distance of order n to log2(n). The pyramid based techniques can 
be simulated using quadtrees on ordinary sequential computers. 
Therefore the specially tailored image partitioning methods, which 
utilise quadtrees, can be implemented on pyramidal computers in 
parallel. The methods described in this chapter are best suited for 
parallel implementation, specifically the step concerning the 
extraction of seed regions.

In quadtrees the image representation is based on the successive 
subdivision of image into quadrants. A quadtree is represented in 
the memory by a tree of outdegree four, where the root 
represents the whole image of 2N*2N pixels. The pyramid based
on a quadtree is made of N+l planes stacked one over the other, 
with the original image at the base and the root of the tree at the 
top. For a plane of size 2n*2n, the level L is given by, L=N-n, and 
each pyramid plane is denoted by gL as shown in Figure 5.3.
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0 x 2 0

Figure 5.3: The quadtree based pyramid structure
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For a given level k, the plane at level k+1 is constructed by 
employing one of a possible set of transformations. If gk l, gk2, gk3, 
and gk4 represent an intensity or other property of four quadrants 
on which the parent node gk+1 is based, Then

Sk+1 = T{gkl> Sk2» Sk3’ Sk4) (5*2)

Where T, is a particular transformation. One simple example of a 
transformation is the average transformation Tave, which is:

Tave = [§kl+ Sk2 + §k3 + Sk4^^ (5.3)

It sets gk+1 to the mean of its four son nodes at level k. We have 
employed both the average transformation, T ave and a variance 
based transformation. Other possible transformations are, Tmin 
which selects the minimum, or Tmax which selects the maximum 
of some property of the four regions. The typical properties can be 
one or a set of different histogram features like standard 
deviation, variance, skewness, energy, or entropy. T h e  
transformation based on variance, Tvar is formulated and used, as 
far as we know, for the first time in our algorithm.

5.5 Detection of Dark Regions

5.5.1 The Algorithm

We now introduce the algorithm which uses a variance-average 
pyramid structure for detecting a dark homogeneous region in an 
image. The method, which has been developed from an initial 
version [Khan and Gillies 1988a], has three distinct steps.

Step 1: Estimation of Intensity for Darker Region

The darker areas of colon images which correspond to the deepest 
and obstacle free part in the colon, are often clearly visible. The 
first peak in the intensity histogram can be used as an estimate of 
the average grey level of the area desired. An intensity histogram
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is constructed for the given colon image and then a range of grey 
levels, surrounding the first peak in the histogram, is estimated 
(see Figures 5.5 to 5.8). The first peak is ta-kem to be the Tnaximom
below am intern si hj level o£ 00-

Step 2: Detection of Seed Region

An intensity variance-average pyramid is constructed by starting 
from the pixel level and averaging the pixels in each square group 
of four to produce an image of half the resolution. The Tave 
transformation, described in the previous section, is used. In 
addition to the mean grey level, variance is also calculated 
recursively for every square region corresponding to a particular 
node in the quadtree. Using the terminology of previous section, 
for variances 0>ki, ^k2» Vk3» and ^k4 the son nodes at a given 
level k, the variance at the parent level, 'Ok+i is calculated using:

^ k + l =  Tvar{R kl» M-k3» M*4» ^ k l»  v k2 » ^ 3 *  '°k 4) ( 5 -4 )

where Hkl» l^k3 * and |4k4 are the mean intensity of child nodes 
at level k.

and

Tvar =  fa k l  +  ^ k2 +  v k3 +  '°k4 +  M'kl2  +  Rk22  +  M-k32  +  M*42 ] / 4  “  M-k+12

(5.5)

where |4k+i = [|Xki + M*2 + l̂ k3 + M*4]/4

For the one level above the bottom level of the pyramid, variance 
is calculated directly from the pixel intensities of the given image.

The proof that Equation (5.5) does correctly calculate the variance, 
can be done by induction. Starting with the definition of variance 
as:

n

V= 2  (x ; -  |i ) 2 / n 
i=l

(5.6)
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expanding the squared term and rearranging we get: 

n

X) = 2  x i2 / n  -  |12 (5.7)
i= l

In the base case we are dealing with single pixels, and thus by 
definition:

U oi =  I>02 =  ^03 “  ^04 =  0

Hoi = x i; 1^02 = x2; iio3 = x3; M<o4 = x4;

where x i, X2, X3, and X4 are the individual pixel intensities.

Thus, using equation (5.5) we have that:

D l = ( x i 2 + X22 + X32 + X42)/4 -  (( x i + X2 + X3 + X4)/4)2

= X  xi2 1 n - V 2

as required.

Assuming that the result is true for n, we use equation (5.5) to 
perform the inductive step giving:

■Un+l =  (^ n l +  Un2 +  U n3 +  U n4 +  ) ln l 2  +  V-n22 +  Hn32  +  |*n42) /4  -  |4 n + l2

(5.8)

Now since for any sub-tree at level n in the pyramid there are 
(2 n)2 pixels, we have that:

Uni + Rnl2 = X  x>2 1 (2">2 “  ^ n l 2 + M̂ nl2 
[xj e sub-tree nl]

= X  Xi2 ! (2 n >2 (5 -9 )
[xj e sub-tree nl]
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And by substituting it in equation (5.8) we have:

V n+l =  { Z  x i2 I (2 n ) 2 +  Z  x i2 /  (2 " ) 2 +
[xj e sub-tree nl] [xj 6 sub-tree n2]

Z  x;2 /  (2n )2 + 2  Xi2 /  (2n )2 } /  4  -  H„+ i 2
[x- e sub-tree n3] [xj e sub-tree n4]

giving:

Un+ 1 =  2  x i2 /  (2n + *)2 - H „ + l 2
[xj e sub-tree n+1]

as required.

The calculation of intensity mean and variance is formulated in 
such a manner that each node uses only the intensity mean and 
variance of its children. During this process, it is also determined 
whether the area corresponding to a particular node is uniform by 
comparing its variance to a uniformity threshold, 'Othr- The 
uniformity is a function of both intensity mean and variance of 
the region. A suitable heuristic law for combining both properties 
into one is:

Uniformity = [ 1 -  \)k/|lk2 ] (5.10)

This region uniformity has been specifically used in the region 
growing step for adapting the user supplied average grey level 
tolerance, Musr between adjacent regions to avoid over merging. A 
similar approach has been employed by Levine and Shaheen 
[1981] in their region growing method.

A special link belonging to each node, the u_link is used to 
indicate the seed for the darker region in the sub-tree of that 
node in the pyramid. If the node mean grey level is within the 
grey level range estimated in step 1 and its corresponding region 
also satisfies the uniformity criterion, it is labelled as the seed for 
the whole of its sub-tree by connecting its u_link to itself.
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Otherwise, following steps are carried out to determine the largest 
dark and uniform region in the sub-tree.

-The four children of a given node are examined 
and the one which has the largest seed region in its 
sub-tree is selected. The seed area for that child is 
also identified as the seed area of the parent by 
assigning its u_link value to the parent u_link. An 
example showing several u_links is shown in Figure 
5.4. If the seeds provided by more than one child 
are of equal size then that seed is selected which is 
more uniform and whose grey level is 
comparatively near to the grey level range 
estimated in Step 1.

-When none of the children have any seed region in 
their sub-trees, their u_links will point to a pre­
defined location (e.g. NULL in C Language) and the 
parent u_link is also assigned to NULL.

Therefore in a single pass when the pyramid is completed and the 
root of the pyramid is reached, the u_links of each node in the 
pyramid points to a uniform and dark square region in its sub­
tree. The u_link for the root of the pyramid provides the address 
of the largest uniform and darker square region in the whole 
image. This region may itself be large enough to determine the 
insertion direction of endoscope in the colon, or for a more general 
case it can be used as a seed to extract a complete darker region 
by the region growing process of Step 3.

Step 3: Region Growing

After successfully identifying the seed region, adjacent areas of 
the seed are considered for merging if they satisfy the following 
two conditions.

(i) The intensity mean is within the grey level 
range estimated in step 1.
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(ii) The intensity variance does not violate the 
uniformity criterion.

Figure 5.4: A part of an intensity variance-average 
pyramid, explaining the ujiinks which are shown in 
dotted lines.

The neighbouring areas of the seed are examined and merged if 
their average intensity is equal to the intensity of seed (within 
some tolerance, Mthr) and their variance is below the variance 
threshold, Dthr- The merging threshold in intensity mean for two 
adjacent regions, Mthr is adapted from the user supplied
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threshold, Musr depending on the uniformity of the merged 
region. The threshold value, Mtj,r decreases with the decrease in 
uniformity or increase in the ratio ['Dk/H'k2]* Therefore the growing
of less uniform regions are restricted and user need to supply only 
a constant threshold, Musr.

Mthr = [ 1 -  Dk/Hk2 ] Musr (5.11)

The merging process continues for all the neighbours of newly 
attached regions until there is no neighbour left which satisfies 
the uniformity and similar grey level criteria. The merging can be 
performed either using only those nodes of the pyramid which are 
at the same level, in which case the regions of equal area are 
connected, or by using nodes lower in the pyramid for extracting 
regions with more accurate boundaries.

5.5.2 Implementation Details and Experimental Results

Work has already been reported for converting different two- 
dimensional image representations to quadtrees such as binary 
arrays [Samet 1980]. The method to build a quadtree from a 
binary image has been modified here, to deal with an image array 
of 256 grey levels and to compute mean and variance of intensity 
values for each node. Each node of the tree structure corresponds 
to a squared region in the image and contains four types of fields.

-The intensity mean of the corresponding region.

-The intensity variance of the region which defines 
its uniformity and cohesiveness.

-The relation of the node to the decomposition of its 
parent, which may be one of the set NW, NE, SW, or 
SE as shown in Figure 5.3.

-Four links (pointers) for its children and one to its 
parent, and an additional special link, u_link, which 
points to the the largest uniform and dark region
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in the sub-tree of the node. If there is no uniform 
area, the u_link points to a NULL.

The algorithm has been implemented on an 80386 based host for 
an Imaging Technology series 151 Image Processor using XENIX 
operating system. The image processor grabs the image from a 
video recorder and constructs the intensity histogram at the video 
rate. The first peak in the histogram is determined using the host 
computer, where the pyramid structure is also constructed for the 
given image. The method has been employed for a number of 
typical endoscopic images taken inside a human colon. The chosen 
pictures of human colon are representative of 70 to 80% of the 
whole class of colon images encountered during colonoscopy. 
These pictures are digitised using 256 grey levels and contain a lot 
of noise, particularly due to specular reflections.

Four selected pictures, along with their histograms, are given in 
Figures 5.5a, 5.6a, 5.7a, and 5.8a. The first significant peak in the 
histogram is indicated by a red vertical line. The extracted regions 
are shown in Figures 5.5b, 5.6b, 5.7b, and 5.8b in the form of a 
group of squared areas. In this implementation the pyramid is 
only built from the second level upward but uniformity of the
regions is not sacrificed in this process since the variance is
calculated for every 4^4 region and stored with the leaves of the
tree. The seed regions, shown in sharp white boundaries, are
detected by setting the variance threshold, Dthr at 100. The 
uniformity threshold is also varied form 80 to 250 and it is
observed that for this range the detection of dark regions, for the 
same images, is not affected. In the merging step, the user 
supplied average grey level tolerance between the seed and 
merged regions, Musr is set at seven. The merged regions have the 
red boundaries while the boundary of the detected region is 
shown in a yellowish green colour. The dark region extraction time 
was within eight seconds in most of the colon images we have 
tested. The overall boundary of the darker region is quite rough 
because the merging of regions is performed only down to the 
third level. The boundaries of the extracted regions will be 
smoother and more accurate when the pyramid is built from pixel
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Figure 5 .5:  D ark  region extraction in the f i r s t  colon  
im a g e .

(a) The image and  its histogram.

(b) The s e e d  and  neighbouring m erged  regions.
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Figure 5.6: D ark  region extraction in the second colon 
im a g e .

(a) The image and  its histogram.

(b) The seed  and neighbouring m erged  regions.
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(b )

Figure 5 .7: Dark  region extraction in the third colon 
im a g e .
(a) The image and  its histogram.
(b) The s eed  and  neighbouring m erged  regions.
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( b )

Figure 5.8: Dark  region extraction in the fourth  colon  
im a g e .
(a) The image and its histogram.
(b) The seed  and neighbouring m erged  regions.
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le v e l and the m erging operation is  a lso  perform ed dow n to the 
p ixe l lev e l at the cost o f a large am ount o f  additional processing  
t im e .

5.6 E x te n s io n  to  Im age  P a r t i t io n in g

T he m ethod to detect darker region  in an im age can e a s ily  be 
m o d ified  for extracting seed  reg ion s on the basis o f  un iform ity  
and co h esiv en ess  o f im age in tensity  or any other property. T h e s e  
seed  reg ion s can then be grow n to uniform  su b -reg ion s in an 
im age. It is worth pointing out that the im age partitioning m ethod  

described  in this section  g iv es  ex ce llen t results for p artitio n in g  
p ie c e -w ise  h om ogen eou s im ages.

5 .6 .1  Im age Partitioning into U niform  R egions

For detection  o f seed regions to partition an im age, the condition  
w hether a seed  is dark or not, is  not req u ired . T h ere fo re  no  
histogram  is  constructed . The m ethod has tw o  d is t in c t  step s:  
f ir s t ly , the in ten sity  var ia n ce-a v era g e  p yram id  is  co n stru c ted  
sim ilar to the darker region  extraction and seco n d ly , a top-dow n  
pass in the pyram id is perform ed for the region grow ing process.

S t e p : l  E s t a b l i s h i n g  S e e d s  f o r  U n i f o r m  R e g i o n s

The in ten sity  varian ce-average pyram id con stru ction  is  ach ieved  
by fo llo w in g  step 2 o f the dark region extraction algorithm . O n ly  
the uniform ity criterion (variance threshold, ^thr) is em p lo y ed  in  

d eterm in in g  the seed  reg io n  n od e for each  su b -tree  o f  the  
pyram id . I f  the node sa tis f ie s  the u n iform ity  cr iter io n , it is  
labelled  as the seed for the w hole  o f its sub-tree by connecting its 
u _ lin k  to its e lf . O th erw ise, the four children o f  the node are 
exam ined and the one w hich has the largest seed region in its s u b ­
tree is selected . The seed  area for that ch ild  is  a lso  id en tified  as 
the seed  area o f  the parent by assign ing its u_link va lu e  to the 
parent u_link as explained in Figure 5 .4 .
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I f  none o f the children have any seed  region in their sub-trees, 
their u_links point to a pre-defined location  (e .g . N U L L ) and the 
parent u_ lin k  is  a lso  assign ed  to N U L L . T herefore in  a s in g le  
bottom -up p ass, w hen the pyram id is  com p leted , the u_ lin k  o f  
every node in the pyram id points to a uniform  square region in its 
s u b - tr e e .

S t e p  2 :  P a r a l l e l  R e g i o n  G r o w i n g

A fter  con stru ctin g  the varian ce-average pyram id, the n od es o f  
every plane in the pyram id are treated as sub-trees and each sub­
tree has a distinct seed region w hich is grown in this step. Starting 
from  the top o f  the pyram id, a top-dow n pass is  initiated and for 
each plane o f  the pyram id fo llow in g  tw o steps are perform ed.

-For each node in a plane o f  the pyram id, a seed  
region is reached by testing its u_link. I f  the seed  
reg io n  e x is ts , it  is  grow n to form  a co m p lete  
uniform  region . The neighbouring areas o f  the seed  

are exam ined  and m erged if  their average in tensity  
is  equal to the in ten sity  o f  the seed  (w ith in  som e  
to lera n ce , M thr) and their uniform ity is b elow  the 

variance threshold, Dthr- The m erging threshold in 

average in ten sity  for tw o adjacent reg ion s, M thr is 
adapted from  the user su p p lied  th resh old , M usr  

depending on the uniform ity o f  the m erged regions  
as g iven  in equation (5 .1 1 ). The m erging process  
co n tin u es  for a ll the n eigh b ou rs o f  the n ew ly  
attached reg ion s until there is no neighbour le ft  
w h ich  sa tis f ie s  the u n iform ity  and sim ilar  grey  
le v e l criteria. The m erging can be perform ed by 
using nodes at the seed  le v e l, in w hich  ca se  the 
reg ion s o f  equal area are con n ected , or by using  
nodes at low er lev e ls  in the pyram id for extracting  
regions with m ore accurate boundaries.

-A ll the nodes o f  the sub-trees o f  the seed region  
and m erged reg io n s in the m erging p rocess are
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flagged  as processed  by assign ing their u_links to a 
p re-d efin ed  nod e (e .g . N U L L ). S im ilar ly  a ll the  
n od es ab ove  the le v e l o f  th ese  sub-trees w h o se  
u_links point to the seed or m erged regions are also  
flagged  as processed .

This process is  continued for each plane o f  the pyram id until a 
plane in the pyramid is encountered from w hich no seed  region is 

reached. I f  the u_links o f  all the nodes in a particular plane o f the 
pyram id do not provide a seed  region then the u_links o f all the 
nod es b e low  that p lane also  cannot provide any add itional seed  
region . T his a lso confirm s that the im age has been partitioned into  

uniform  reg io n s and there is  no unpartitioned reg ion  le ft. T he  
boundary o f  the regions can also  be traced in parallel.

5 .6 .2  R esults and Com m ents

The region  grow ing on the basis o f  seed region s provided by a 
particular p lan e can ea sily  w ork in parallel. For the com p lete  
partitioning o f  an im age tw o p asses are required; the first pass is 
b o tto m -u p  w h ich  b u ild s  th e v a r ia n c e -a v er a g e  p yram id  and  
id en tifie s  seed  reg ion s for each nod e in the pyram id and the 
secon d  p ass, w hich  is top -dow n, grow s th ese seed  reg ion s into  
larger uniform  reg ion s. T he m ethod has been dem onstrated  on 
tw o heart ventricu lar im ages and a com puter generated  im age  
w hich are show n in Figure 5.9a, 5 .10a, and 5 .11a. The pyram id in 
this case is also  constructed from the lev e l two and the m erging is 
also  perform ed down to level tw o. The uniform ity threshold for a 
uniform  reg ion , is set at n inety for heart ventricular im ages

and tw enty for the artificial im age. In the m erging step, the grey  
le v e l tolerance betw een the seed region and m erged reg ion s, M usr 

is  se lec ted  as seven . The extracted  seed  reg ion s show n in red 
colour, along w ith the com plete partitioned regions show n in green  
colour, for the test im ages are g iven  in Figure 5 .9b , 5 .10b , and 
5 .1 1 b . In F igure 5 .9 c , 5 .1 0 c , and 5 .1 1 c , the boundaries o f  the 
partition ed  reg io n s are su perim posed  on the test im a g es. The 

sam e im ages are then partitioned  by constructing  the pyram id  

from  lev e l one upward and m erging is a lso  perform ed down to
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(a)

( d)

Figure 5.9: Parti t ions o f  the f ir s t  heart  ventricular image,  
(a) Heart ventr icular  image, (b) Seed  regions and image  
par t i t ions  when the p y ra m id  is built  f ro m  leve l  two.
(c) Segmenta tion results over la id  on the image.
(d) Seed  regions and  image par t i t ions  when the p y ra m i d  
is buil t f ro m  level  one.
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Figure 5 .10:  Parti t ions o f  the second  heart  ventr icular  image, 
(a) Heart  ventr icular  image, (b) Seed  regions and image  
par t i t ions  when the p y ra m id  is built f r o m  leve l  two.
(c) Segmenta tion results over la id  on the image.
(d) Seed  regions and  image par t i t ions  when the p y ra m id  is 
built f ro m  leve l  one.

- 1 5 6 -



Figure 5 .11:  Part i t ions  o f  the computer  g en era ted  image,  
(a) The artificial  image, (b) Seed regions and image  

p ar t i t ions  when the p y ra m i d  is built  f ro m  leve l  two.
(c) Segmenta tion results over la id  on the image.
(d) Seed  regions and image par t i t ions  when the p y ra m id  
is buil t f rom  level  one.
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lev e l one. The results w hich are shown in Figure 5.9d , 5 .1 0 d , and
5.1 Id  dem onstrate m ore accurate reg ion  boundaries and im age  
partitioning. The m erging process can be extended to p ix e l l e v e l  
but it  tak es c o n s id e ra b le  am ou nt o f  co m p u tin g  tim e . T o 
dem onstrate that the m ethod works on im ages con ta in in g  a large  
am ount o f  n o ise , the artific ia l im age  o f  F igure 5 .1 2 a , w h ich  
contains random  n o ise  am ounting to ±22%  o f the average im age  
signal is segm en ted . T he un iform ity  th resh old , Dthr is  raised to 

3 0 0  for cop in g  w ith  n o ise . T he partitioned im age is  show n in  
Figure 5 .12b .

The im age partitioning m ethod is easy  to m odify  for extracting a 
s in g le  reg ion  o f  g iven  properties, w ith out using the h i s t o g r a m  
in form ation , as em p lo y ed  in the darker region  ex traction  f o r  

endoscopic colon  im ages. For bright region extraction the v a r ia n c e -  
a v era g e  p yram id  is  co n str u c ted  s im ila r ly  but d u rin g  the  
assignm ent o f  the value to the u_link, the brightness test is also  
perform ed in addition to the un iform ity . In the brightness test, 
the in ten sity  m ean o f  the seed  reg ion s o f  fou r ch ild ren  are 
com pared and the seed  w ith the h igh er  in ten sity  m ean , w h ich  
belongs to a higher lev e l in the pyram id, is  preferred. In this way  
the u_link o f the root provides the brighter seed region . A con flict  
in d ec isio n  can arise betw een  the brighter and larger s ize  seed  
con d itio n s. An add itional threshold  for the b righ tn ess test for  
adequate region  s ize  m ay be introduced to reso lve  th is co n flict. 
For darker region  detection , instead o f  ap p ly in g  the b r ig h tn ess  
test the darkness condition may be used and that seed is selected , 
w hich is darker and o f considerable size.

5.7 P a ra lle l-S e r ia l  R eg ion  E x tra c tio n :  D iscussion

F ast d etec tio n  o f  g lo b a l structure from  d ig ita l im a g es is  a n  
essen tia l com pon en t o f  real-tim e m achine v is io n . T he rea l-tim e  
perform ance o f  human perception on co m p lex  im a g es in d ica tes  
that our visual system  uses highly evo lved  parallel p rocessin g . W e 
h ave a lread y d isc u sse d  the c lo s e  r e la t io n sh ip  b e tw e en  the
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(b )

Figure 5.12: Parti t ions o f  the artificial  image with added  
noise .

(a) Arti f ic ia l  image containing ± 22%  random noise.
(b) Region boundaries  over la id  on the image.
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pyram idal com puters and organic brain architecture in the second  
ch a p ter .

On the b asis o f  pyram id architecture, a num ber o f  s p e c ia l ly  
tailored  p arallel com puter architectures are beginn ing to em erge. 
The first version  o f  the PA PIA  chip, w hich  has fiv e  p r o c e s s in g  
elem ents, w as developed  at R om e U niversity  [Cantoni and L evia ld i 
1987]. T he secon d  version  having three le v e ls  w ith  tw en ty  one  
processin g  elem ents is a lso  being developed . T he G A M  pyram id, 
w hich  is  a lso  a m u lti-la y er  pyram id structure, c o n s ists  o f  341  
general and sp ecia l purpose p rocessin g  e lem en ts [S ch aefer et al. 
1987]. T he G A M  has f iv e  lev e ls  and it can im plem ent a 1 6 * 1 6

p ixel array. Each o f its p rocessin g  e lem en ts has n ine con n ectio n s, 
w h ich  are grouped  in to  fou r to the c h ild re n , fo u r  to  the  
n e ig h b o u r s , and on e to  the parent. T he p yram id  m ach in e  
described by Tanim oto et al. [1987] uses a specia l V L SI chip  in 
w h ich  each  p ro cess in g  e lem en t can co m m u n ica te  to  t h ir t e e n  
elem en ts. T hey have em p loyed  eight con n ection s to neighbours at 
the sam e lev e l instead o f  the four used in  G A M . T he pyram id  
structure is  im p lem en tab le  u sin g  (4 n + l -  l) /3  (1 , 5, 21 , 85 e t c . )  

processors. T hese developm ents in pyram id com pu ter arch itectu re  
co u ld  p ro v id e  a true p a ra lle l im p lem en ta tio n  o f  our depth  
estim ation  and im age segm entation  techniques, and are capable o f  
producing a real-tim e perform ance for en d oscop e navigation .

W e can easily  com pare the perform ance o f  our algorithm  w ith  the 
earlier w ork on pyram id base segm entation . The sp lit and m erge  
m ethod o f  H orw itz and P avlid is [1974] does not make use o f  the 
pyram id structure for the w h o le  p ro cess . T hey start from  an 
arbitrary im age  partition  and so m etim es a large  num ber o f  
iteration s m ay be required for  seg m en ta tio n . M o reo v er  th eir  
m ethod uses an adjacency graph structure for m erging to ach ieve  
good  segm en tation  resu lts. T he overlap p ed  pyram id tech n iq u es  
[Burt et al. 1981, H ong and R osenfeld  1984] are com parable b u t  
their itera tiv e  sch em e for recom p utation  o f  lin k s m ake th ese  
m ethods le ss  app licab le in rea l-tim e. T he num ber o f  iteration s  
required to stab ilise  the links increases w ith the com p lex ity  o f  the 

im age. In our m ethod, the im age segm en tation  in v o lv es  on ly  tw o
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p a sses  on a pyram idal com puter and d o es  not depend on the  
com p lex ity  and bu syn ess o f  the im age. T he bright-spot and blob  
d etection  m ethods are com parable to our dark and bright region  
detection  techniques [Shneier 1983, B lanford and Tanim oto 1988]. 
In the blob d etection  on ly  the thresholds are detected  by using  
the pyram id and in bright-spot d etection  tw o typ es o f  pyram id  
structures h ave been  used . O ne is  b ased  on the m axim um  
tra n sfo rm a tio n , T max w h ile  the other uses a m ixture o f  average

and m axim um  transform ation s. T he authors are s till  not sure 
w hether the averaging process w ill keep the bright spot in tact or 
not. Our m ethod is more general and has the advantage that it can 
d etect any typ e o f  reg io n s in c lu d in g  bright, dark, and other  
regions o f  g iven  property.

5.8 C o n c lu d in g  R e m a rk s

W e started w ith the ob jective  o f  in vestigatin g  som e parallel and 
fast w ay o f  estim ating depth in co lon  im ages for autom atic control 
o f  the en d o sco p e  tip . T he w orld  and illu m in a tio n  m od el for  
en d oscop y  ensures that the d eep est part in the co lon  corresponds 
to the low est in tensity region in the colon  im ages. The tracking o f  
these darkest regions in a series o f  im ages provides an im portant 
part o f  the inform ation required for gu id ing  the en d oscop e. The 
extraction o f  a sing le  region o f  g iven  properties in real-tim e is an 
im portant g o a l. T his led  us to the d ev e lo p m en t o f  a reg ion  
extraction m ethod based on the pyram id structure. The technique  
is  p articu larly  a p p lica b le  to a dom ain  w h ere the w orld  is  
illum inated  on ly  by a sin g le  ligh t source located  near the object 
surfaces and view er. In this case, the darkest region  in the im age  
represents d eep est po in t in the scen e. D etectio n  o f  the darkest 
region can therefore be used for autom atic navigation in p ipes and 
ducts for a variety o f  instrum entation purposes. The sam e m ethod  

c o u ld  a lso  be a p p lied  in w a reh o u ses  and b u ild in g s  w ith  
appropriate lig h tin g  and for rob ot g u id a n ce  in tu n n els and  

autom ated factory  environm ents.
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The m ethod is so  e ffectiv e  and successfu l that w e have extended it 
to partition the im ages into uniform  region s rather than detecting  
s in g le  r e g io n s  o f  g iv e n  p ro p er tie s . T he p y ra m id a l im a g e  
partitioning techniques are m ost prom ising in term s o f  segm enting  
im ages in real-tim e. N one o f  the ex istin g  techniques provide true 
parallel im plem entation  and real-tim e perform ance. Som e o f  them  
do not em p loy  the pyram id structure throughout the partitioning  
process, w h ile  the others use iterative techniques. The m ethod w e  
have in trod uced  d oes not in v o lv e  any iterative sch em e and is  
im p lem en ta b le  in  p a ra lle l. T w o  p a sse s  in the pyram id  are 
required to partition an im age into uniform  reg ion s. For detecting  
a s in g le  reg ion  (dark or bright) on ly  one b ottom -u p  pass is 
n eed ed . T he m ain feature o f  our m ethod  is  the ea se  o f  its  
im p le m en ta tio n  on a p yram id  arch itectu re  b a sed  com p u ter , 
sp e c if ica lly  the bottom -up step w hich  detects seed  reg ion s. The 
region grow ing process w hich uses the seed regions provided by a 

particular plane o f  the pyram id is also im plem entable in parallel.

C u rren tly  the a lg o r ith m  is  b e in g  im p le m en te d  u s in g  f iv e  
transputers on the sam e X E N IX  based host to process a sequence  
o f  co lo n  im a g es, w hich  the system  rece iv es  from  a v id eo  tape  
m ade during co lon oscop y . The parallel im plem entation o f the split 
and m erge p rocess has already been attem pted using transputers 
[M ansoor and Sok olow sk a 1988]. The main restrictions o f the split 
and m erge technique are avoided  in our algorithm , as there is no 
ch a n g e  o f  rep resen ta tio n  from  a p yram id a l tree to graph  
structure. H op efu lly  w ith the introduction o f  transputers and true 
parallelism , the region extraction tim e w ill be reduced from  eight 
second s to v id eo  rate. Therefore the tracking o f  lum en from  on ­
lin e co lon  im ages, d igitised  from a U -m atic  v ideo  recorder, w ill be 
achieved . This set up provides a sim ulation fac ility  for testing the 
a u tom atic  co n tro l o f  e n d o sc o p e . In the f in a l sy ste m , the  
inform ation gathered during lum en tracking, w ill be used by the 
navigation  system  to generate d ifferent tip control com m ands for 
the p ilot sub-m odule. This approach provides a safe w ay o f testing  
the v ision  and control algorithm s, before using a prototype on the 
patients. The proposed endoscope navigation and control system  is 
described in detail in the next chapter.
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CHAPTER 6

N A V IG A T IO N  O F T H E  E N D O SC O PE

6.1 I n t r o d u c t io n

The main results o f  this research are the developm ent o f  tw o new  
m ach in e v is io n  tech n iq u es for id en tify in g  contours and darker 
r e g io n s , w h ich  w e h ave a lread y  p resen ted  in  the p rev io u s  
chapters. The contours, w hich are form ed by inner colon  m u s c le s ,  
and dark reg ion s, w hich correspond to obstacle  free areas in the 
c o lo n , are the m ost im portant landm arks for  n a v ig a tin g  the  
en d oscop e . In this chapter, w e are in v estig a tin g  the w ays and 
m ethods to in tegrate contour and reg ion  extraction  t e c h n iq u e s  
w ith the en d oscop e nav igation  system . T he en d o sco p e  n avigation  
is  not very sim ilar to th at o f  m o b ile  rob ots or au ton om ou s  
v eh ic le s . Prior navigation  techniques are exp lored  in this chapter  
before proposing an hierarchical navigation  control system  for an 
autom atic endoscope. The en d oscop e navigation system  con sists  o f  
three sub-system s: g lobal planner, navigator, and p ilo t. Perception  
plays an important role in navigating the endoscope and the w orld  
m odel o f  co lon  relies m ostly  on the inform ation  provided by a 
single CCD camera. The colon  is m odelled by using the generalised  
cylind er, w hich  fac ilita tes depth estim ation  in co lo n  from  in n e r  
m u scle  contours by fo llo w in g  Marr's [1977] w ork on o cclu d in g  
contours. An effic ien t data structure the Q uad-List tree (Q L -tree), 
has been d ev e lo p ed  for w orld  and search sp ace representation . 
The Q L-tree representation is  com patib le w ith  the m achine v is io n  
techniques, described earlier and the scen e p rim itives supp lied  by  
them  can be easily  added to the structure directly . The Q L-tree is 
not only suitable for w orld  representation in navigation and it has 
a lso  been  em p loyed  as a m ore general representation  for r a y  
tracing in computer graphics [N icholls, Khan and G illies 1988].
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A n a v ig a tio n  sy stem  u su a lly  has three m ain co m p o n en ts, the  
sen sin g  system  w hich  provid es in form ation  about the lo ca l and 
global w orld, the planner to plan a path to a specified  goal, and the 
co n tr o lle r  w h ich  e x e c u te s  the p lan n ed  path . In gen era l the  
planned path should be flex ib le  enough to be m od ified  for cop ing  
w ith any unexpected  changes. The role o f sensing in a navigation  
sy stem  d ep en d s on the dom ain  o f  the w orld  in w h ich  the
autonom ous v eh ic le  is  supposed to navigate. In a fin ite  w orld (e .g .
factory  en v iron m en t), the n a v iga tion  system  can u se  a g lo b a l 
m odel w hich con sists o f  a plan o f  the dom ain, but the m odel can 
on ly  be u tilised  for p lan nin g a path to the goa l. D uring the
ex ecu tio n  phase, the navigation  system  has to u se  the exp ected  
lo c a l m od el o f  the w orld . W hatever the w orld  dom ain  is , a 
n avigation  system  is  required to m onitor the m otion  during the 
execu tion  phase to verify  that the m ovem ent is according to the 
plan . T he m on itorin g  a lon e  req u ires a goo d  sen sin g  system . 
A d d ition a lly  for an unknow n w orld , sensors provide inform ation  

about the environm ent from  w hich  the updated w orld  m odel is  
constructed . Sensors play a v ita l ro le in adaptive navigation  as 
w ell as object identification . M oreover, they are the on ly  link  to  
the outside world w hich is changing all the tim e. The best general 
purpose navigation  system  is considered to be that o f hum ans and 
w e b e liev e  that one o f  the reasons behind our navigational ability  
is  our access to a variety o f  sensing capabilities including v ision , 
tou ch , and hearing w h ich  h elp s d irectly  or in d irec tly  during  
n a v ig a t io n .

6.2 N av ig a tio n  T ec h n iq u e s : A R eview

A num ber o f  research  groups h ave reported in terestin g  resu lts  
w h ich  are re lev a n t to the n a v ig a tio n  o f  m o b ile  rob ots and  
autonom ous v eh ic le s . A rev iew  o f  their work provides a current 
picture o f  the research on navigation . Instead o f  d escrib ing  the 
w ork o f  in d iv id u a l groups sep ara tely , w e  are p resen tin g  the  
previous work in terms o f  d ifferent com ponents o f  the navigation  
system  such as sensing, path planning, and obstacle avoidance.
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6.2 .1  M achine Perception for A utonom ous V eh ic les

The Jet Propulsion Lab. (JPL) robot was originally intended for use  
in rem ote p lanetary exp loration  [T hom pson  1 9 7 7 ]. T he terrain  
m od el for its n avigation  is constructed  prim arily from  its  v is io n  
system . The m ain sen sin g  unit co n sists  o f  stereo cam eras and a 
laser range finder, in addition to proxim ity and touch sensors for 
the d ifferen t m anipulator p rocesses.

The perception in the case o f  H i l a r e  [Giralt et al. 1979] is provided  
by a v id eo  cam era for object recognition  and a laser range finder  
for depth m easurem ent. Both o f  th ese  units are m ounted on the 
sam e scanning platform  w hich can rotate around tw o axes. H i l a r e  

is  a m o b ile  rob ot d e v e lo p e d  for  research  and in v e s t ig a tio n  
purposes at the L A  A S laboratory in T oulou s. In addition to the 
m ain p ercep tion  system , u ltrasonic proxim ity  sen sors have been  
e m p lo y e d  to  c o p e  w ith  u n ex p ec ted  o b s ta c le s . It n a v ig a te s  
prim arily by fo llo w in g  side w alls using its sonars. R ecent progress 
in  the perception  for H i l a r e  is  presented  by de Sain t V in cen t  
[1 9 8 6 ], describ ing a scen e analysis m odule, using stereo cam eras 

and a laser range finder, and a dynam ic v ision  m odule for robot 
p osition  correction and tracking w orld features.

The sensing system  o f  Stanford Cart [M oravec 1979, 1983] consists  
o f  a s in g le  v id eo  cam era w hich  s lid es h orizontally  to capture a 
n in e-w ay  stereo v ision  for scanning the environm ent. The system  
m oves the cam era horizontally  in n ine p recise  steps to get n ine  
im ages o f the scene. During this w h ole  process the cart rem ains 
stationary. Then an interest operator is applied to one im age for  
selectin g  a fixed  number o f candidate points. The depth estim ation  
is  perform ed by m atching these feature poin ts in the rest o f  the 
im ages. This processing  takes 10 to 15 m inutes on P D P -10  after 
w hich  the cart is on ly  a llow ed  to travel one m eter. The sam e  
p rocess o f  slider stereo  is then repeated  after each m eter and 
m otion  stereo is a lso  perform ed to confirm  or add to the depth  
in fo rm a tio n .
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T he w ork on the Stanford Cart by M oravec w as ex ten d ed  at 
C arn eg ie-M ellon  U n iversity  (C M U ). Thorpe [1984] has described  
som e additional work on the interest operators for stereo  v ision . 
A dditional results on robot road fo llow in g  at CM U, on other m obile  
robots nam ed as T e r r e g a t o r  and N e p t u n e , h ave a lso  been  
reported [W allace et al. 1985]. In th ese, tw o cam era stereo w as 
em p loyed  in addition to a ring o f  tw enty four proxim ity  sensors  
for ob stacle  avoidance. The m ain task o f navigating during road- 
fo llo w in g  is to keep the v eh ic le  in the centre o f  the road as it 
m o v e s . For r o a d -fo llo w in g  the road  im a g e s  are d ig it is e d  
con tin u o u sly  and the road ed ges are located . A fter determ ining  
the d ev ia tion  o f  road ed ges from  the centre lin e  o f  the road, 
steering com m ands are issu ed  for keep ing the v eh ic le  a lign ed  to 
the centre o f  the road. A t the low  le v e l o f  v is io n  th ey  have  
experim ented w ith seven  ed ge detection  and three lin e  extraction  
techniques. It has been observed that all o f  these techniques work 
in s im p le  ca ses  but g iv e  co n flic tin g  results in d if f ic u lt  ca ses . 
N e p t u n e  has ach ieved  a continuous m otion  in road fo llo w in g  at 
the rate o f  2 cm /s. Constraining the search for road ed ge  location  
to a su b -im a g e  and a p p lica tio n  o f  s im p le  e d g e  d e te c tio n  
techniques in addition to im age p rocessin g  hardware have led to 
the reduction in p rocessing  tim e and therefore high speed  m otion  

as com pared to Stanford Cart. The CM U N a v l a b  (N a v ig a t io n  
Laboratory) [Thorpe et al. 1988] has ach ieved  a m axim um  speed  

o f 10 cm /s during road fo llow in g . N a v l a b  is equipped with a TV  
cam era and a la ser  range fin d er. In stead  o f  track in g  road  
boundary lin es , a c lassifica tion  m ethod has been used to identify  
clusters o f  on-road and off-road p ixe ls . The p ixel c la ss ifica tion  is 
based on colour and texture properties. The colour param eters are 
adap ted  w ith  the ch a n g es in  co lo u r  and en v iro n m en t. T he  
inform ation from  a laser range finder has been used  for obstacle  
d etection  and avoidance.

R ecently  results on the navigation o f a tracked v eh ic le  (M 113A 2  
arm oured p erso n n e l carrier) at FM C  corp oration  has been  
reported. The hierarchical sensing system  for the FM C v eh ic le  can 

be c la ss if ied  at tw o lev e ls  o f  com pon en ts. At the g lob a l lev e l, 
m achine v is io n  is  app lied  to gather in form ation  for b u ild in g  a
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global m odel o f the world [Kuan et al. 1986]. The colour im ages are 
acquired  co n tin u o u sly  and segm en ted  in to  road and non-road  
r eg io n s  by a p ix e l c la s s if ic a t io n  a lgor ith m . T hen g eo m etr ic  
reason in g  is app lied  for p erce iv in g  real road ed g es. Road sid e  
c o n s isten cy , sm ooth n ess, and con tin u ity  are the m ost prom ising  
geom etric  reasoning used for perception . The lo ca l le v e l sen sin g  
for the FM C v eh ic le  is  used  by the p ilo t su b -system  w hich  is  
resp on sib le  for gu id ing the v eh ic le  along a d yn am ica lly  fea sib le  
route and avoid ing the obstacles w hile  m aintaining the veh ic le  on  
g lob a lly  planned paths [N itao and Parodi 1985]. A  son ic  im aging  
system  g iv es  sensing inform ation, including the inform ation about 
those obstacles w hich m ay be m issed  by the m ain v is io n  system , 
to the reflex iv e  p ilot. The re flex iv e  p ilo t has a lso  a fast response  
tim e to unforeseen conditions w hich m ight com e up lo ca lly . This 
hierarchical sen sin g  system  has enabled  the n avigation  o f  FM C  
veh ic le  at the speed o f 8 km/hr.

A m ong the d ifferent sen sin g  units, m achine v is io n  is  the m ain  
source o f  inform ation for constructing a w orld m odel to plan paths 
in  ad d ition  to its  u se  for m on itorin g  the m ovem en t o f  any  
autonom ous v eh ic le  or robot according to the planned path. A  set 
o f  algorithm s for v ision  gu id ance has been proposed, w hich  are 
im plem entable in real-tim e [Inigo et al. 1984]. T hey have used  a 
sin g le  cam era for locating road w ay boundaries w h ile  stereo v ision  
is  needed  for ob stacle  d etection . M ost recen tly  the u se  o f  the 
van ish in g  poin t concep t for road -fo llow in g  has been put forward  
[L iou and Jain 1987]. L iou and Jain have argued that it is m ore 
h elp fu l for p ro cessin g  lo w  qu ality  p ictu res in the search for  
convergent lin e  (road sides) rather than using c la ssica l data driven  
lin e  fitting  and approxim ation techniques. A fter selectin g  the best 
vanishing poin t (w here the pair o f  lin es due to road sides m eet), 
the veh ic le  can be easily  guided towards that point.

6 .2 .2  Find-Path Problem

Path p lanning is one o f  the m ost im portant com pon en ts o f  the 
so ftw are  required  for n av igatin g  an autonom ou s v e h ic le  in a 
co m p le te ly  or partia lly  m apped environm ent. M ost o f  the w e ll
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d eve lo p ed  path p lanning algorithm s assum e a co m p lete ly  know n  
en v iron m en t. The h ierarch ica l path p lan n in g  tech n iq u es for  a 
clu ttered  and p artia lly  m apped en v iron m en t m ay fir st extract 
path segm en ts lo c a lly  and then string togeth er som e o f  th ese  
segm ents for a com p lete  path. The m od ellin g  o f  the environm ent 
is critical for path planning. It includes the representation o f  free 

space, obstacles, and the m oving veh ic le  itse lf.

In the fo llo w in g  d iscu ssio n  d ifferen t fin d -p ath  tech n iq u es are 
rev iew ed . M ost o f  th ese  m eth od s, w ith  the ex cep tio n  o f  the  
potential f ie ld  approach, abstract the environm ent into a graph o f  
p ossib le  paths. Then the graph is searched and an optim al path is 
d e te r m in e d .

V i s i b i l i t y  G r a p h  M e t h o d s

The v is ib ility  graph, v g r a p h  concept was used to navigate S  h a  k e y  

in the labs, o f SRI [N ilsson  1969]. The environm ent o f  the robot is 
represented  as a grid m od el w hich  is  updated co n tin u o u sly . A  
vertex graph is then constructed from the grid m odel. The v g r a p h  

con sists  o f  vertices o f  opp osite  corners o f  ob stacles, start vertex, 
goa l vertex , and links con n ectin g  the vertices in straight lin es  
w ithout overlapping any obstacle. The shortest co llis io n  free path 
from start to goal in vg r a p h  is found by w eighting each link by its 
euclidean  distance and then searching for the lo w est cost path. A  
sim ilar technique is em ployed to plan a path for the JPL robot but 
the cost function  associated  with each link is the energy required  

to traverse that link [Thom pson 1977]. T his m akes the v eh ic le  
m ore suitab le for planetary exploration than S h a k e y .  A d d itio n a lly  
a com binatorial exp losion  is avoided during the derivation o f  links. 
The graph search for path planning is reduced to a tree search by 
properly ch oosin g  su ccessiv e  vertices and pruning.

A ll o f the v g r a p h  algorithm s assum e that the m oving object is a 
point w hich is a fair approxim ation com paring the object s ize  with  

the obstacles. It can cause problem s when the size  o f the veh ic le  is 
larger than a narrow free space. L ozano-Perez and W esley  [1979] 

have introduced a solution  to this problem . First a generalisation
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can be m ade by considering the m oving object to be a circular  
shape o f  radius, r. Then the obstacle vertices are m oved  away by 
the sam e d istan ce , r from  actual ob stac le  corners. T he m ovin g  
ob ject is gu id ed  in such a w ay that its referen ce p o in t m oves  
through the new  d isp la ced  v ertices , producing a c o llis io n  free  
path. T his concep t w as introduced in S h a k e y  but L o z a n o -P e r e z  
and W esley  have tackled the problem  for m ore general shapes o f  
the m oving object by grow ing the polyhedral ob stacles according  
to the shape and size  o f  m oving object. The utilisation  o f  rotation  
is  a lso  su g g e ste d  for  m o v in g  o b jec ts  w hen  th eir  shape is  
rectangular. Path planning in the case o f the Stanford Cart is also  
based on the concept o f  v g r a p h .

F i n d - P a t h  b y  R e p r e s e n t i n g  E m p t y  S p a c e

In the free space techniques the m oving object is ex p lic itly  forced  
to travel on those path segm ents w hich run in the m iddle o f  the 

free space corridors betw een obstacles. In the case  o f  H i l a r e ,  the 
p re-learn ed  flo o r  p lan  is  d iv id ed  in to  em pty c o n v e x  reg io n s, 
know n, and unknown obstacles. The convex regions are form ed by 
co n n ec tin g  the n earest v er tice s  to create a rep resen ta tion  o f  
em pty areas w hich are ca lled  the C -cells. A  trajectory w ithin such  
c e lls  is  then sought for the optim al paths. Laum ond [1983] has 
e x te n d e d  th e  c o n c e p t  o f  fr e e  sp a c e  to an h ie r a r c h ic a l  
representation o f  C -cells  in terms o f  top o logy  o f  p laces such as 
room s, w ork areas, and other parts o f  the known dom ain.

B rooks [1982] a lso  p roposes another approach to path p lanning  
w h ich  m o d e ls  the free  sp ace  b e tw een  o b sta c le s  by f it t in g  
g en era lised  cy lin d ers. T he so lu tion  w as d ev e lo p ed  for a tw o-  
d im en sio n a l p lane and pathw ays are obtained  from  the fitted  
generalised  cylinders in w hich  the m oving object can freely  travel 
on a plane. Then the technique is extended to three dim ensions by 
stacking these planes. M eng [1988] has m odelled  the free space by 
a sp atia l graph, know n as V oron oi graph. T he o b sta c le s  are 
assum ed as random ly shaped. A solution to the find-path problem , 

in a 2 -D  plane, is proposed by interpreting the V oronoi diagram as
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a sp atia lly  oriented  graph representing the sk eleton  o f  the free  
sp a c e .

L oza n o -P erez  [1983] has provided  a m athem atical treatm ent o f  
the find-path  problem  by using a configu ration  space approach. 
The path planning is treated as tw o problem s, f i n d  s p a c e  and f i n d  

p a t h .  C onceptually , th ose  parts o f  the free space are found in 
w h ich  the m ovin g  ob ject can resid e  w ith out c o llid in g  w ith  the 
o b sta c le s . G ou zen es [1 9 8 4 ] has a lso  addressed  the problem  o f  
em p ty-sp ace  and find-path . D ifferen t heuristics are su ggested  for 
the con stru ction  o f  free-sp a ce  by in trod ucing an in trin sic  tree 
structure to represent em pty space.

P o t e n t i a l  M e t h o d s

In the potential fie ld  approach the m oving object is assum ed to be 
a ro llin g  ball, and the floor is tilted  toward the goal point. The 
direction to w hich  the ball ro lls for the optim al path is  observed  
[A ndrew  1983 , K rogh 198 4 , K hatib  1 9 8 6 ]. The o b sta c le s  are 
presented  as h ills  w ith  slop in g sid es so that the ball ro lls  away  
from  them  and seeks the path betw een them . M om entum  can also  
be g iven  to rolling ball by taking into account the energy required 
to accelerate, decelerate, or turn.

A nother w ay o f  describ ing these techniques is by considering the 
en v iron m en t as a f ie ld  o f  fo rces , w here the d estin ation  poin t 
attracts the m ov in g  ob ject and o b sta c le s  or barriers produce  
rep u lsive  forces for the m oving v eh ic le . The trouble w ith  these  
te c h n iq u e s , in  co m m o n  w ith  m u lt i-d im e n s io n a l o p tim isa tio n  
techn iq ues, is that they can get caught in dead ends and require 
sp ecia l procedures for backtracking and starting again. W hen they  
are com bined w ith in telligen t path p lanning, they can prove to be 
very useful and offer a quick response and thus the p ossib ilities  o f  
rea l-tim e im plem entation . The use o f  poten tia l m ethods for rea l­
tim e c o llis io n  avo id a n ce  has been dem on strated  e ffe c t iv e ly  by 
Khatib [1986].
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6.3 N av ig a tio n  System  fo r  th e  E ndoscope

6.3.1 The Find-Path Problem  and G uiding the E ndoscope

C o llis io n  avoidan ce during the navigation  o f autonom ous v eh ic le s  
is traditionally considered as a high le v e l path p lan n in g  problem . 
From  th is poin t o f  v iew , d ifferent le v e ls  o f  control have been  
e s ta b lish e d . For ex a m p le , c o l l is io n  a v o id a n ce  is  p r e fe ra b ly  
perform ed at higher lev e ls  w hile  low  lev e l control is lim ited  to the 
execu tion  o f  elem entary operations for w hich the route has been  
precise ly  sp ecified  by the high lev e l planning.

T h e  f i n d - p a t h  p rob lem  in a c lu ttered  but c o m p le te ly  know n  
world is w ell understood and has been so lved  in m ost o f  the cases, 
as d iscussed  in the previous section . H ow ever, all o f  the developed  
algorithm s are not d irectly  app licab le in e n d o s c o p e  n a v ig a t io n  
because the detailed  w orld m odel is  not know n. The developm ent  
o f a navigation system  for the endoscope on the basis o f  f i n d - p a t h  

problem  w ill be a disaster in terms o f  its real-tim e capabilities. It 
is a lso  not feasib le  in any case. The interaction o f  en d oscop e w ith  
its  en v iron m en t w ill  be p assed  through a lo n g  tim e c y c le  o f  
planning and high lev e l control. This actually p laces a lim it on its 
n av ig a tio n  cap a b ilitie s  in  the rapidly changin g  en v iron m en t o f  
hum an c o lo n . T h erefore , the ro le  o f  lo w  le v e l co n tro l a n d  
n avigation  should  be enhanced for rea l-tim e perform ance. H ig h  
lev e l navigation should not be replaced by low  lev e l functions but 
it is  n ecessary  to m ake better use o f  lo w  l e v e l  n a v ig a t io n  
techniques by increasing their degree o f  com petence.

Early attem pts at navigation  in an unexplored w orld  w ere so le ly  
based on im age understanding (JPL R obot, C M U  R over). Then  
C row ley  [1985] and Parodi [1 9 8 5 ] provided  som e h ierarchical 
a p p roach es, w h ere g lob a l and lo c a l m od els are updated from  
sen so r  in form ation . T his problem  has a lso  been  researched  by 
m any sc ien tists  [C hatila 1982, Iyengar et al. 1985, Turchan and 
W ong 1985 , O om m en et al. 1986 ]. C hattergy [1 9 8 5 ] has a l s o  
described som e heuristic strategies to aid the navigation o f a robot 
in an unexplored environm ent.
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N a v ig a tio n  in a m ore general ca se  (lik e  en d o sco p e  n av igation )  
requires the co llis io n  free m ovem ent o f  autonom ous veh ic les  in an 
un exp lored  w orld . T he problem  o f  p lanning an optim al or near 
optim al path by avo id in g  c o llis io n s  w ith  ob sta c les  in such an 
environm ent is  a ch allen gin g  task. U n lik e  the f i n d - p a t h  p r o b le m  
the en d o sco p e  n av ig a tio n  can not be su b jected  to a rigorou s  
m athem atical treatm ent and this is b ecau se o f the inherent nature 
o f  the problem . T he w ork on en d oscop e  navigation  bu ilds upon  
m any o f  th ese  id eas put forw ard for n av igatin g  robots in an 
un exp lored  w orld .

6 .3 .2  An H ierarchical N avigation Control System

T he u tilisation  o f  sensory inform ation is necessary for controlling  
a u to n o m o u s ly  th e  m o v e m e n ts  o f  th e  e n d o s c o p e  tip . A n  
hierarchical navigation  and control system  is  suggested  w hich w ill 
be able to perform  path planning and en d oscop e  tip control in 
rea l-tim e. A  m u lti-lev e l production system  for sim ilar tasks has 
already been described  [C havez and M eyste l 1984 , K och et al. 
1 985]. In order to s im p lify  the problem , w e are proposing the 
d eco m p o sitio n  o f  the h ierarch ical n av igation  sy stem  into  three  
d istin ct m odules at d ifferent levels: g lobal planner, navigator, and 
p ilo t sub-system s. From  the previous section  w e argue that due to 
the sp ec ific  nature o f  the problem , the navigator p lays the m ost 
im portant role in en d oscop e  navigation . T hese three su b -system s  
are described  in an effort to d efin e  the en d oscop e environm ent, 
sen sin g  cap ab ilities, environm ent m od ellin g , and path planning.

G l o b a l  P l a n n e r  a n d  E x p e r t

The global planner w hich is at the highest lev e l, holds specific  and 
abstract inform ation  about the overa ll environm ent. For exam ple  
in the case o f an autonom ous land veh ic le , it can have the map o f  
th e terrain , g en era l w eath er  c o n d it io n s , terrain  nature e .g . 
w hether it is hazardous, p assin g  through h ills , ju n g le s , p lan es, 
populated , or un-populated areas. Here for co lo n o sco p y , it u tilises  
the general m odel o f  the co lon  in the form  o f  its typ ical shape
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features lik e the number o f  bends and levels  o f  d ifficu lties  in each  
portion o f  the co lon . It can also keep  som e kn ow led ge based rules 
from  the co lo n o sco p y  expert to gu id e the navigator w hen  it is  
stuck in som e dead end and cannot continue on the basis o f  sensor  
in fo rm a tio n .

T he g lob al planner is an expert w hich  does path p lanning at the 
h ig h est le v e l and ad v ises  the n av igator. It a lso  k eep s it s e lf  
in form ed  about the m ost recen t co n d itio n s  o f  n a v ig a tio n  by 
r ec e iv in g  current en viron m en t in form ation  from  the n av igator, 
and m akes itse lf  ready to be consulted  for expert le v e l advice. The 
g lo b a l p lan n er is  not d irec tly  in v o lv e d  in is su in g  d ifferen t  

n a v ig a tion a l con tro ls  but takes the ro le  o f  a sp e c ia lis t  to be 
consu lted . In this w ay, the reacting capabilities o f  the endoscope  
w ill be im proved by exclu d in g the g lobal planner from  the main 
control loop .

N a v i g a t o r

T he n avigator  is  at the in term ediate  le v e l o f  the h ierarch ical 
structure o f  the navigation  system . Its m ain task is  to plan the 
path on the basis o f  inform ation received  from the sen sin g  system  
after con su ltin g  the g lob al p lanner in d ifficu lt ca se s . It issu es  
different sub-goals, to ach ieve the planned path, and other control 
com m ands to the p ilo t for execu tion . The navigator holds a key  
position  in the overall control system  and it d ecides autonom ously  
about n av iga tion . T he p rin cip le  fu n ction s o f the n avigator for  
endoscopy are exp lained  as fo llo w s.

-T he n avigator rece iv es  im age in form ation  in the 
form  o f  reg ion s o f interest and occlu d in g contours  
con tin u ou sly  from  the sen sin g  system .

-It k eeps a three-d im ensional representation o f  the 
en v iro n m en t and u p d ates it a cco rd in g  to the  
inform ation received  from the sen sin g system .
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-I t  p la n s  th e  path  b a se d  on th e  w o r ld  
rep resen ta tio n  a lread y b u ilt and then g en era tes  
sub-goals and other control com m ands for the p ilo t  
to execu te.

-D uring path p lanning it con su lts and gets expert 
a d v ice  from  the g lo b a l p lanner, e sp e c ia lly  w hen  
there is  an am b igu ity  in the w orld  in form ation  
supplied  by the sensors. The global planner is also  
kept in form ed  about the current environm ent and 
the w hereabouts o f  the en d oscop e  so that it can  
provide its  expertise w ithout any delay.

-The navigator instructs the p ilot to execu te already  
planned su b -goa ls and other control com m ands. It 
can have an option  to m onitor the ex ecu tio n  o f  

th ose  com m ands. A s there is  no arrangem ent for  
the control o f forward and backward m ovem ent o f  
th e  e n d o s c o p e  tu b e , th e  n a v ig a to r  is  a lso  
resp o n sib le  for cou n tin g  the num ber o f  r ings o f  
m u scle  that the tip has passed through, to m ake an 
estim ate o f  the tip position in the colon.

T hese functions indicate that the navigator is the back bone o f  the 
w h ole  navigation  system  and perform s m ost o f  the on lin e  tasks 
and control. Therefore it can be argued that the respon se o f the 
autom atic en d oscop e  to any changes in the environm ent w ill be  
quick and in real-tim e due to the shorter control path. Currently 
w e are concentrating on the developm ent o f a reliab le , real-tim e, 
n a v ig a to r .

P i l o t

The p ilot has a very sim ple job  to do in the proposed hierarchical 
navigation  system . It execu tes d ifferent en d oscop e  tip m ovem ent 
co m m a n d s  ( fo r  a u to n o m o u s  v e h ic le s  k n o w n  as s te e r in g  
com m ands) to ach ieve  the su b -goals issu ed  by the navigator. It 
also  perform s other functions lik e  spraying o f  water or suction o f
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air. Som e additional tasks can also  be assigned to the p ilot such as 
avoid ing unexpected  obstacles w hich have been m issed  or ignored  
by the navigator. For these types o f  tasks the p ilo t may require its 
ow n reflex iv e  sensors. The p ilo t should also be able to m onitor the 
execution  o f  loca l control com m ands for error correction.

The navigational control structure in the form  o f  g lob a l planner, 
navigator, and p ilo t is a su itab le basis for the develop m en t o f  a 
general purpose navigation  system  for an unknow n or partia lly  
know n environm ent. In the autom ation o f  en d oscop y  the g lob al 
planner and expert keep m ost o f  the inform ation about the w orld  
dom ain in  the form  o f  co lo n , upper gastrointestinal, or bronchus 
m od els. T herefore different types o f  autom atic en d oscop y  can be 
perform ed by sw itch ing the related expert m odel and rules in the 
glob al p lanner and expert, w h ile  the sam e n avigator and p ilo t  
m odules can be em ployed  w ithout any changes. T his is  a u sefu l 
feature w h ich  m akes th is sy stem  su itab le  for gen era l pu rp ose  
n a v ig a t io n .

A s far as the navigator m od u le  is  con cern ed , the in form ation  
p rovid ed  by the sen sin g  system  and the rep resen tation  o f  the 
environm ent based on this inform ation p lays an im portant ro le  in  
its  operation. Therefore the sen sin g system  and representation o f  

en v iro n m en t req u ires d e ta iled  ex p la n a tio n  in the c o n te x t  o f  
navigator  op eration s.

6 .3 .3  E nvironm ent R epresentation for N avigation

T h e s e le c t io n  o f  a data stru ctu re  fo r  th e e n v ir o n m e n t  
rep resen ta tion  norm ally  d epend s on the nature o f  the w orld  
w h eth er  it  is  p re -lea rn ed , p a r tia lly  k n o w n , or c o m p le te ly  
unknow n. W hen the environm ent is unknow n, the construction  o f  
its  m od el for path p lanning is based on ly  on the in form ation  
provided  by d ifferen t sen sors. T his m eans that the environm ent 
m od el on ly  know s what the sensors has told . M oreover, there is  
also  som e sort o f  uncertainty in the inform ation provided by the 
sensors. T he sensors (v id eo  cam era) do not provide inform ation  
about the en v iro n m en t b eyon d  th eir  range ( f ie ld  o f  v ie w ).
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Som etim es they m ay track phantom  objects w hich  therefore m ust 
be rem o v ed  from  the rep resen tation . A ll o f  th ese  argum ents  
su g g est that for the rep resen tation  o f  a p r e v io u s ly  un know n  
en v iro n m en t, the data structure sh ou ld  support fea tu res  lik e  
inaccuracy and uncertainty. In other w ords, it  should  a llow  the  
easy  addition  or rem oval o f  any inform ation from  the structure. 
A nother representation  w hich  is  used for perform ing search for  
the optim al paths is  know n as the search sp ace representation . 
C onfiguration space, V oronoi base spaces, generalised  cylinder free  
spaces, and m edial axis free space have been used as search space  
rep resen tation s [L ozan o-P erez 1981 , C anny 1985 , B rook s 1982 , 
R uff and Ahuja 1984]. In all o f  these cases, m apping functions are 
n eed ed  to  m ap the w orld  sp ace  to  a search  sp a ce . T h is  
arran gem en t lim its  the on lin e  rea ctin g  c a p a b ilit ie s  o f  the  
n a v ig a t io n  s y s te m . W e h a v e  d e v e lo p e d  an e n v ir o n m e n t  
rep resen tation  w hich  p rovid es a reliab le  access  o f  the data to 
different types o f search algorithm s for finding paths. An effectiv e  
rep resen ta tio n  for path p la n n in g  m e th o d o lo g ie s  in e n d o sco p y  
should m eet som e o f the general objectives w hich are g iven  below .

-T he w orld  representation  should provide d ifferen t  
m e a n s  o f  lo c a t in g  im p o r ta n t n a v ig a t io n a l  
landm arks. The typ ica l landm arks in  c o lo n o sco p y  
are inner ring type m u scles o f  co lon  w hich can be 

fo llo w ed  by the endoscope. There are also vanishing  
points supplied by the v ision  system  in the form o f  

different dark regions in the im age. This m eans that 
the representation should  be able to accom m odate  
these regions and circular curves.

-The path planning algorithm s should also  be able  
to update the world representation to take care o f  
in a ccu ra cy  and u n certa in ty  in the in fo rm a tio n  
su p p lied  by the sen sin g  system . T his ob jective  is  
very im portant to so lv e  navigational problem s for  
an unknow n or partially known world.
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-T he rep resen tation  shou ld  be so  general that it 
a llo w s the m ovem ent constraints o f  the en d oscop e .
T his ob jective is helpfu l in the ca se  o f  en d oscop y  

b ecau se, for the tim e being , w e do not have any  
c o n tr o l on  b a ck w a rd , fo rw a rd , or r o ta tio n a l  
m ovem ents o f  the endoscope.

-W here the sam e w orld  representation  is used  as 
search space, the w orld  representation should  a lso  
support e ffic ien t search procedures.

A  sim ple m odel o f the co lon  is presented in the next section  by  
keeping in v iew  the above objectives. The environm ent and search  
space representation o f  the world is a lso  proposed for navigational 
p u r p o se s .

6 .3 .4  Colon M odel for Endoscopy

It is very d ifficu lt and com pu tation ally  ex p en siv e  to m od el the 
co lon  accurately. M oreover, w e b e lieve  that it is  a lso  not feasib le  
to  u se  p r e c is e  m o d e ll in g  for  n a v ig a t in g  th e  e n d o s c o p e .  
C on seq u en tly  w e propose that the co lon  can be m od elled  as a 
series o f  circular or e llip tica l rings w hich  are jo in ed  to g iv e  a 
h ollow  cylindrical figure. N o  restriction is im posed on the s ize  o f  
these rings so that rings o f  d ifferent s izes  can be interconnected. 
W hen the rings are arranged in such a w ay that they are parallel 
to a plane and their centres are on a straight lin e norm al to the 
p lan es, they m od el a straight portion  o f  the co lo n  in three- 
dim en sion al space as show n in the F igure 6 .1 . In this w ay, the 
inner space covered by this irregular cy lind er roughly m od els the 
in sid e o f  a co lon . W hen the condition o f  stacking the rings on a 

sin g le  plane is relaxed and it is assum ed that the plane in w hich  
the subsequent rings lie  can be at any orientation in the 3-D  space, 
then the proposed schem e can m odel d ifferent bends in the colon .

A lte r n a tiv e ly  the c o lo n  m o d el can be d escr ib ed  by u sin g  
g en era lised  cy lin d ers. G en era lised  cy lin d ers w ere in troduced  by 
B inford [1971]. A  circular h om ogen eou s gen era lised  cy lin d er can
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be u sed  to m od el the w h o le  co lo n . It co n s ists  o f  four basic  
com ponents w hich are also  explained in Figure 6 .2 .

(i) A  space curve w hich acts as the axis o f colon and 
is  show n as the locus o f  L (s) in the vector form.

z -a x is

x -a x is

F i g u r e  6 . 1 :  A  s i m p l e  m o d e l  o f  t h e  c o l o n .

(ii)  A  cross-section  plane defined for every point on 
the axis and at som e angle, a  to the tangent o f  the 

ax is  at the corresponding po in t. In the proposed
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m od el the angle, a  can be taken as rc/2. M oreover, 

instead  o f considering th ese planes at ev ery  p o in t  
on the ax is, the p lanes are taken on ly  at th ose  
p o in ts  w h ich  corresp on d  to the inn er m u scu lar  
rings o f  the colon . For other points the tw o adjacent 
planes can be in terpolated  to a ch iev e  a contin uous  
r e p r e s e n ta t io n .

F i g u r e  6 . 2 :  A  h o m o g e n e o u s  g e n e r a l i s e d  c y l i n d e r .

(iii)  The shape o f  the object in the plane w hich is  
describ ed  by a planar curve, C (t) on the plane. In 
the case  o f the co lon  a circular or e llip tica l curve  
w h ich  corresponds to the m uscular rings can be 
a ssu m e d .

( iv )  A transform ation  rule, r (s) w h ich  sp e c if ie s  a 

h om ogen eou s change in the shape o f  the object as
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the p lan e m ov es a lon g  the a x is  L (s ) . For co lo n  
m od elling  i f  the shape can be fixed  as circular, the 
transform ation can on ly  affect the size  o f  the circle.
I f the centre o f the circles are assum ed to be on the 
axis, the transform ation can be easily  sp ecified  as a 
lin ear variation  to the radius o f  the c irc le  w ith  
resp ect to s.

In this w ay the co lon  is represented and m odelled  on ly  by a four­
tu p le  (L , C, r, a )  in terms o f a generalised cylinder.

M ost o f  the useful contours form ed due to inner m uscles o f  co lon  
are c la ss ified  as occlu d in g  contours. T herefore m od ellin g  o f  the 
co lon  w orld  space by a gen era lised  cy lin d er helps in extracting  
shape inform ation from  the contours in co lon  im ages. In chapter 
four, the problem  o f  shape from  contour has been d iscussed . In its 

p a r tic u la r  im p le m e n ta t io n  fo r  e n d o s c o p e  n a v ig a t io n , th e
constraints w hich can be em ployed  for shape extraction are:

-Each poin t on the contour generator projects to a 
d istin ct d ifferen t p o in t in the im age  contour and 
nearby poin ts o f  the occlu d in g  contour arise from  
nearby poin ts o f  the contour generator. It m eans  
that the occluding contours in co lon  im ages provide  
u n a m b ig u o u s  in fo r m a tio n  a b o u t th e  c o n to u r
generator w hich is used to extract the co lon  shape 
from  contours.

-A s suggested  by Marr [1977], w hen the surface is 
rep resen ta b le  by a g e n e r a lise d  c y lin d e r , each  
occlu din g contour in  the im age w hich  b elon gs to a 
contour generator m ust lie  in a sing le  distinct plane.
T h ese  p la n es  are d is tin c t w ith  resp e c t to the  
view er. In fact, th is is very helpfu l in id en tify in g  

the re la tive  d istan ce  o f im age contours in co lo n  
im ages and then guiding the en d oscop e accordin gly , 
a v o id in g  the n earest con tou r first. The d istan ce  
betw een each plane o f  an occluding contour can also
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be approxim ated by the s ize  o f contours and other 
constraints described in chapter four.

W e see  that m od elling  o f  the co lon  w orld  space by a generalised  
cylind er along w ith  the kn ow led ge o f  occluding contours in co lon  
im ages, p lays an im portant part in estim ating depth and obstacle  
free space in the colon  for endoscope navigation.

6.4 W o rld  an d  S ea rch  Space R e p re se n ta tio n

A fter m od elling  the inner co lon  space as explained in the previous  
section , a suitable representation is required to support the m odel. 
T he b est rep resen ta tion  o f  the w orld  is  that w h ich  a v o id s  
ex ce ss iv e  detail o f  the parts o f  the space and w hich do not affect 
the operation [L ozano-P erez 1981]. W e have proposed  the co lon  
m o d e l as a ser ie s  o f  p la n es  rather than a v o lu m e tr ic  
rep resen ta tio n  by fo llo w in g  the sam e h e u r is tic s . T h e w orld  
rep resen tation , w e are in trod ucing, not on ly  m od els  the w orld  
(c o lo n ) , but a lso  rep resen ts the search sp ace. M o reover  the  
representation structure is general enough to represent any three- 
d im en sion al space for n avigational purposes, e sp ec ia lly  w here the 
autonom ous m ovin g object has three degrees o f freedom .

It is p ossib le  to represent the co lon  as a series o f  tw o-d im ensional 
c r o s s - s e c t io n s  w ith  th e a ssu m p tio n  that th e forw ard  and  
backw ard m ovem ents o f  the en d oscop e at its in tersection  to the 
plane w ill be alw ays in the direction o f  the norm al vector. This 
assum ption can only be realised , i f  w e consider sm all m ovem ents  
o f  the en d oscop e  and then sh ift the co-ord inates from  fram e to  
fram e after each tiny m ovem ent. The distance betw een tw o planes  
(depth) is  a lso  provided in the data structure. This d istan ce can  
vary for d ifferent plane pairs depending on the bu syn ess and the 
required resolution  o f  the environm ent. The better option is to fix  
the reference co-ordinate system  in the current plane (e .g . the x-y  
plane) such that its origin is at the cam era position . Then assum e  

that the series o f  planes ahead m ay not be parallel to the current 

plane but for the first tw o planes they are approxim ately parallel
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to each other and perpendicular to the lin e jo in in g  the c a m e r a  
position  and the target point for navigation in the next plane. The 
new  co-ord inate system  can be estab lish ed  in the next p lane by 
fix in g  its origin at the target point and m oving the z -ax is  along the 
lin e  jo in in g  the origins o f  current and new  co -o rd in a te  sy stem s. 
T his sch em e o f  rep resen ting  the th ree-d im en sion a l sp ace  as a 
series o f  p lanes also takes care o f  all the bends in the co lon . The 
tr a n sfo rm a tio n  from  on e co -o rd in a te  sy stem  to the n ex t is  
explained below  and also show n in Figure 6.3.

S u p p ose that the cam era (en d oscop e  tip) is  at p o in t O in the 
current plane and the navigator provides the target point Q ( a , b , c )  
in the next plane w ith origin O. Then to m o v e  the co -o rd in a te  
system  from  O to Q such that the z-ax is o f  the new  co-ord inate  
system  is along the lin e  OQ requires one tran sla tion  and tw o  
rotations one about the z -ax is and the other about the x -ax is. The 
translation and rotation m atrices are:

1 0 0 0
T ran sla te: 0 1 0 0

0 0 1 0
- a - b -c 1

C o s6  S in0 0 0
Rotate about z: Sin6 Cose 0 0

0 0 1 0
0 0 0 1

1 0 0 0
Rotate about x: 0 Cos<J> - Sin<J> 0

0 S in<> Cos<j) 0

0 0 0 1

W here e is the skew betw een

norm ally be zero.
the axis system s, and w ould
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a n d

<j) = tan_1(c /|/X a 2 + b2 + c2))

The quadtrees are best suited for the representation o f  each plane  
due to their pyram id structure. T hey have p rev iou sly  been used  
for rep resen ting  the 3 -D  environm ent, by three orthogon al tw o- 
d im en sion a l p rojection s, in path planning [W ong and Fu 1985]. 
O ctrees h ave a lso  been  em p lo y ed  for  rep resen tin g  the three- 
dim en sion al space in path planning [Shneier et al. 1984, R u ff and 
Ahuja 1984, Herman 1986].

F i g u r e  6 . 3 :  M o v i n g  c o - o r d i n a t e  s y s t e m  f r o m  p o i n t  O  

t o  Q  in  s p a c e .
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The Quad-List structure, QL-tree (quadtree based search space 
and world representation), we are proposing, is a tree structure 
in-between the quadtree and octrees. Each cross-sectional plane is 
represented by a separate quadtree, while the tree nodes have 
two additional links (previous and next) which interconnect 
consecutive planes to each other at each hierarchical level of the 
pyramid. An additional field is also provided with each node of 
the tree to store the distance between consecutive planes from 
pixel to regional levels. A small section of the data structure is also 
shown in Figure 6.4. The QL-tree based search space and world 
representation satisfies all the general objectives described 
earlier. It provides a spatially indexed representation of the world 
and can be viewed at several level of resolutions like octrees but 
it is less complicated in terms of memory and search operations. 
The representation allows an easy access to each plane 
represented by quadtrees and more efficient algorithms exist for 
searching quadtrees.

The main advantage of the QL-tree representation is that the 
environment information can be stored in each plane in such a 
way that the plane nearest to the camera contains the most 
updated and correct information about the objects in the space, 
while the further planes ahead need only to hold some rough 
shape of the objects. The accuracy and completeness of this 
information will depend on the field of view of the sensors. The 
scene information in the further planes is refined and corrected 
incrementally as the sensing system provides more data. Thus the 
QL-tree provides the important capability of learning as new data 
becomes available, and forgetting the unimportant. The entire 
data of a plane can be easily updated when the sensor provides 
more data and removed from the structure as the endoscope 
navigates successfully through it. The quadtree structure is also 
useful for other sensing tasks (e.g. image segmentation) because it 
provides an hierarchical image representation. It is interesting to 
note that in the overall endoscope control and sensing system, the 
pyramid structure has been used for estimating depth by region 
based segmentation, contour extraction, and representing the
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muscle rings detected in colon images [Khan and Gillies 1988a, 
1988b, 1989a, 1989b]. The effective cost of generating pyramids 
is much lower than if we had to generate a different 
representation for each task.

n

Figure 6.4: A section of Quad-List tree, (QL-tree) 
environment and search space representation.

6.5 C o n c lu d in g  R e m a rk s

As part of an in-depth study for the development of a navigation 
system for the endoscope, different navigation techniques have 
been surveyed. These provide an overall picture of the research in 
navigation specifically in the areas like sensing units, machine 
perception, and the find-path  problem. During the review it
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appeared that the existing techniques for navigating autonomous 
vehicles are not directly applicable to endoscopy because the 
sensing capabilities of the endoscope are limited and its world 
domain is changing rapidly.

An hierarchical control structure for endoscope navigation has 
been presented which has three distinct levels known as the 
global planner, navigator, and pilot. The navigator which is at the 
intermediate level, receives world information from the vision 
system and controls the endoscope autonomously by issuing 
commands to the pilot. This improves the reflexive capabilities of 
navigation, as the global planner has only been employed as a 
consultant to the navigator rather than directly in the control loop. 
The world and search space representation is also very important 
for the development of a real-time navigation system. A new 
representation, the QL-tree has been developed and employed to 
model the search space. It consists of a series of planes which are 
organised as a list of quadtrees linked together by the distance 
(which is depth in terms of machine vision) between consecutive 
planes. This search space representation is also suitable for
autonomous vehicles. The colon is modelled by using the
generalised cylinder concept. The two-dimensional version of 
generalised cylinder has already been used for defining empty 
space in the find-path problem. The colon is represented by a 
single generalised cylinder and the model is constructed 
incrementally from the information provided by the vision
techniques we have presented in this thesis. The model of colon 
also provides useful constraints to extract 3-D shape from the
colon image contours. The circular or elliptical cross-sections of the 
generalised cylinder at regular steps directly provide the planes 
defined for the search space. Therefore a single representation for 
world and search space is established, which enhances the real­
time reflexive capabilities of the endoscope navigation system.
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C H A PTER  7

CONCLUSIONS AND FUTURE WORK

7.1  I n t r o d u c t io n

The task of navigating the endoscope inside the human colon is an 
ambitious one and there are a number of complications involved 
in achieving this objective. We have given a lead by providing a 
solution for the perception problem and initiating the work on 
navigation system for the endoscope. The navigation of the 
endoscope is different from that of autonomous vehicles in a 
number of ways. Firstly, in the current state of endoscopy there 
cannot be an automatic control on the forward, backward, and 
rotational movements of the instrument. The automation of 
endoscope only concerns the control of the tip movement. 
Secondly, the sensor system on the endoscope is limited to a single 
camera on its tip and there is only a remote possibility of having 
additional sensors for depth measurement. Motion stereo is the 
only other likely method for three-dimensional shape extraction 
of inner body surfaces. We have not considered it in this thesis, 
and have only treated the machine vision techniques based o n 
single monocular images.

There are a number of constraints due to the illumination 
conditions and colon model which are helpful in estimating the 
insertion direction for controlling the endoscope tip. During the 
course of endoscopy procedures, the inner body surfaces are 
illuminated by a single light source which is in fact equivalent to a 
point source. In this way the surface illumination is related to its 
distance from the light source at the endoscope tip. The surfaces 
which are nearer to the tip are more brightly illuminated than the 
further surfaces. Therefore a uniform and dark region in an 
endoscope image corresponds to the deep and obstacle free area in
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the colon. Another important and useful constraint arises from the 
contours formed by the inner colon muscles. The source of these 
contours is mainly occluding edges. The occluding contours are 
approximately circular and they provide another type of 
important landmark for navigating the endoscope. A line joining 
the centre of curvature of these contours gives a clear and 
obstacle free path for endoscope insertion. The representation of a 
colon by a generalised circular cylinder provides a useful 
approach to extract the shape information from these occluding 
contours.

The occluding contours and darker regions in the colon images are 
to be detected for seeking an obstacle free path which avoids the 
inner walls of colon. Most of the work, presented in this thesis 
deals with the detection of contours and darker regions. Due to the 
real-time nature of endoscope control, these machine vision 
techniques are implementable in parallel on a pyramid 
architecture based computer. The sequential algorithms do not 
provide real-time performance. A review on the physiology and 
psychology of vision has been carried out in the 2nd chapter, 
before describing the contour and region extraction algorithms. It 
was argued that early visual data organisation in organic vision 
follows the signal to symbols paradigm. The architectural nature 
of the organic visual processing is related to different parallel 
processing techniques and it was concluded that the pyramid 
based processing is a reasonable model of the brain architecture. 
The conventional parallel processing methods cannot be used to 
achieve the visual processing and recognition in real-time. The 
pyramid based parallel-hierarchical processing provides a useful 
means for explicitly extracting the global structure in images. 
From the point of view of psychology, different perceptual 
organisation and grouping principles were studied. It was argued 
that these principles are very useful in developing general 
purpose machine vision techniques, if implemented effectively 
and intelligently. In fact we have demonstrated, in our approach 
for contour extraction, that these organisational principles are 
very effective in isolating the relevant contour structure from 
noisy image data.
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7.2 C o n to u r  E x tra c tio n

The contour extraction method is based on the bottom-up 
organisation of edge point data and it utilises the information 
presented in the data itself rather than higher level heuristics. The 
support for this type of early image data organisation is evident 
from both neurophysiology and psychological studies. The method 
employs different domain independent grouping rules from 
perceptual organisation. As far as we know, this is the first time 
that perceptual grouping has been utilised in a unified manner for 
contour extraction.

An intermediate representation based on straight line segments is 
formed from the edge point data rather than sequentially linking 
edge points into contours. There is clear evidence that straight line 
segments are extracted by simple and complex cells in the early 
stages of animal vision. Moreover, any type of contours (curved or 
straight) can be approximated by straight line segments. For line 
segment extraction, the edge points are detected by using a simple 
edge detector (Sobel) and all edge data, however weak, is retained 
providing it is sufficiently reliable. The image is divided into 
overlapping squares of a given size and line segments are 
extracted in each image square. This process has been 
implemented independently and in parallel for each of the image 
windows. The size of image window and overlapping depends on 
the details of the image contents and what is required for 
recognition. In our particular implementation, the line segments 
are extracted at two resolutions based on 8*8 and 4X4 image
windows.

The grouping of edge points into short line segments is an early
process and the information which is used to group edge points is
carried by edges themselves in the form of their location, contrast, 
orientation, and intensity value. The laws of data organisation
which have been employed to extract useful line segments are: 
proximity, connectivity, similarity in edge orientation, contrast,
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and edge pixel intensity. The problem with the use of these 
perceptual organisation principles, in the past, has been the lack of 
an effective implementation. We have modified the Hough 
transform to implement these grouping techniques. After 
proximity and connectivity, similarity in edge orientation is the 
most effective way of extracting useful line structures. In another 
orientation based grouping method [O'Gorman and Clowes 1976], 
the edge points which are selected to support a line structure are 
those whose orientation is perpendicular to the line direction 
(within some tolerance). However, with this technique, most of the 
weak line segments which are part of curved contours of curved 
surfaces are missed as we have demonstrated by the experimental 
results in chapter three. To avoid this, a slow drift in the edge 
orientation is allowed from one edge point to the neighbouring 
edge on the line segment. The grouping relation formed in this 
way is more perceptually stable and regular for extracting weak 
but significant contours. The aggregation of edge points on the 
basis of similar edge orientation is also allowed whether the 
intensity change is normal to the line or not. This is equivalent to 
Marr's grouping principle called theta-aggregation. It has been 
demonstrated that these new grouping principles for edge point 
data recover those useful line structures which are generally un­
detectable. During the process of forming line segment 
representation by perceptual grouping, the edges due to noise are 
filtered out. The effectiveness of individual grouping processes is 
analysed by using artificial images with known added noise. In 
the case of random noise, connectivity grouping extracts most of 
the useful line segments but for endoscopic images which contain 
a variety of noise, orientation grouping based on slow drift in edge 
orientation and theta-aggregation is also needed to detect most of 
the useful line segments.

The next step, where we aggregate line segments into contours, 
was described in the fourth chapter. A multi-resolution 
representation, based on a pyramid, is employed to represent line 
segments at the two lower levels while the contour segments are 
represented at higher levels as groups of short line segments. The 
grouping of line segments into contours is implemented using a
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4x4 overlapped quadtree to simulate the pyramidal architecture. 
The aggregation process is mainly performed on 8x8 window 
based line segments and lower level segments are only used for 
completing the fragmented parts of contours and to resolve 
ambiguities. The processing elements in the overlapped pyramid 
are linked to four parents and sixteen children. Each parent 
performs grouping on the line data supplied by its sixteen 
children independently and in parallel and passes on the grouped 
line segments in its inner 2x2 block children to its parents. The
grouping principles used in this operation are: proximity of line 
end points, theta-aggregation, curvilinearity, continuity, and 
similarity in the line contrast. The grouping process starts from 
the bottom level and grouped segments are passed to the higher 
level processors and when the root of the pyramid is reached. 
Groups of line segments emerge which are then converted into 
contours. Different order polynomials can also be fitted on the 
contour data at this stage.

The bottom-up and data driven processes used for contour 
extraction have their roots in psychophysical and 
neurophysiological studies. The transition gap between edge point 
data and contours is a source of a discontinuity in the flow of 
information. Our contour extraction method offers the potential for 
eliminating this discontinuity. In contrast to the existing contour 
extraction techniques, our approach forms contours in parallel 
using the pyramid architecture in a single pass starting from the 
bottom level and moving to the top of the pyramid.

7.3 R eg ion  E x tra c tio n

A new method for dark region extraction to estimate the insertion 
direction of the endoscope was described in chapter five. A 
pyramid structure based on the intensity mean and variance of 
square blocks has been used in our method. The formulation of 
variance computation recursively as one moves from the bottom 
level to the top of the pyramid, has allowed us to devise a highly 
parallel implementation. The average intensity of the darker
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region is estimated from the first peak of the histogram of a given 
colon image. The algorithm is simulated by constructing a 
quadtree in which each node stores the average intensity and 
variance of its corresponding region. A dynamic link is associated 
to each node of the pyramid in addition to the normal connections 
to its children and parent. During the pyramid construction 
process, a record is kept for the largest dark and uniform square 
region in each sub-tree. This has been achieved by connecting the 
dynamic link of the root of every sub-tree to its darker and 
uniform region node. In this way when the pyramid is completed, 
the node which corresponds to the largest dark and uniform 
region in the pyramid is identified. The region itself can be used to 
estimate the endoscope insertion direction or it may be used as a 
seed for the region growing process to extract a complete dark 
region.

As far as we know, this is the first time a variance pyramid has 
been used to extract regions of given properties. The region 
extraction method is very efficient and effective in terms of its 
parallel implementation. We have also implemented an extended 
version of this technique for general purpose segmentation. The 
first step of pyramid building, which identifies the seed regions 
for each node of the pyramid, is similar to the dark region 
extraction. An additional top-down pass in the pyramid is 
required for growing these seeds into complete uniform regions. 
In addition to the colon images tested for dark region extraction, 
different medical and computer generated images have also been 
segmented successfully.

7.4 Discussion

Both of the image segmentation techniques, we have presented in 
this thesis, do not now seem to require any basic modification or 
improvements. The tuning of the algorithms, however, may be 
needed when they are used in different world domains.
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In contour extraction, we have assumed the presence of a single 
line structure in a pre-defined small window of the image. This is 
not a bad assumption in the context of endoscopic colon images. In 
other domains, where the assumption may limit the performance 
of algorithm, the presence of more than one line segment can be 
assumed depending on the threshold for the number of votes for a 
useful line structure. Another point which may be raised concerns 
the extraction of straight line segments rather than curved line 
segments. We believe that the choice for straight segments is an 
optimal one, in terms of further grouping processes (e.g. theta- 
aggregation), efficient implementation, and the evidence from 
physiological studies. There is no evidence of any loss of contours 
due to straight line segments, and contour location errors are 
within an acceptable level. The grouping techniques used in the 
line segment and then contour extraction steps can be 
strengthened by applying the well known law of common fate but 
this is only possible if we first calculate the optical flow from the 
sequence of images. The shape information from motion is 
discussed in the future work.

The dark region extraction method is the simplest one but most 
effective in determining the insertion direction. The only 
uncertainty involved is due to the estimation of darker region 
intensity from the image histogram. But the technique for region 
extraction itself is very sound and accurate irrespective of 
whether the intensity of a region is known or not. This has been 
demonstrated by extending the method to general purpose 
segmentation, where the technique does not use any information 
about the intensities of uniform regions. During extracting dark 
regions in colon images, if the first peak is un-detectable from the 
image histogram, it indicates that there is no dominant dark 
region in the image. This means that the chances of finding the 
deepest and obstacle free area in the colon are limited. This effect, 
for example, may be due to the simple fact that endoscope tip is 
facing a colon wall.

The region uniformity criterion for extracting the seed region is 
dependent only on a variance low-threshold. But when the regions
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are merged there are other factors which have been included in 
defining the uniformity of a region. The second variance high- 
threshold can be defined for the merged regions which can be 
higher than the seed region threshold. Another tolerance 
threshold based on the difference in average intensities of the two 
regions is also employed. Ideally the average intensities of two 
regions to be merged should be equal. We have adapted this 
threshold depending on the uniformity of the merged regions to 
avoid over merging. The uniformity of regions can also be 
dynamically defined depending on the size of the region but we 
have found that in most of the test images this does not provide 
any more better results.

7.5 F u tu re  W o rk

There are a number of research areas which have to be explored 
for achieving automatic control of endoscope for colonoscopy. The 
endoscope can only be navigated successfully by merging and 
bridging the gaps between these diverse areas which include but 
are not limited to: computer vision, robotics, expert systems, 3-D 
modelling, sensors, control systems, and the mechanics of the 
endoscope itself. In this thesis we have only discussed the early 
and intermediate visual processing. The exploitation of full 
capabilities of computer vision itself requires a large amount of 
effort and research.

The endoscope sensing system needs a considerable amount of 
work for building an accurate world model of colon from the 
visual information available. We have already proposed a model 
of the colon in the form of a generalised homogeneous, circular 
cylinder in chapter six. The model can be extended to a more 
general elliptical generalised cylinder. The occluding contours can 
also be interpreted for extracting three-dimensional information 
by using the different constraints which we have described in 
chapter four. In addition to that, the work on the extraction of 
temporal information from a sequence of colon images has been 
started. The computation of motion information will not only
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provide the colon shape information but also camera motion 
parameters will be determined during this process. In particular, 
the detection of camera motion will provide the information about 
the movement of the endoscope tip, which is vital for the 
confirmation of the execution of a tip movement command. The 
main work in this regard has been undertaken to investigate some 
effective methods for computing the optical flow from a sequence 
of endoscopic images. This is a difficult task, particularly 
considering the noise in colon images and other artefacts of the 
human colon.

We have introduced an hierarchical navigation system for 
endoscope control in chapter six. The navigation system consists of 
three distinct modules: global expert, navigator, and pilot. The 
work on the global expert will also be getting under way soon. In 
this regard, different expert rules on colonoscopy will be compiled 
by visiting colonoscopy sessions on a variety of patients. The 
endoscope insertion and manoeuvring techniques (for example, 
how to come out of a loop formed in the sigmoid colon) from 
different endoscope consultants will also be gathered to overcome 
the dead end encountered during the colonoscopy. In this way a 
production rule based system will be built to provide expert
advice for the navigator when the visual sensing information is 
not adequate to guide the endoscope. Fortunately, part of the 
medical support for this project has been provided by the
endoscopy unit at St. Mark’s Hospital London.

In order to test our machine vision techniques in real-time 
conditions, we are implementing the dark region extraction
method using a parallel-hierarchical pyramid of transputers. In 
the first instance, the algorithm will be implemented using five 
transputers on a XENIX base host for an Imaging Technology
series 151 image processor. The series 151 image processor will 
receive the sequence of colon images from a video tape made 
during colonoscopy. The construction of an image histogram and 
the estimation of the first peak in the histogram will also be 
implemented on the image processor to achieve the results at 
video rate. The image data will be transferred to the transputer
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boards for detecting the dark region. The transfer of image data is 
currently consuming most of the time in our proposed parallel- 
pipeline processing. We are investigating the use of a transputer 
board with the frame grabber to avoid this data transfer delay. In 
addition to that, the use of twenty one transputers instead of five 
is also being considered. Hopefully with the introduction of 
additional processing power and parallelism, the region extraction 
time will be reduced in the order of milliseconds. Therefore the 
system will track the lumen from on line colon images digitised 
from a video recorder. This set up provides a simulation for the 
automatic insertion of endoscope. The dark region information will 
be used by the navigator to generate tip control commands for 
execution by the pilot.
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There are a number of reputed international journals which 
contain material on computer vision and picture processing. The 
three main journals, which have been published for a long time, 
are "Computer Vision, Graphics, and Image Processing", "Pattern 
Recognition", and "IEEE Transactions on Pattern Analysis and 
Machine Intelligence". For the last couple of years, more 
international journals have been introduced due to a considerable 
increase in machine vision research. These journals include: 
"International Journal on Computer Vision", "Image and Vision 
Computing", "Pattern Recognition Letters", and "Machine V ision  
and Applications". Other journals which carry papers on machine 
vision and image processing from time to time are: "Artificial 
Intelligence", "Optical Engineering", "Computing Surveys", "Journal 
of Parallel and Distributed Computing", and "IEEE Transactions on 
System, Man, and Cybernetics, Computers, Information Theory, 
Biomedical Engineering, and Medical Imaging". General articles 
both on the psychology and the neurophysiology of vision appear 
in "Scientific American" and "Science". These provide an excellent 
summary and introduction to the various aspects of human and 
animal vision.

The International Conference of Pattern Recognition takes place 
every second year and lengthy proceedings are published. The 
IEEE Computer Society organises two international conferences on 
computer vision regularly which are CVPR and ICCV. In addition 
to that machine vision papers can also be found in their 
conference on Artificial Intelligence Applications. The yearly 
symposium sponsored by SPIE carries a number of conferences on 
machine vision, image processing, and navigation related topics. 
The International Joint Conference on Artificial Intelligence and 
the AAAI Conference also provide separate sessions on machine 
vision, navigation and other related topics.
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Journal of Robotics and Automation contain material on the 
navigational and control aspects of robots and autonomous 
vehicles. The IEEE also arrange regular conferences on Robotics 
and Automation and publish their proceedings. The SME 
Conference on Robotics Research also provides a forum for 
presenting material on robot navigation.

During the course of this research a number of books relevant to 
human and machine vision, Pattern Recognition, and image 
processing were reviewed. A large quantity of additional articles 
on different topics, related to this thesis, have also been explored 
and some of these articles which are of considerable interest could 
not be referred to in the thesis. These articles and the prominent 
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line and contour extraction, shape from contour, and pyramidal 
vision techniques.
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