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ABSTRACT

This thesis presents two new methods of image analysis, which
have been applied to the problem of guiding an endoscope inside
the human colon. In the human colon, there are two types of
useful information: curved contours and darker regions.

The first method concerns contour extraction. Traditionally contours
are extracted by detecting edge points, thresholding, and then
linking them sequentially. While retaining the traditional approach,
this new method departs from these techniques in a number of
ways. A simple edge detector is used to prepare an edge map. In
contrast to normal detection methods, the weak edges are not
removed because they may be a significant part of the contours.
Instead an attempt is made to group them into short line segments
by filtering on the basis of perceptual criteria. The grouping process
is local, highly data directed, and it is implemented in parallel. Next
the line segments are linked, perceptually and hierarchically, into
contours. The method employs perceptual grouping in a unified
way, relying on the bottom-up organisation of edge data. It has
been tested experimentally on a number of endoscopic images and
the results are very encouraging.

The second method is based on region extraction and introduces the
use of variance in a pyramid structure for detecting coherent
regions. The method has been extended for general purpose
segmentation and tested on a variety of medical images including
endoscopic colon images. The novel feature of both methods is their
parallel implementation on a pyramid based computer architecture.

The regions and contours are represented in a new world and
search space representation (QL-Tree) for navigational purposes.
The QL-Tree representation consists of a series of planes
represented by quadtrees and it can be incrementally constructed
by integrating information from a sequence of images. Ease of
updating, access, and efficient search make this representation
ideal for navigation.
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PREFACE

Machine vision is a field of research which has many goals and
objectives. A primary goal has been to build a computer vision
system that can provide information to general purpose robots
about their surroundings in the same way as we receive
information from our own visual system. The research described
in this thesis takes an important step towards a similar but
restricted goal of providing sensing capabilities for an automatic
endoscope. The machine vision techniques that have been
developed in the course of this research detect navigational
landmarks for guiding the endoscope inside human colon. These
landmarks are detected from monochrome colon images in the
form of occluding contours formed by the inner colon muscles and
darker regions which correspond to the deeper and obstacle free
areas in the colon.

A second major goal of machine vision research is to provide a
computational understanding of human vision. This research has
many implications in understanding the human vision particularly
in the area of perceptual organisation and the grouping
phenomena of human vision studied in depth by the Gestalt
psychologists. An attempt has also been made to relate this
computational work to the relevant areas in the psychology of
vision and neurophysiology. In Chapter 2, there is a review of the
early visual data organisation in animal vision from the point of
view of neurophysiology. The psychology of human vision is also
explored, particularly in the area of perceptual organisation and

grouping.

One of the most important conclusions arising from this research
is that partial image segmentation, in terms of contour and region
extraction, can commonly be achieved without having a
knowledge of the scene and there is no need to assume a certain
type or level of noise in the images. In Chapter 3 and 4, one of the



segmentation methods developed during three years of this
research is described. This method partitions images by detecting
the boundary contours. Perceptual grouping plays a vital role by
providing direct relations among two-dimensional features (edges,
line segments etc.) of an image. These grouping processes are
employed hierarchically to filter out image features due to noise
and for extracting relevant contour structure. Their performance
is compared with the existing techniques quantitatively and
qualitatively. In Chapter 5, a second method to detect darker
regions is presented. The dark region extraction is very closely
related to region based image partitioning and the method has
been shown to work well for general purpose image partitioning.
It employs a variance-average pyramid representation. The
grouping based on proximity and similarity in grey level is
utilised for image partitioning. The hierarchical and parallel
nature of these two visual processing techniques makes them
applicable to real-time image analysis.

In Chapter 6, the endoscope navigation system is described in an
effort to integrate our machine vision research with the
navigation of endoscope. A new world and search space
representation is proposed which can be constructed from the
information provided by the vision system. In Chapter 7, some
final conclusions are made and the overall research plan for
endoscope navigation is presented.

The thesis can be easily divided into two main sections: contour
extraction and region based image partitioning. After reading the
first two chapters, the reader can approach these sections
individually. For example, Chapter 5 can be read before Chapters
3 and 4.
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CHAPTER 1

INTRODUCTION

1.1 Machine Vision and Endoscope Navigation

Computer vision deals with enabling the computer to understand
the environment from visual information. How the information is
processed and which intermediate representation is used to
achieve ultimate understanding, are very significant factors in the
overall structure of a vision system. The key ideas behind the
development of a high performance computer vision system are
its competence and structure. In contrast to many computing
tasks, the performance of a vision system on an unseen set of
images cannot be guaranteed. The competence with which it will
deal with the new information will depend in part on the
representations it uses to describe the world. The structure of a
vision system is generally taken to be a sequence of levels of
representation. One of the well known structures for computer
vision was proposed by Marr [1976, 1982] in the form of a raw
primal sketch for early visual processing, and a 21/5-D sketch at
the intermediate level of visual processing.

There is a lot of controversy over, whether the processing in a
vision system should be data-driven or goal-driven. Normally
early visual processing is data-driven while higher levels are
controlled by goals and expectations. Intermediate levels are often
a combination of goal-driven (top-down) and data-driven
(bottom-up) operations, both to compensate errors and to avoid
computational overload. Intermediate processes are divided
between low and high level processing and they have received
little attention from computer vision researchers until recently.
Due to this lack of research, plenty of the work done on early
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processing is independent and difficult to integrate with the
higher levels of the system.

Most of the vision systems can be categorised on the basis of their
use which may be assembly (manufacturing), inspection,
navigation, or recognition. The computer vision techniques
described here have been developed as part of an autonomous
guidance system for an endoscope which will enable the
instrument to navigate inside the human colon. Navigation of the
endoscope inside the human colon is a complex task. The colon is
analogous to an unlit tunnel, closed at the far end, and with many
bends, twists and pockets. The endoscope is like an articulated
chain being pushed at the rear end. When it bears on the colon
wall it will in some cases distort the shape of the colon, and
produce paradoxical behaviour at the tip. The cross section of the
colon is not uniform and can be completely collapsed in certain
places, making the centre line difficult to see. The endoscope
navigation is in no way similar to that of mobile robots or
autonomous vehicles.

This 1is the first attempt at applying computer vision to the
automation of endoscopy. The work is mainly directed towards
colonoscopy, but the techniques are general enough to be used in
most applications of endoscopy. Although the majority of
endoscopes provide coloured images, all of the work presented in
this thesis is based on grey level image analysis. Colour may well
prove to be a useful property for guidance, however, it can
increase the computing time required to process the image by a
large factor. There is, as we shall see, plenty of useful information
available in the grey scale images. As a first stage of the research,
a detailed study on the application of computer vision in
endoscopy has been carried out [Khan and Gillies 1987].

1.2 The Endoscope

The endoscope is a medical instrument used for observing the
inner surfaces of the ‘human body. It is typically used for
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diagnosing different colon and upper gastrointestinal diseases
including cancer. More specialised instruments are also used for
observing and diagnosing conditions in different divisions of the
bronchus and biliary ducts. Fibrescopes are the most commonly
used instruments but next generation of endoscopes, based on the
utilisation of a CCD video chip at the tip, have recently been
introduced.

A fibrescope consists of a head with eye piece and control, and a
flexible shaft with a manoeuvrable tip (see Figure 1.1). The heart
of the scope accommodates an optical system for viewing, control
wires for tip movement, and two or more operating channels
allowing passage of flexible instruments such as biopsy forceps.
The head of the scope is connected to a unit containing a cold light
source and air and water supplies. The video endoscopes which
have recently been developed by most of the manufacturers are
based on CCD video cameras. These cameras place an image sensor
at the focal plane of the image formation lens in the front portion
of the camera, and the detected image data is transmitted over
wires to the output portion of the system. In this way the
endoscope can be controlled by looking at the images on a
monitor, rather than looking through the eye piece continuously
during the whole diagnostic process. The tip of the instrument is
controllable by control wheels providing up/down and left/right
tip movement in some endoscopes or with a joy stick in others,
while the shaft transmits the rotary movement to the tip.

Using a conventional endoscope for colonoscopy, the consultant
inserts the endoscope by estimating the position of the colon
centre line, called the lumen, from the shape of the colon muscular
curves and from the apparent deepest region of the image, which
he sees either through the eye piece or on a TV monitor. He then
steers the tip appropriately. This task requires simultaneous
movement of two control wheels in addition to push pull and
rotational operations on the endoscope itself. Consequently a high
degree of skill is required in utilising the instrument.
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Figure 1.1: A typical endoscope.

1.3 Endoscope Image Analysis

In the current generation of endoscopes, there is only a single
camera, and thus there is no direct measurement of depth in the
image. Therefore depth must be estimated from the two-
dimensional information. In the future, depth measurement may
be incorporated into the endoscope, either by means of stereo
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vision or by the introduction of a dedicated depth sensor on the
endoscope tip. These possibilities are currently being investigated,
and may or may not prove feasible. Since, there is only a remote
chance of utilising stereoscopy or direct depth measurement for
obtaining three-dimensional shape, it has been necessary to
investigate other techniques.

Traditional methods based on the use of a single camera, for
example shape from shading, are still insufficiently well
developed to be used for noisy colon images. Moreover, they are
far too expensive in processing time to be useful in a real-time
navigation application and they also require special illumination
arrangements and other shape constraints which are not feasible
at the current level of development of endoscopes. Shape from
camera motion is another possibility which at first sight appears
to be worth investigating. However, for the time being, the
planned automatic endoscope insertion will only control the
direction of the tip. The push pull and rotational operations will
still be carried out by the medical practitioner and the navigation
system will therefore have no control on the forward, backward,
or rotational movements of the instrument tube which are
transmitted directly to the tip. It follows that the exact three-
dimensional movement of the tip, where the camera is effectively
sited, is not known. In addition to that, the non-rigid structure of
colon presents further difficulties for depth estimation using the
camera motion.

A higher confidence for image analysis can be achieved by
integrating information from a sequence of images, providing the
analysis is carried out sufficiently quick to ensure that no
substantial changes occur in the image. This means that the
processing of the images must be achieved in a fraction of a
second, and ideally within the video frame rate.

The colon is illuminated by a point like, light source at the tip of
the endoscope during diagnosing. Some endoscopes have multiple
light sources but they are so close to each other that for all
practical purposes a single point light source can be assumed.
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Moreover the distance between the object and light source is very
small. Under these illumination conditions the colon surfaces
which are nearer to the light source are more brightly illuminated
than the farther surfaces. Therefore in most of the endoscopic
images the darkest area corresponds to the deepest and obstacle
free region.

Secondly, the inner walls of a human colon contain circular rings
of muscle. These rings are clearly distinguishable in the endoscope
images since they form occluding edges. When the endoscope is
directed along the centre line of a straight section of the colon, the
muscle rings appear as closed curves in the image. More
commonly, only part of the muscle curves are visible, the
remainder being hidden either by bends, other muscles closer to
the endoscope tip, or by irregularities in the colon wall. In the case
of closed curves, the centre coincides with the correct direction of
insertion, namely the centre line of the colon. In other cases an
estimate of the insertion direction can be made from the average
centre of curvature of the visible curves. The nearer rings of
muscles are not difficult to see because of the pronounced
occlusion caused by their contours.

It is clear from the above discussion that two types of image
features, the darker regions and the image contours, require
extraction from the endoscopic images. Although later analysis of
contours is wused for extracting some clues about the third
dimension, these features are generally two-dimensional. The
endoscopic colon images are processed to extract primitives in the
form of edge segments and coherent regions, obtaining a map-like
representation which is similar to the Marr's primal sketch. To
extract the contours, the edge point representation is then refined
by applying a perceptual grouping processes. Different principles
from perceptual organisation are wused first during the
construction of the initial representation and then in the refining
process at higher levels.
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1.4 Perceptual Organisation

Human perception allows us to recover relevant regularities or
structure from an image without the prior knowledge of the
corresponding scene. The fact that this is possible suggests that
there are identifiable properties of the scene which can be used
by the visual system to connect primitive features. These are
termed perceptual criteria, they are used to form perceptual
groupings, and the structure they impose is called perceptual
organisation.

Understanding and defining the description of the perceptual
criteria which the human visual system uses to extract groups
from images is one possible approach to the development of an
effective and general purpose computer vision system. After
identifying the set of perceptual primitives, the main task is to
provide the computational techniques for their recovery from the
raw image data. The issues concerning the use of perceptual
organisation in machine vision are far from fully resolved and
currently are being pursued actively by researchers in the
computer vision field. Recent work on the application of
perceptual organisation has concentrated on two types of
approaches which differ in the way they depend on the nature of
the perceptual primitives.

In the first of these approaches the primitives describe the scene
specific features and attributes. Therefore the early vision
processes are concerned with the recovery of environmental
regularities (e.g. rigidity, axes of symmetry etc.) which are used
by the cognitive processes at later stages. There have been a
number of suggestions about the possible perceptual primitives
since the late 1970s. Barrow and Tenenbaum [1978] proposed a
computational framework for the recovery of point properties of
the visible scene surfaces in terms of their orientation, reflectance,
incident illumination, and range. The basis of their argument is in
the fact that humans normally recover these characteristics
regardless of their familiarity with the scene. These intrinsic
image properties are more meaningful than the image intensity
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and they also describe the image formation process. Kass and
Witkin [1985] have gone further by using the decomposition of
two-dimensional image intensities into more or less independent
primitives in the form of flow fields. The flow fields are used to
describe the oriented pattern in an image which are produced by
propagation, accretion, or deformation. Zucker [1985] has proposed
the description of perceptual features which also depend on
oriented patterns. Two types of features, one-dimensional
contours and two-dimensional flows, have been mentioned. The
one-dimensional contours underlie the perception of occluding
edges and shadow boundaries while the two-dimensional flows
are related to the perception of surfaces similar to furs, hairs,
wheat fields, grass, water falls, and snow. Separate computational
approaches for identifying these descriptions have also been
provided. There are other processes which shape the world and a
lot of effort has been put into decomposing some of the basic
patterns in natural scenes into parts. Witkin and Tenenbaum
[1983] have acknowledged the role of scene structure in machine
vision. Pentland [1986a, 1986b] proposed a theory based on
intermediate types of models which are in-between the point-
wise primitives of Barrow and specific object models, and are
known as parts. These primitive models can be thought of
analogous to a lump of clay which can be deformed or shaped
without changing the main perceptual notion of the primitive
model. The three-dimensional geometric primitives are another
possibility which have been employed in higher level processes.
Marr and Nishihara [1978] have suggested similar primitives
based on generalised cylinders which they identify from the
primal and 21/5-D sketch.

The second approach assumes that partitioning of the image into
coherent regions is the main goal of the perceptual organisation.
The perceptual primitives in this case depend on the image
content rather than the corresponding scene. These techniques are
based on the organising principles provided by Gestalt
psychologists [Wertheimer 1923, Koffka 1935], which ignore the
concepts of scene geometry, illumination etc. The Gestaltists have
provided a highly convincing set of organising laws which indicate
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how humans perceive an object from a scene, and these are
largely accepted as valid part of the perception process. The
Gestalt laws explain how humans group stimulus elements
together during perception, and they include:

Proximity: The elements that are close together
tend to be perceived as a group.

Similarity: Similar elements tend to be grouped.

Continuity: The group which minimises change or
discontinuity, and thus maximises good continuity
is preferred.

Closure: Stimulus elements tend to be grouped into
complete figures.

Simplicity: When more than one grouping exists and
there is competition between groups, then the
ambiguity tends to be resolved in favour of the
simplest alternative.

Symmetry: Line drawings and regions bounded by
symmetrical borders tend to be perceived as
coherent figures.

Common Fate: The elements which move together
with a uniform velocity through a field of similar
stationary elements, are perceived as a coherent

group.

Some presentations of the Gestalt principles distinguish between
the laws of figure ground segregation and the laws of grouping. In
texture discrimination the main emphasis is in segregating
different features and then inserting partitioning boundaries
where the texture is different. Psychophysical studies on human
texture perception has led to the discovery of some conspicuous
features (textons) which are detected by the pre-attentive vision
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system instantaneously and without any effort [Julesz 1983]. This
supports the existence of segregation phenomenon which identify
these features at the very early stage. It has also been suggested
that human visual analysis is functionally divided into an early
pre-attentive level of processing where simple features are
detected in parallel, and a later stage in which the focus of
attention is applied to join these features into coherent objects
[Treisman 1985].

Although it is very important to identify what to measure by
looking into the human visual system, the more important step is
how to combine these measurements into meaningful image
entities. This process of combining can sometimes also be
employed in identifying the significant early primitives from
different alternatives. Stevens [1978] has attempted to solve this
problem in order to identify locally parallel structures. He
proposed an . algorithm for selecting significant virtual lines for a
particular neighbourhood. In it, an orientation peak is determined
by histogramming the orientations of the virtual lines. Then the
virtual line whose orientation is closest to the peak is selected as
the significant virtual line. In this way the grouping process itself
is used to choose the significant perceptual primitives. More
generally, researchers have used an initial process to label the
image pixels according to their local image properties (intensity,
edge type, colour, or local texture). This produces a representation
similar to the raw primal sketch described by Marr. The labelled
pixels are known as place markers [Attneave 1974] or place
tokens [Marr 1976, 1982]. Marr has suggested a more organised
labelling process in which edges are identified at different
resolutions (using different size edge detector masks) and those
edges which exist at most of the resolutions are selected. This
selection procedure is inadequate in the extraction of all the
significant edge structures as explained in Section 3.5. The place
tokens are defined as the significant places in the image, and they
can be chosen in a variety of ways such as short line segments, the
end points of lines (if the lines are not too short), blob positions, or
a higher order group of place tokens. The local geometrical
relations (orientation, position, and separation of similar adjacent
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elements) between these tokens are made explicit by inserting
virtual lines which join nearby place tokens. These place tokens
are then grouped into contiguous regions, or coherent contours.
This process is more readily known as image segmentation and
has been recognised as a central problem of computer vision.

1.5 Image Segmentation and Perceptual Grouping

The segmentation of images is defined as the process of isolating
and identifying the regions of interest or partitioning the image
into meaningful shapes. Discontinuities in the scene properties
(e.g. distance, material composition, or motion) are the main clues
for possible places where to insert a partition. The critical issue in
image segmentation is that of relating the intensity variations
with the corresponding physical discontinuities in the scene.
Many segmentation techniques have been proposed and all of
them are based on either detecting similarities or discontinuities
in some pixel value (e.g. intensity, colour, or range). One of these
techniques utilises the concept of similarity by extracting uniform
regions and then obtaining the boundaries of those regions. This
method is known as region based segmentation and it discovers
uniform regions and in consequence their boundaries. A second
method uses the concept of discontinuity, and works by detecting
edge points which are those where the pixel values change
abruptly. Then the edge points are grouped into boundaries
between homogeneous regions of some property. These image
partitioning techniques based on edge detection are carried out in
a way which is thought to be analogous to the biological visual
systems and they assume that most of the useful information is
embedded in the boundaries between different regions.

In image segmentation, whether we adopt the edge detection or
the region based method, grouping of pixels is at the heart of the
process in isolating uniform regions and their boundaries. In
region based segmentation, the adjacent pixels are merged into
uniform regions, while in edge detection techniques, edge points
are grouped into linear or curved segments to form the
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boundaries of the objects. Perceptual grouping is a process which
belongs to the early and intermediate levels of vision. It can be
employed in grouping any of a large number of possible
primitives including edges, bars, short segments, and corners or
at the symbolic level, place tokens and virtual lines, to build a line
drawing of the scene. Grouping can also be employed for three-
dimensional reconstruction from surface patches with depth
information. Almost all of the grouping processes try to bring
together those elements in the image, which belong to the same
part of the same object in the scene. The choice of grouping
method will determine the primitives which must be generated by
earlier processes and what information they should carry to aid
the grouping. This will apply both at the early and intermediate
levels.

The psychology community has carried out many investigations of
human performance on specific grouping problems but most of the
research is focused on performance rather than the mechanism of
grouping.

Perceptual grouping based on proximity was the first criterion
used to cluster dots. In following the Julesz's [1962] view that
perceptual grouping can be achieved by clustering based on the
geometrical properties of proximal dots, Zahn [1971] devised an
algorithm for detecting Gestalt clusters based on proximity by
using minimum spanning trees. Afterwards the same method was
applied in identifying space curves by grouping the given points
or short line segments [Zahn 1973]. Lester [1975] has gone a step
further by assigning an additional attribute, edge strength to the
links between proximal dots, based on the location of neighbours
and the distance between dots. The decisions about the grouping
of edges into segments and boundaries can be postponed until
additional information becomes available. This type of delaying in
grouping decisions was formalised later on by Marr as his
principle of least commitment. QO'Callaghan [1974, 1976] has
surveyed different techniques of dot grouping and developed a
local operator for extracting boundaries of different dot patterns.
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Some of his work 1is also concentrated on edge and line
organisation.

In the vision theory of Marr [1976, 1982], grouping has been used
extensively in early visual processing for interpreting the primal
sketch by partitioning it into unit forms. It was emphasised that
grouping should be carried out on the basis of length, orientation,
size, contrast, and spatial density. Two types of orientation based
groupings were advocated. Using curvilinear aggregation, place
tokens are merged into a group which preserve their orientation
while in theta-aggregation similar oriented items (e.g. virtual
lines) are grouped into a unit whose orientation differs from the
items. The place tokens are also grouped into regions directly or
the output contours from curvilinear aggregation are used to
define the boundaries of the regions. Most of the grouping work
put forward by Marr is rather speculative, and neither fully
specified nor implemented in computer programs.

According to Lowe and Binford [1982], the main task of early
vision is to find meaningful groupings in the image. The
meaningfulness is defined as the likelihood that a given grouping
truly reflects an inter-dependence of its elements and has not
arisen from some accidental alignment of independent elements.
In this way meaningfulness of grouping is not only domain
independent but also independent of the world knowledge. The
groupings which they have considered included collinearity,
curvilinearity, predominant orientation, repetition and symmetry.
The authors have suggested that instead of examining all possible
groupings in an image, a search should be carried out on those
classes of patterns known to be easily handled by the human
visual system. These ideas have been implemented using a
computer program and some results were obtained on the
detection of meaningful linear groups among random dots.

None of these implementations of perceptual grouping provide a
unified approach to image segmentation. Their inputs are either
dot patterns or some very simple images. Therefore it is not
possible, on the basis of their results, to make any claims as to the
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methods applicability to general purpose image segmentation. In
this thesis we will discuss the application of perceptual grouping
in a unified way to achieve the segméntation of endoscopic colon
images.

1.6 Research Objectives and Motivation

The main aim of this research is to develop machine vision
techniques for a computer vision system, which provides sensing
capabilities for navigating the endoscope. The endoscope vision
system identifies at least two types of information: curved
contours and darker regions. This information needs to be
extracted in real-time, which in turn almost certainly means that
the algorithms must be implementable in parallel.

The image contours are one of the main features used for guiding
the endoscope and a considerable effort is concentrated on their
extraction. Traditionally contours are extracted by detecting edge
points which are then linked sequentially to build contours. A lot
of effort has been spent on detecting edges starting from the
development of edge detectors by Roberts [1965], Prewitt [1970]
and Sobel [Duda and Hart 1973] and continuing with more recent
work by Marr and Hildreth [1980], Canny [1983], Haralick [1984],
Nalwa [Nalwa and Binford 1986], and Noble [1988]. Most of the
edge detection techniques have been idealised for step edges.
However, colon images have a variety of edges. Therefore any
approach based on detecting step edges will not extract all the
useful information available to construct the contours from colon
images.

The motivation behind applying perceptual organisation in
contour detection arose when simple edge detectors (e.g. Sobel,
Prewitt, or Isotropic) produced unsatisfactory output, despite the
fact that when the same image was presented to humans, they
perceived the image contours without any difficulty. This led to a
belief that some more complex perceptual organisation was being
applied to the images by humans, and if it could be formalised, a
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better segmentation method would result. Accordingly, some of
the perceptual grouping criteria have been implemented to extract
image contours from the output of any reasonable edge detector.
No assumptions have been made about the level of noise in the
images, since, as we shall see, perceptual grouping provides a
highly effective noise filtering. Similarly, no assumptions have
been made about the level at which edge points have been
detected.

The key feature of this new algorithm for contour extraction from
endoscopic images is the use of a simple edge detector from which
an edge map is prepared without any significant thresholding.
Thus, most of the intensity change information, including useful
weak edges and edges due to noise, is retained. Then perceptual
grouping is applied in building contours from the edge map.
Different perceptual grouping techniques are applied at a number
of hierarchical levels of refinement. As far as we know this is the
first algorithm in which the perceptual grouping has been used for
filtering edges and line segments from the processed image data.
Previous implementations of perceptual grouping have, as
mentioned earlier, been confined to dot patterns and other
artificial data.

Normally in existing contour detection techniques, the edge point
detection is assumed to be a local and parallel process. While the
grouping is assumed as a global and sequential process. We will
see that most of the early and intermediate level grouping
techniques are implementable in parallel by following the
psychophysical findings which suggest a purely local relationship
between proximity and similarity in orientation and brightness
[Zucker et al. 1982, Zucker 1983]. The contour extraction method
described here is implementable in parallel using pyramid
computer architecture [Khan and Gillies 1989a].

Region based segmentation is the more appropriate method for
extracting the dark lumen from colon images in cases where it is
directly visible. We have developed an algorithm for dark region
extraction which uses a pyramid structure and is also
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implementable on pyramid architecture based parallel computers
[Khan and Gillies 1989b]. A variance-average pyramid is
constructed starting from the bottom level and moving to the top
and during this process the coherent darkest square region is also
identified. The recursive variance calculation is formulated in such
a way that for calculating the variance of the parent block, only
the mean and variance of its children are employed. The whole
process of dark seed region extraction is worked out in a single
pass at the completion of the pyramid. To obtain an accurate
region, the identified dark region can be used as a seed and
similar neighbouring regions are merged with it. The method has
been extended to general purpose region based segmentation and
tested experimentally on a variety of images.

The next objective is to devise a suitable world and search space
representation which can be incrementally constructed by
integrating information from a sequence of images. Generally in
most of the navigation systems two different representations for
world and search space are used. But a mapping between the
world and search space representation is required, which may
make the updating of representations expensive. A single
representation for world and search space called the QL-Tree,
based on a linked-list of quadtrees, is proposed which has the
inherent features of easy updating, access, and search for
navigation.
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CHAPTER 2

VISUAL DATA ORGANISATION AND GROUPING

2.1 Introduction

There is now a widely-held belief among the computer vision
community that it is impossible to proceed from the pixel level
image data to image understanding in a single step. However, this
was not always the case. In the 1970s a cognitive approach was
adapted to computer vision, which avoided a large amount of
computation at image level and employed symbolic manipulation.
This turned the machine vision research towards representing and
manipulating facts about a particular domain and exploiting the
domain specific knowledge. But the available techniques proved
inadequate to bridge the gap between the pixel level image data
and the desired symbolic description. Therefore in 1974 Marr's
work at MIT directed attention towards the search for a collection
of intermediate representations known as the raw primal sketch
and 2!/5-D sketch, which would ultimately bridge the gap. Later
on, Barrow and Tenenbaum [1978] termed these types of
representations intrinsic images.

Almost all of the recently proposed vision systems are based on
the signal-to-symbols paradigm, in which we start from the pixel
level signals and describe successively more organised attributes
of the data. The representation gap between the pixel level data
and symbolic descriptions is filled by a set of visual data
representations which are arranged in an hierarchy of increasing
abstraction. At each level of this hierarchy, we need to define a
vocabulary of primitives which makes the information explicit for
recognition or utilisation at the next hierarchical level. One of the
most important factors in defining these intermediate visual
representations are the transformational processes which
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translate one representation to the other. These representations
depend on the way in which the data is organised at each level
and the processes that are used at different levels of hierarchy. It
is clear that grouping and organisational processes are essential
parts of these intermediate representations and therefore they
must be studied in detail to obtain a better set of visual
representations. Psychology and neurophysiology provide models
of organic vision and they have influenced research in machine
vision. From the point of view of organisation and grouping of
pictorial data, most of the existing computer vision models do not
follow those advocated in psychology or neurophysiology. Neural
networks or connectionist models are the only systems
constructed to make use of some of the organisational principles
that are thought to be used in the brain. The psychology models
usually deal with the overall input and output of perceptual
behaviour in a much broader sense. The research in this area does
not provide a general solution to the problems in vision. For
example it is not clear how features in an arbitrary image are
mapped to an interpretation. On the other hand there is little
known about the models of neurophysiology. For example, Hubel
and Wiesel's [1977] pioneering experimental work was aimed at
determining how the low level image data is organised and
aggregated into a tabular format in the visual cortex of monkey.
Although, it cannot - be stated definitely that these principles
constitute the information used by humans for shape analysis, we
can explore the organisation and architecture of visual cortex by
employing the different aggregation principles discovered so far.

2.2 Early Data Organisation in Biological Vision

Human vision seems so simple and effortless that we rarely
realise the complexity and difficulty of the problem. The biological
vision system may be considered as a process which transforms
the input image intensities into perception. The world is created
from a series of images projected onto the retina. The high-level
retinal processing is related inversely to the intelligence and
evolutionary complexities of animals. In the case of frogs, most of
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the feature detection is performed at retinal level while in
mammals and other higher vertebrates, geometric feature
detection takes place in the visual cortex. The eyes of various
mammals are generally similar and for experimental purposes
cats and monkeys have been studied rather than humans. From
the experimental data we only have a basic knowledge of the
early stages of image data organisation and processing, which
itself is not completely understood.

2.2.1 Low Level Feature Detection

Some very interesting experiments have been performed with
frogs, cats, and monkeys which explain the nature of groups of
neurones capable of extracting various edge like features from the
input image [Lettvin et al. 1959, Hubel and Wiesel 1962, 1963,
1968, 1977]. It appears that these features are organised in an
hierarchical manner. The visual systems of animals are divided
into two broader classes. The first of which are the visual system
of frogs, rabbits, squirrels, and other lower vertebrates. The
ganglion cells in their retina perform low level feature detection.
The visual detectors of these animals are sensitive to edges,
orientation, and directional movements.

The second category of visual systems are associated with higher
vertebrates including- cats, monkeys, and humans and their
ganglion cells are only responsible for measuring contrast and
colour. The eye of higher vertebrates serves as a sensor while the
visual cortex is the main place in brain where the actual vision
mechanism takes place. The eyes have two distinct types of visual
systems based on two types of photo-receptors, rod cells and cone
cells. In a general sense, the rod and cone photo-receptors are the
transducing elements which transform the focused image on the
retina into electrical energy signals. The cone cells extract colour
information and are used for detailed vision. They are smaller in
size and densely populate the centre of retina. In the foveal region
they communicate with the brain (visual cortex) through bipolar
and ganglion cells (see Figure 2.1). The rod cells are more sensitive
to light and their density is greater in the periphery of retina.
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They work in groups and feed the visual cortex through a much
smaller number of bipolar and ganglion cells. It is observed that
rod cells also detect movement and other anomalies in the visual
field and then cone cells are used for detailed analysis by slewing
and focusing the eye. In the dark, rod cells perform the task of
night vision and take over the additional responsibilities of shape
perception. The On-Centre and Off-Centre type contrast sensitive
concentric receptors exist at the retinal and lateral geniculate level
of cats and monkeys. A line stimulus produces a significant
response if it covers a large part of the centre and only a small
part of the surround. These cells respond well to lines of any
orientation due to their circular symmetry. Their outputs are
connected to the primary visual cortex which is also known as
area 17.

There is plenty of evidence from neurophysiology that at the
cortical level of cats and monkeys, geometrical edge features are
computed. Ideally we are interested in knowing what happens in
the human's visual cortex but it is not possible with the existing
techniques to ethically perform experiments on humans. Most of
the experiments on the visual cortex of cats and monkeys are due
to Hubel and Wiesel and it is usually assumed that a similar image
processing takes place in the human brain. The visual cortex
seems to be structured in an hierarchy of computation
complexities. In the cortex of the monkey a large number of
concentric cells are found which behave like geniculate cells.
These cells also have circular symmetric fields and it appears that
these less sophisticated cells are immediately connected to the
inputs from lateral geniculate nucleus (LGN) and retina. All of
these cells are located in the lower part of one layer in the cortex,
known as layer IV. In addition to these concentric cells three
distinct types of receptive fields have been observed in the visual
cortex named as simple, complex, and hypercomplex cells.

Simple Cell

The simple cells, which are at the lower level of hierarchy, are
located in the so called area 17 of cortex. It seems that these cells
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receive their input directly from groups of cells with centre-
surround symmetrical receptors: the type of cells found in layer
IV of cortex. They are sensitive to bars, slits, and edges of specific
orientations.

Complex Cell

The complex cells can be understood by supposing that they
receive inputs from many simple cells, all with the same
orientation preference. These feature detectors are at the next
hierarchical level, also found in the area 17 of cortex and they
respond to spatially oriented bars and edges. A complex cell is
probably just as precise in its orientation specificity as the simple
cell but it is less particular about the positioning of the bar. In
other words the complex cells are invariant to translation but not
to rotation. It produces a strong response if a line is kept in the
optimal direction and is moved across the receptive fields.

Hypercomplex Cell

These are the receptive fields at the highest point of hierarchy in
the cortex. Hypercomplex cells resemble the complex cells but if
the line extends beyond its region of response, its response is
reduced or completely abolished. There are two categories of
hypercomplex cells: type I and II. The type I cells respond to
moving, oriented, and directionally selective lines. They
specifically respond to ends of lines. The hypercomplex II cells
respond to corners. Actually both of these cells underlie the
importance of the physical terminations of input patterns.

We have discussed the functioning of the low level feature
detectors cautiously due to the experimental paradigm in
neurophysiology. It is not clear whether the functions of these
biological receptive fields are programmed at birth or learned in
the early stages of contact with the environment. It seems clear
that low level vision in animals is characterised in terms of line
segments and edges moving in specified directions and
orientations. How this data is organised so that we are able to
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perceive different shapes, is not yet clear. A possible answer,
using the neurophysiological view, is presented next.

2.2.2 Visuval Signals, Pathways and Organisation

It appears that the organisation of the different features described
in the previous section takes place at the initial stages of image
analysis. This point can be argued mainly from the results of
neurophysiological experimental data. The research by Hubel,
Wiesel, and others has provided some clues about the organisation
of data in the visual cortex. It is still an open question whether or
not the aggregating principles which have been discovered so far
underlie the initial process in shape perception.
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Figure 2.1: Schematic diagram of the path from retina to
visual cortex.
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We start by tracing visual signals from the ganglion cells, which
provide inputs to the LGN cells from both the left and right eyes.
The path from the retinal cells through the ganglion cells is shown
schematically in Figure 2.1. The individual LGN cells are dedicated
to process inputs from only one eye. An organisation of image data
also takes place at LGN level in terms of the field of view. The
input signals to the left of the LGN originate from the right side of
the visual field and vice versa. There are six distinct monocular
layers of the cells in both the left and right side of the LGN. Figure
2.2a explains these layers of cells in terms of their physical
locations and origin of their input signals. The cells in layer 1, 4,
and 6 are fed from the eye on the same side while layer 2, 3, and
5 are connected to the signals from the eye of opposite side. A
high degree of order in the spatial relationship between cells has
been found. Along the vertical section of these layers of cells, it is
observed that the receptive fields originate in the same spatial
neighbourhood of the field of view.

The visual cortex cells are at the next level of hierarchy. There are
six layers in the visual cortex which are shown in Figure 2.2b. The
outputs of the centre-surround cells from LGN are connected to
the centre-surround or simple cells in the bottom part of the layer
IV of visual cortex. Crick et al. [1980] have hypothesised that
these signals are a high resolution filtered version of the image.
From the bottom of the layer IV, the outputs of the cortical and
LGN centre-surround cells form groups to feed simple cells which
are also found in layer IV. The processing in the layer IV is still
monocular. The complex cells have been found in four of the other
layers II, III, V, and VI. This is the place in visual cortex where
the data from both eyes converge as input signals to single
binocular complex cells. Almost half of the complex cells are fed
from binocular data while others get monocular data. In the case
of binocular cells two inputs generally produce the same output
signal with respect to bar pattern, orientation, and directional
movement but the strength of the output varies when the same
stimulus is presented to the left and right eye individually. From
one cell to the other, all degrees of ocular dominance has been
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reported, from complete dominance of one eye through equality to
complete dominance by the other eye. The way the grouping of
cortical cells has taken place is clear in the sense that the cells of
similar complexity are grouped, with the centre-surround cells in
the bottom of layer IV, the simple cells above them and the
complex cells in layers II, III, V, and VI. These different layers
have been organised by keeping in view the destination of their
signals. For example, the deepest layer VI projects mainly back to
the lateral geniculate body, layer V conveys its signals to the
superior colliculus (a visual station in brain), and layer II and III
send their signals to other parts of the cortex.

The next thing in the study of visual cortex is the position of its
receptive field in the visual field. The spatial ordering in LGN
described earlier is maintained in the visual cortex producing a
cortical map of the visual field. This means that a structural
relationship is maintained from the photo-receptors in the retina
to the cells in the visual cortex. The visual cortex is made up of a
number of layers and to study its properties it is necessary to
investigate the cells in two directions. First is the perpendicular
direction to the surface of the cortex while the second is in the
horizontal or oblique plane. If one travels in the perpendicular
direction passing cell after cell into the deeper layers, the
receptive fields mostly overlap with each new field heaped on all
the others. There is some variation in the size of these fields but
each bar detector is tuned to the same angular orientation. Hubel
and Wiesel [1977] referred these columns of receptive fields as
aggregate fields. The variation in the size of the aggregate field
depends on the distance of its cell's receptive field from the centre
of the field of view. The investigation in the oblique direction of
cortex surface has revealed slightly displaced aggregate fields and
after every one to two millimetres, there is always a new
aggregate field.

The visual cortex can be conceptualised as being subdivided into

roughly parallel columns of tissue which may be swirled rather
than planar as shown in Figure 2.3, approximately Imm x 1mm in
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cross section and two millimetres deep. These volumetric units
correspond to one aggregate field and originate from only one area
of the visual field. Each of these units (except layer IV) contains a
complete set of orientation columns and is partitioned into 50 pm
thick slabs with similar receptive field orientation. The adjacent
slabs have a 10° shift in their line orientation. Slabs are arranged
into coherent blocks with each block containing a right eye
dominant and a left eye dominant column. Blocks near to the
centre of gaze have tiny receptive fields while the peripheral
blocks have larger receptive fields. It appears that the visual field
is sampled to get the edge orientation and then the data is
collected in a cortical table for further processing.

The organisation of the primary visual cortex (area 17) is
explained in Figure 2.4 in the tabular form. Three variables:
orientation, relative position of the aggregate field, and the ocular
dominance are filled in the table which may be utilised by some
higher level process in the brain. Apart from the vertical column
structure, there is no experimental evidence about the use of this
tabular organisation for high level perception. Additionally there
is no answer to the question why the data is organised in this way,
but it has been observed that this is a compact and efficient way
of storing information. Perhaps the table is used to obtain
histograms to use in some type of transformation (like a Hough
transform) [Levine 1985] for recognising shape but this is pure
speculation.

2.3 Pyramidal Architecture and Organic Vision

Fast detection of global structures from digital images is an
essential component of real-time machine vision. The real-time
performance of human perception on complex images indicates
that our visual system does not use conventional parallel
processing. Reaction time experiments on human beings show that
the recognition of complex objects is completed within roughly
400 to 800 milliseconds. There is also some evidence that the
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more complex the object, the longer it takes to be recognised. The
experiments on the monkey's temporal cortex also reveal that
they respond to a face or a particuldr face in only 70 to 200
milliseconds. This high speed for recognition is achieved despite
the fact that the brain's basic processing elements, the neurones
take about 1.5 millisecond to fire and send their response to other
neurones. The contrast with machine vision is striking, vision
programs take minutes or even hours to process a simple static
scene. This is despite the fact that logic gates in today's computers
are one to several hundred times faster than a neurone.

The brain is massively parallel but crucial to its success is the fact
that it has a parallel-serial and hierarchical structure. It consists
of millions (in the order of 1010 to 1011) of basic processing
elements, the neurones which are organised in sets of columns
side-by-side through all six layers of cortex. About 2/3rds of the
columns of neurones are pyramidal cells whose processes rise
vertically through different layers of cortex and whose axons link
to other cortical and sub-cortical areas. The actual links found
between cortical areas and the other results of physiological
experiments suggest a parallel-serial structure of cortex rather
than a strict hierarchy. The information flows from visual cortex
through at least twenty other visual and non-visual brain areas
which are involved in perception. The overall structure of these
areas also appears to be a parallel-serial hierarchy with each area
richly linked to other areas. There is also evidence that by moving
up through these areas, more and more abstract and complex
features in larger regions of the retinal field are detected.

Perception is obviously a massively parallel process. The organic
retina has million of rod/cone cells. For machine vision, the TV
camera will also provide thousands, or millions of individual
pixels. Only massively parallel architectures are likely to be fast
enough to process the large resulting image arrays and successive
resulting structure of image information. The parallel-hierarchical
pyramid structure is among the most attractive candidate.
Although a multi-computer designed in the form of pyramid is far
simpler than the brain's perceptual system, it still keeps, in
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abstract and simplified form, many of the brain's essential
features and more importantly its spirit.

A pyramid in its most basic form consists of successively smaller
arrays of computers stacked over one another and linked via a
tree as shown in Figure 2.5. The largest array is at the bottom of
the stack and is known as retinal input and the smallest array
(generally consisting of one processor) is at the top and called, the
apex output. The links inside an array provide an efficient
implementation of parallel local operations upon a small window,

while the logarithmic based links between arrays of consecutive
levels reduce the distance of order N (for an NxN image or retinal

size) between nodes in each of the array to the order of log,(N).

The pyramid-style parallelism provides a much faster method of
parallel computation to achieve fast recognition of global patterns.
When implemented in parallel on suitable cellular pyramid
hardware, most of the image analysis techniques require
processing times of the order of the logarithm of image diameter.
The contours are one of the most important global features in an
image. Similar global patterns cannot be reliably recognised using
the conjunction of local features. Pyramid or multi-resolution
techniques provide different means of explicitly extracting the
global structure in the image. When a fragment of contour is found
at the lower level, the information can be passed up along with
whatever more detailed information may be needed to specify
exactly where that fragment started and ended. In this way the
parents can stitch it properly with other fragments and pass that
information up.

In chapter four the techniques based on pyramid processing of
contour data (line segments and curves) will be described.
Pyramids are often used to generate course to fine methods in
edge and contour detection. The other image feature detection
method is based on pyramid processing of intensity data (grey
level or colour) or a local property map derived by applying
feature detection operators to intensity arrays. A similar approach
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for region based image segmentation using the pyramid will be
described in chapter five.

Apex output

20,20 Level = N
n n Level = N-n
2 x 2
2Nx 2N LCVCI = 0

Retinal input

Figure 2.5: The pyramid architecture.

2.4 Psychology of Vision
2.4.1 Background

The main aim in discussing the psychology of vision here is to
explore some of the algorithmic techniques used by human visual
system. These techniques can only be judged by their failures and
successes in interpreting both natural and artificial images.
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There are two main sources of information which can be employed
by humans for visual perception. The first is the available sensory
information and the second is relevant past experience and
knowledge. There is a lot of controversy over the relative
importance of these two factors. Gibson [1966] emphasises the role
played by the stimulus information while Gregory [1970] and
others argue for the constructive and hypothesis testing processes.
The main focus of the Gibson theory is to provide an explanation
of how humans perceive the environment in a veridical way. A
radically different approach is argued by several theorists
including Gregory and others. They regard perception as an active
and constructive process. According to Gregory, the perceptual
experiences are constructions from the data provided by sensors
and drawn from the brain memory. This approach can readily
account for perceptual errors and many visual illusions. But it
seems that visual perception largely follows the bottom-up
approach adapted by Gibson when the viewing conditions are
good. It may involve top-down processes argued by Gregory and
others, increasingly as the viewing conditions deteriorate.

2.4.2 Form Perception

One of the most obvious and interesting facts of visual perception
is that it is almost always organised. The important part of this
organisation is the partitioning of the visual field into two parts
figure and ground. The figure usually appears to be nearer than
the ground which is extended uniformly behind the figure. This
figure-ground organisation is one of the names given to perceptual
organisation and it comes about fairly automatically. The parts of
a scene may correspond to objects already seen but normally it is
impossible to see the same object in the same configuration,
illumination, and from the same perspective in space. This means
that humans must be able to partition a scene into coherent,
organised, and independently recognisable entities without prior
knowledge.
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The next question is how humans partition the scene into
independent parts without knowing what might be present. The
Gestalt psychologists argue that it reflects the basic and innate
functioning of the human visual system. The Gestaltists were
interested in some of the ways in which visual perception is
organised. Their fundamental principles of perceptual organisation
are a set of generic criteria which underlie the procedures
discovered by nature for partitioning the visual field. One of ‘the
earliest and intuitively most acceptable collection of such laws are
proposed by Wertheimer in 1923 and then elaborated by Koffka
[1935]. These laws are based on a single fundamental principle
(the law of Pragnanz) which is described by Koffka as follows:

"Psychological organisation will always be as good
as the prevailing conditions allow. In practice a
good form is the simplest or most uniform and
organised of the available alternatives.”

The laws of organisation have been formulated on the basis of
their use in identifying ambiguous patterns similar to those shown
in Figure 2.6. They will be seen to underlie the rules for
perceptual grouping. These Gestalt laws include:,

The Law of Proximity

The stimulus elements which are closer tend to be perceived as
one entity. It will be observed that the closer elements in Figure
2.6a can be perceived as groups forming vertical columns.

The Law of Similarity

Similar elements of a stimulus tend to be part of a unit. This

similarity may be in grey level, colour, orientation, or shape as
shown in Figure 2.6b.
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Figure 2.6: The laws of organisation.

(a) Proximity. (b) Similarity. (c) Continuity.

(d) Closure. (e) Symmetry.
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The Law of Good Continuity

Stimuli tend to form a group which minimises a change or
discontinuity as demonstrated in Figure 2.6c, which is perceived
as two lines with first order continuity.

The Law of Closure

The stimulus elements tend to be grouped into complete figures
which are most commonly known. The stimulus in Figure 2.6d will
be generally perceived as a circle despite the fact that some part
of it is missing.

The Law of Symmetry

The regions which are surrounded by symmetrical borders are
perceived as coherent figures in the scenes shown in Figure 2.6e.

The Law of Simplicity

In the stimulus where more than one figure can be perceived, the
ambiguity is resolved in favour of the simplest alternative. For
example if a smaller number of different angles or lines are
required to interpret a figure as three-dimensional instead of two-
dimensional, the observer will normally choose the three-
dimensional alternative. This effect is shown in Figure 2.6f.

The Law of Common Fate

If a group of elements are moving with a uniform velocity through
a field of similar elements, the moving elements are perceived as
part of a coherent group. In the study of obtaining structure from
motion, Ullman [1979] has used this law of common fate.

The major problem with the above set of laws is their lack of
explanatory power. It is possible to argue that all perceptual
tendencies are implied explanations of how sensed data relates to
the scene content. One of the explanations is that any partitioning
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decision must satisfy the criteria of completeness, stability, and
limited complexity. This viewpoint provides a broader basis for
understanding Gestalt laws. Some additional ideas about the
nature of perceptual organisation, such as the existence of a pre-
attentive visual system and a vocabulary of perceptual primitives
has been discussed in the previous chapter.

2.5 Classification of Grouping Processes

In machine vision, organisation of the intermediate levels receive
image level features from low level image data and produce
different intermediate representations. The main process in
building intermediate representations from different types of
features is to group them. The perceptual organisation can also be
defined as the basic capability in human vision to derive relevant
groupings from an image where groups of features lead to
structures. Many areas of research in computer vision, e.g.
structure from motion or stereo matching, are basically grouping
problems where the pixels are grouped into sets of related
features. The grouping processes establish relations between
different elements of the image which hopefully will survive at
the higher levels of vision. The best rules for grouping lead to
those groups which are retained intact during the higher levels of
the machine vision process. This principle is similar to the Marr's
[1976] principle of least commitment.

There are two distinct classes of grouping. One is based on
expectations and a-priori knowledge. Hough techniques are a good
example of this category. An assumption is made as to the
probable shape of the group, which is usually a first or second
order curve. Then a search is made for the instances of that shape.

The second class of grouping is based on perceptual organisation
and uses the different laws of organisation described in the
previous section. This type of grouping is currently supported by
Witkin, Tenenbaum [1983] and Lowe [1985] and is based on the
argument of non-accidental. This is the degree to which an image
relation is not arisen by accident. It is normally assumed by
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psychophysical researchers that there is little, or no chance of any
regular relation existing in the image by accident. The non-
accidental argument in the first instance, seems to eliminate
expectation but actually it only reduces the importance of the role
of prior knowledge of the scene content at early and intermediate
stages of vision.

2.5.1 Perceptual Grouping

The perceptual grouping is carried out on the basis of image
content and does not require any scene specific knowledge. This
means that this type of grouping is very useful and effective for
the development of a general purpose and domain independent
vision system. As these grouping processes do not utilise any
domain specific knowledge, they can only be used as an early or
intermediate level processes. However, they can be used to play a
very important role in reducing the amount of image level data
effectively without loosing any useful information. Following
perceptual grouping some knowledge of the scene can be
employed for recognition.

The aim of this research is to use perceptual grouping for partial
segmentation of colon images and thus avoid exhaustive search
procedures. In this approach, the perceptual grouping is a part of
early and intermediate processing which produces different
intrinsic characteristic images.

In the case of segmentation through edge detection, perceptual
grouping has not been employed significantly in the previous
work. The different laws of perceptual organisation have only
been used for dot grouping or for segmenting a very simple class
of images. In the next two chapters, we will see that these laws
can be applied to extract early features similar to those found in
animal vision (e.g. linear edge segments) and then to group these
features into contours. The edge level linear segments can be
extracted at different resolutions by grouping on the basis of
similarity in edge orientation, magnitude and edge pixel value in
addition to proximity, continuity, and connectivity. At higher
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levels, in contour extraction, linear segments can be grouped at
different resolutions by wusing the principles of collinearity,
curvilinearity, and theta-aggregation. Most of the laws of grouping
define those image relations which are independent of any
changes in viewpoint and therefore lead to a predictable structure
in the scene.

2.5.2 Hough Techniques

As mentioned earlier, the Hough techniques belong to that class of
grouping which is based on expectations and a-priori knowledge.
In contrast to the perceptual groupings which are mostly data-
driven, grouping based on Hough techniques utilise the knowledge
of important scene structures. These techniques are well
developed and more than 150 research, development, and
application projects on them have been reported since the time
Hough [1962] introduced the transform. The Hough techniques
include a vast variety of clustering, histogram analysis and
estimation strategies. They transform data in such a way that the
shape of interest will form into clusters. The Hough transform was
first developed for grouping features into simple geometric lines
[Duda and Hart 1972] and curves but more recently it has been
generalised and can be implemented to group two or three-
dimensional features [Ballard 1981]. A comprehensive survey of
Hough techniques has been completed recently [Illingworth and
Kittler 1988], which can be consulted for detailed applications of
Hough transform.

Basically the Hough transform is a mapping from one
representation (e.g. primal sketch which includes edge
information) into a new space in which elementary shapes or
shape features are easy to extract. The simplest form of the Hough
transform is described for line detection. Consider the line
equation:

x Cos® + y Sinf =p (2.1)
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Suppose we have detected features with a local edge orientation
and a measure of edge contrast.

For a line we can define a (p, 0) parameter space. Restricting 0 in
the interval [0, n] and p in the interval [-)/(x2+y2) < p < |/ (x2+y2)].

A line in x-y plane will map to a point in (p, ) plane as shown in
Figure 2.7 with different points (x;, y;) on the line which map to
the same point in (p, ) space.

(xl’yl)
A (x,, yz)
Line
p (x3,y3)
Y
(XY i)
0
X —»

Figure 2.7: The (p, 8) parameterisation of the line in
Hough transform.
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This relation between image space and parameter space can be
formally extended to the following algorithm for line detection:

-Quantise parameter space for maximum and
minimum values of (p, 6).

-Form an accumulator array A.(p, 6) with its initial
value as zero.

-If the edge contrast exceeds some threshold, for

each such edge point (x;, y;), increment each array

element along the appropriate line.

ie. Ap,8)= Ap,0)+1

for p and 6 satisfying the line equation.

p =x Cosb + y Sin6

-Local maxima in the accumulator array will

correspond to collinear points in the image array.

The values of the accumulator array give the

number of points on the line.
Generally this technique can be extended to other curves and
shapes represented by a function F(X, P) where P is the

parameter vector and X represents the initial representation. For
example to detect a circle parameterised by the equation.

(x —a)2 + (y—-b)2=r2 (2.2)
The parameter vector, P will be:

P=(,b,r1)
and the Cartesian vector X is:

X =(x,y)

-52-



The major draw back of the Hough techniques is that their
computation cost and the size of the accumulator array increases
exponentially with the increase in number of parameters for
complex shapes. There are, however, a number of extensions
which can be employed to reduce the computation, for example
we can utilise gradient direction in detecting conics like circles and
ellipses. Similarly magnitude of edge contrast can be utilised as a
heuristic in incrementing the accumulator.

Brady [1983] has criticised Hough techniques as means for
obtaining representations at intermediate level vision due to the
following factors.

-Widely spread weak evidence can become strong
evidence after transformation.

-In some cases a small portion of contour can
guarantee the presence of an object. However,
Hough's voting system may reject the detection of
that object due to its small number of votes.

-It does not provide means for detecting localised
imperfection, in the objects.

Most of this criticism of Hough transform is of the representation
that it provides, rather than its use as a grouping process. The
biggest criticism against the Hough transform, in the context of
perceptual organisation, is that it entirely ignores the proximity
criterion for grouping. This drawback has been overcome in the
implementation which will be described in the next chapter.
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CHAPTER 3

EXTRACTION OF CURVED LINE SEGMENTS

3.1 Introduction

In machine vision, the boundary of a uniform region is usually a
very important image feature. Boundaries provide useful
information for segmenting images into meaningful regions. There
is also a widely held belief that humans isolate object boundaries
in a scene before recognising them. In endoscopic colon images,
the contours due to the occluding edges of the inner muscles of
human colon, can be used for guiding the endoscope. These
contours also provide clues for building a three-dimensional
representation of the inner colon. There are a number of
approaches to form a representation of object boundaries or
contours in an image. One approach is to extract uniform regions
and then process them for their boundaries. These region based
techniques always form closed boundaries. An alternate approach
assumes that a series of edge points define the boundary. The
edge points are detected by sensing where the pixel value
(intensity, colour, texture, or range) changes abruptly. These edge
points can be linked into lines or curves. Computation of the
gradient in pixel intensity or any other image property, can be
achieved by some differentiation operator. The spatial and other
relationships among the edges are utilised to infer more global
entities in the form of boundaries.

The approach to extract curved contours and boundaries,
described in this thesis, utilises a bottom-up organisation of edge
point data. Our method of organising the image data uses the
information presented in the data itself and perceptual
organisation rules which are domain independent. Most of the
boundary extraction techniques link edge points into boundaries
directly and sequentially without an intermediate representation.
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An alternative strategy is to form an intermediate representation
of the desired contours before obtaining a final representation.
This will not only limit the use of domain specific knowledge at
the early stages of visual data organisation but will also reduce
the amount of data to be processed at higher levels. The straight
line segment representation is a good candidate to be formed from
edge point data. An hierarchical line segment representation has
been used at two resolutions by grouping edge points in different
sized image windows. The grouping is directed by employing the
different laws of perceptual organisation described in the previous
chapter. It is easy to perform these processes on a local basis, and
they are highly effective in filtering out noisy edges. Moreover,
these grouping operations are amenable to parallel computation.
When the line segments have been obtained, they are grouped
hierarchically using a pyramid structure to form curved contours.
This last part also allows parallel implementation on a pyramid
based computer architecture. The step of extracting short line
segments plays the central role in our method. Its ability to filter
out noisy edges and to produce significant line segments has a
considerable influence on the later, higher level, process of
boundary formation. The perceptual grouping of edge points into
straight line segments is treated in detail in this chapter before
describing the overall contour extraction algorithm.

3.2 Motivation and Problem Definition

The motivation behind the introduction of the straight line
segment representation for curved boundary formation comes
mainly from the neurophysiological studies of early data
organisation in animal vision. This subject has been discussed
extensively in the previous chapter. The experimental data about
the different processes in the visual cortex of cats and monkeys
indicates that a line segment representation is formed by simple
and complex cells in the visual cortex. The straight line segments
are detected by grouping the point data supplied by contrast
sensitive centre-surround cells in lateral geniculate nucleus (LGN)
and the visual cortex. The well known signal to symbol paradigm
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also supports the idea that an intermediate representation should
be formed as the first step in forming a boundary representation
of an image.

Short line segments are good candidates for forming an
intermediate representation. Clearly, they can be used to
represent the boundaries of polyhedral objects. Moreover, curved
object boundaries can also be approximated by piece-wise straight
line segments. They thus have the ability to represent any type of
contours and boundaries.

From the computational point of view, any representation in-
between the edge point data and boundary contours will reduce
the image data to be processed at higher levels. Generally, those
intermediate representations which can be formed by local,
independent and parallel processes, are preferred for early visual
processing. Short line segments can be extracted independently
and in parallel. Moreover, their extraction does not require any
domain specific knowledge. Marr [1976] has also included the
short line segments and bar like features in his well known raw
primal sketch. We believe that short line segments extracted at
different resolutions provide enough information for forming
complete contours and boundaries.

The contours in endoscopic images are formed by the occluding
edges of rings of muscle and do not come from the finer texture
details and other artefacts of the human colon. The main problem
with the extraction of these contours is the inherent noise in this
type of medical images. Other problems appear due to specular
reflections, uneven surface texture, and the presence of other
matter in the environment of the colon. In a single image frame,
visual inspection can only locate one or two rings of muscle
usually, and at the most four to five rings. These are only partially
visible due to bends, twists, and other irregularities in the colon.
One useful fact about occluding contours is that they cannot cross
each other. At the nearest point one contour will end on another.
Therefore, the contours are well apart, and so, in order to find
straight line segments which approximate the curved muscle
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rings, we have assumed that, in a small square window of the
image, there exists only a single line segment. The whole image is
broken up into small windows which are processed independently
of each other. Many of the rings of colon muscle have very low
contrast due to uneven illumination. Therefore, in each window
we are looking for a meaningful line which may be weak but
perceptually significant. The corners and joints of the actual
contours can be filled in afterwards by using edge point data. The
size of the window is determined by the amount of detail which
one wants to extract in a given image. We have found that the
grouping of edge point data at two selected sizes of windows is
adequate for extracting reasonable boundaries.

3.3 Previous Work on Extracting Line Segments

As argued in the previous section, the detection of short line
segments by grouping edge point data is an important and initial
step towards contour extraction. We will now review the prior line
extraction techniques before describing a novel approach,
developed for detecting short line segments. There are two main
categories of edge point grouping techniques: global and local edge
linking. The techniques using global criteria for linking are
difficult to implement in parallel. They also become
computationally expensive when the amount of edge data is large.
Some of the global edge linking techniques are based on graph
theoretical search methods where the edges are viewed as nodes
of a graph and a cost factor is associated with each link between
nodes [Martelli 1976]. The cost can be a function of the proximity
and direction of the edge elements. The minimum cost paths in the
graph are taken to comrespond to the desired boundaries. Ramer
[1975] has used an heuristic search technique to find paths.
Although this was basically a global method, he needed to use an
intermediate organisation based on streaks which were detected
by searching the edge point data bi-directionally. Zahn [1971]
built a minimum spanning tree in the graph to detect clusters.
Recently the minimum spanning tree was used for extracting
curvilinear features at global and local window levels [Suk and
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Song 1984]. The results indicate a deterioration of boundaries in
the local window mode. The global edge linking methods cope with
noise by using domain specific knowledge and heuristics which
make them less applicable to early and intermediate visual
processing for general purpose vision. Due to their global nature,
the computational cost is also not low enough for their use in real-
time applications like the automation of an endoscope.

In the case of local edge linking, we will restrict ourselves to the
extraction of only short straight line segments as an intermediate
step for contour extraction. The problem of line extraction by
grouping edge points has been worked on, since the early days of
scene analysis. Roberts [1965] linked edges into straight segments
locally in a 4x4 window and edges due to noise were eliminated
by ignoring those which do not have at least one neighbour with a
direction within a fixed tolerance (23° of tolerance was
mentioned). Griffith [1973] used a more complicated technique for
linking edges into straight lines. Two sets of feature points,
vertical and horizontal edges, were used as input to the line
extraction algorithm. The vertical and horizontal edges were
projected on the y-axis and the x-axis respectively by rotating the
axes to about 200 angles. The direction of the lines was
determined by histogramming the occurrence of edges for each
different angle of the axes.

The Hough transform, which has been introduced in the previous
chapter as a grouping process, provides an interesting means of
straight line extraction. This method 1is based on the
transformation of points into straight lines using a parameter
space. There are a number of parameterisation schemes developed
for implementing the Hough transform and we will now discuss
some of them here. Initially the line was parameterised in terms
of its slope and intercept [Hough 1962]. The slope-intercept
parameter space is unbounded which complicates its
implementation. The angle-radius (p, 6) parameterisation,
discussed in chapter two, was proposed to overcome this problem
where the radius, p is the distance of line from the origin and 6 is
the angle of its normal [Duda and Hart 1972]. Generally, for a
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given feature point the p value is computed for each of the
quantised values of 6 using equation (2.1). The values of p are
then quantised into a fixed number of intervals of width Ap. In
this way, the image is divided into bar shaped windows. The
selection of optimal quantisation of the angle-radius parameter
space is a difficult problem in itself. The resolution of lines for a
given quantisation changes with 6 and p. An extension of a line
peak not only depends on its length and width, but also on the
quantisation of the parameter space. The finer quantisation
reduces the extent of the peak and it also enhances the effect of
image quantisation. Van Veen and Groen [1981] have discussed
quantisation errors in the Hough transform.

Wallace [1985] has proposed a new parameterisation in which the
lines are represented by two points on the opposite ends of image
boundary. The image is assumed to be bounded by a rectangular
box whose sides are parallel to the x-axis and y-axis, extending
from the origin to the vertex (Xpax, Ymax)- A line passing through
the image is parameterised by the two crossing points where the
line intersects the bounded box. The intersection point parameter
space is explained in Figure 3.1, where P1 and P2 are the two
intersection points for a given line. The points can be represented
simply by their distances dl1 and d2 from the origin along the
perimeter of the bounding box such that dl is less than d2.
Forman [1986] has argued for a hybrid parameterisation in-
between the angle-radius and Wallace parameters. His angle-point
parameterisation is based on the line direction and its intersection
point with the image boundary. The foot of normal
parameterisation was proposed by Davies [1986], in which the line
is parameterised by its point of intersection with a normal vector
from the image origin. It is also suggested that this
parameterisation is suitable for small image windows.

We have adapted the Wallace parameter space for grouping edge
points perceptually to extract line segments. The main advantages
of this parameter space are its suitability for application to
rasterised images, the constant line resolution throughout the
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Figure 3.1: Line parameterisation in terms of the
two intersection points Pl and P2 between the line
and the bounding box.

image space, and its low computational cost because no
trigonometric functions are involved. In addition to that, it is
highly suitable for extracting line segments in small image
windows due to two main reasons:

-It is easy to decide and compute which feature
point votes for which line within the parameter
space. Therefore sidelobes [Brown 1983] and bias
[Cohen and Toussaint 1977] inherent in the original
Hough transform can be reduced.

-For a small image window, where the accuracy of
line end points is not important, the intersection
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points can be used as the end points for the line
extracted. This eliminates the need for computation
of end points required in the traditional Hough
space.

As discussed in the previous chapter, Hough techniques have been
criticised on the violation of proximity criterion which is
extensively used by humans in collinearity grouping. O'Gorman
and Clowes [1976] tried to rectify the Hough transform line
detection process by using gradient direction to determine
relevant edges for a line in a given direction. Their grouping
process is based on collinearity and rejects completely the
principle of theta-aggregation advocated by Marr [1976].
Moreover, they have used a thresholded edge magnitude in the
voting process which may suppress the contribution from weak
but meaningful edges. Van Veen and Groen [1981] followed the
O'Gorman and Clowes approach and suggested weighting the
Hough transform with the probability density function of the
gradient direction.

Almost all of the above boundary line extraction algorithms have
been developed to detect boundaries of simple polyhedral objects.
Their performance is also demonstrated on very simple noise free
indoor scenes with ideal illumination conditions, containing only
block and toy like objects. So we see that these methods require
considerable improvements to cope with outdoor scenes with
curved objects.

Canny [1983] has also linked the edge points into short contour
segments (edgels) in his well accepted work on edge detection. His
method is based on connecting edges in such a way that some
portion of the contour is above a high threshold while the rest
must be above a low threshold. The method is not good enough to
detect a weak but meaningful long edge. Blicher [1984] has also
pointed out a similar problem with Canny's edge linking and
suggested the use of some Hough like method for linking edges
into straight lines.
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The use of edge orientation instead of magnitude in the initial
organisation of image data has recently been advocated by Burns
et al. [1986]. Previously edge magnitude was used in one form or
another as a dominant measure. Their line extraction algorithm
involves grouping of pixels into line support regions based on the
similarity of edge orientation. The lines are extracted from each
region by fitting a plane to the intensity surface of the region. In
addition to other problems mentioned by the authors, the method
does not handle the approximation of curved lines by straight line
segments.

3.4 Perceptual Grouping of Edges into Line Segments

The existing techniques for line segment extraction can not cope
with different types of noise effectively. They are also unable to
identify those line segments which are part of a curved contour or
a curved surface. Therefore a new method, for grouping edge
points into short line segments, is required. The method of
grouping edges into short line segments, that has been developed,
can be carried out in a local window mode and the process is
implementable in parallel. Aggregating edge points is an early
process in machine vision and therefore it is highly data directed.
The information which is used to group edge points, is mainly
carried by the edge points themselves in the form of:

-Edge location.
-Edge orientation and magnitude.
-Edge pixel value (grey level, colour, or range).

In the previous chapter, we have discussed different laws of
organisation which can be utilised to group image data. Among
them, the proximity, connectivity, and similarity in edge
orientation, magnitude, and edge pixel intensity have been used
for aggregating edge points into significant line segments. These
grouping criteria seem very simple and ordinary but to date, no
one has exploited their strength effectively and completely for
segmenting images in a unified way. The grouping principles
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follow the non-accidental argument, which is based on the fact
that there is a very small probability of a regular relationship
occurring by chance. The likelihood of a line structure, due to
noise or some other accidental phenomenon decreases with its
consistency under the different laws of perceptual grouping. The
problems in using these aggregation methods is the lack of an
effective implementation. There is also the unresolved problem of
combining the results when different criteria give different
outputs. It is difficult to deduce which criteria are the more
effective. The individual aggregation methods are discussed first,
and afterwards we shall consider how to combine their results.

Proximity

The grouping based on spatial proximity has been used
extensively in many clustering problems. The performance of
proximity grouping depends on the accurate localisation of edges.
Those edge points are grouped which are closer and lie on the
straight line. Providing that the number of votes required to
qualify as a line is sufficiently large, the use of a small window
establishes the proximity criterion. In our case, the window sizes
are 12x12 and 6x6 pixels and the minimum number of votes are

eight and four respectively.
Connectivity

This is an important image relation since it is preserved over all
possible viewpoints. Those edge points are grouped which are
connected to each other on a straight line. For the size of window
that we are using, no distance tolerance between two edge points
is allowed for proximity grouping. Therefore, connectivity is
automatically observed.

Similarity in Edge Orientation
This is the most effective and widely used criterion for straight

line extraction. Almost all of the previous line extraction methods
use edge orientation in one way or another. Our method is
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influenced by the work of O'Gorman and Clowes [1976] but we
depart from their method in many respects. The problem we are
facing is the extraction of curved contours of curved surfaces,
which are approximated by line segments. Therefore, instead of
selecting those edge points whose orientation is perpendicular to
the line segment, a slow drift in the orientation is allowed from
one edge point to the neighbouring edge point on the line. This
drift helps in forming pseudo straight segments representing
curved segments in the image. The slow change in edge
orientation as one moves along a curved boundary is illustrated in
Figure 3.2. A line segment can be represented by using an angle-
radius (p, ) parameterisation described earlier by the following
equation:

x Cos 6+ySin8=p (3.1)

>

Edge directions drifted by 36
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Figure 3.2: Grouping edges into curved line
segments.
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By following the O'Gorman and Clowes approach, the angle 8 also
represents the edge orientation and only those edges whose
orientation is within a tolerance 86 of the angle 6 (Figure 3.3) are
allowed to vote for the line. In our method of orientation grouping
a slow drift is allowed in the orientation of consecutive edges
against a large angular tolerance. In this way, the grouping
relationship formed is more perceptually stable and regular for
extracting contours due to curved surfaces. The results on
endoscopic images which are presented in this chapter also
support this claim.
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Figure 3.3: Relation between edge orientation and
line direction.

The aggregation on the basis of similarity in edge orientation is
also allowed whether the change in intensity is normal to the line
segment or not. This is equivalent to Marr's grouping principle of
theta-aggregation for line segments. The theta-aggregation
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principle groups bar like features on the basis of parallelism and
collinear displacements. Assuming that the edges are very short
segments having directions, theta-aggregation is used to recover
significant lines. It has been observed that theta-aggregation
recovers those significant line segments which are generally
missed. This principle is also combined with curvilinearity and
orientation drift to extract useful line structures. In Figure 3.4
some stimuli are shown to demonstrate that humans use these
grouping criteria to recover curves and lines.

(a)

(b)

Figure 3.4: (a) Theta-Aggregation principle based
stimulus. (b) Combining theta-aggregation with
curvilinearity and orientation drift.
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Similarit)f in Edge Magnitude

This is another principle for grouping edge points which can be
used to filter out noisy edges irrespective of their strength and
recover lines which consist of edge points having the same edge
magnitude. The probability of recovering a significant line
increases with the similarity in edges within a small
neighbourhood on that line.

Similarity in Edge Pixel Intensity

The grouping of edge points based on similarity of intensity uses
consistency in intensity rather than contrast. Theoretically, it
should prevent the line segment from crossing over between the
background and foreground sides of the boundaries. Edge
orientation can also be used to do the same thing. Generally, the
groups of edge points based on edge intensity are not very
accurate in terms of localisation.

The grouping based on similarity in edge orientation, magnitude
and edge pixel intensity are all supported by the non-accidental
argument. There is a very little chance that the edge points due to
noise and other artefacts would have similar orientation,
magnitude, and intensity values.

3.5 Line Segment Extraction: Implementation Details

The two main steps in extracting line segments are edge point
detection and local perceptual grouping of edge points into
straight lines in a small image window.

3.5.1 Edge Point Detection

The published work on edge detection is so extensive that it is
difficult to discuss all the well known techniques here. Abdou

[1978] and Blicher [1984] have surveyed and evaluated in detail
the past and current edge detection methods. Most of them are
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based on detecting ideal step edges, while in the real world scenes,
step edges are a small percentage. Three main requirements of the
edge detector have been pointed out and these are:

-Good detection; which needs a good sensitivity
criterion. In other words, good detection means,
maximising signal to noise ratio.

-Good localisation of edges.
-Single response of a single edge.

An additional requirement is the computation of accurate edge
orientation for weak (low contrast) edges. Since similar orientation
is an important perceptual criterion used in our method, accurate
edge direction computation is very important for the success of
the perceptual grouping process.

The simplest way of extracting edge points is by using masks to
calculate gradient magnitude and direction. Basically edge
detection is an ill-posed problem. Large edge masks, which are
larger than the image features, smooth the image and sometimes
remove the relevant image features completely. The smaller size
masks identify multiple edges for larger features. To overcome
these difficulties, Marr and Hildreth [1980] used multiple size
operators. They also tried to regularise edge detection by blurring
the image with a gaussian filter in their DOG operator. In addition
to that they used the zero crossings of the second directional
derivative to detect edges, rather than relying on gradient
magnitude. They have settled for the orientation independent
Laplacian operator (V2G) by assuming a linear variation. The main
problem with the multiple size operators is that their size should
match with the image events and generally before processing the
image one may not know the image events. Moreover, Marr and
Hildreth do not provide any clue as to how to combine and group
the outputs of different size operators.
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Ridge-valley and step edge detectors reported by Haralick et al.
[1983, 1984] have been tried on the endoscopic images in this
study. These operators detect events in the image by fitting a
cubic surface over a pre-defined window size. They were tried
because of the existence of ridge like muscles in the colon images.
The performance of these detectors on endoscopic images was
poor due to excessive noise. The output from ridge-valley detector
was sparse and missed useful and significant structures.

Although we have the choice of using any one of the well accepted
edge detectors (e.g. the Canny, Marr and Hildreth, or Haralick
Operators), we have chosen a simple edge detector to demonstrate
the capabilities of grouping edge points perceptually. The simple
edge operators have the advantage that they are easy to
implement and can perform edge detection at video rate on most
of the existing image processing hardware systems (e.g. Imaging
Technology Series 151 Image Processor). The basic 3x3 edge
operator is defined by two masks which compute the edge values
in the horizontal and vertical directions. Supposing that the

operator is centred at a pixel location (x, y) in the image and the
pixel values in the surrounding 3x3 window are denoted by:

Ix-1,y-1), Ixy-1), Ixety-1)
Ix-1y),  Ixy), Iix+1,y)
Ix-1,y+1), Ixy+1),  I(x+1,y+1)

as shown in Figure 3.5.

The edge magnitude in the horizontal and vertical directions
(termed as E; and E,) at the pixel (x, y) is defined as:

Ey =
Ixet1,y-1) - Ix-1,9-1) +
KXI(x+1,y) - KxI(x-l,y) +
Ix+1,y+1) — Ix-1,y+1) (3.2)
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E, =
Hix-1,y-1y +  KXIxy1y + Ixey-nl -
[I(x-l,y+1) + K><I(x,y+1) + I(x+1,y+1)]~ (3.3)

I
(x-Ly-1) (x,y-1) I (x+1,y-1)

I 1 I 1
(x-1,y) (x,y) (x+1,)

I I
Lxty+n) | - Gy*D) | xeLysd)

Figure 3.5: A 3x3 image window centred at (x, y).

The coefficient K is different for different operators. In the case of
Sobel operator [Duda and Hart 1973] its value is two, while for
Prewitt [1970] and Isotropic operator the values are one and /7

respectively.

The directional accuracy of the isotropic operator is the best, but
due to the floating point computation, the Sobel operator is often
preferred. Moreover extensive studies for correcting the edge
magnitude and orientation have been carried out and their results
can be used to achieve accurate edge orientation [Abdou 1978,
Kittler 1983]. For the Sobel edge operator, the edge magnitude, E
in terms of horizontal and vertical edge values described in
equations (3.2) and (3.3) is:
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E = /(Ep? + E,2) (3.4)
and the edge orientation, o is:

a = tan~1{E,/Ey;}
when E,/E; value is within the interval [0 <=E/Ey <= 1/3]

and
a = tan~1{(3E, -11E, - ﬂl 12Ev2 +16Eh2 - 64ELE,))/(- TEx— 9E,)}

when E|/E; value is within the interval [1/3 <E/Ep <= 1]
(3.5)

A major difference in our approach from earlier work is that we
retain the low contrast edges, which may be a part of the
perceptually significant line, rather than removing them with an
arbitrary threshold. Only a few edge points, below a very low
threshold, are removed since their orientation would not be
sufficiently accurate.

3.5.2 The Grouping Process

After forming an edge point representation of the image, the next
step is to aggregate the individual points into short line segments.
The most straight forward method for line extraction is least-
square fitting. This method is effective and feasible when firstly,
the edge point data is free of noise and secondly, the edge points
which belong to a particular line have been identified. However, in
many cases, including ours, these criteria are not met. Moreover
our interest is not just in fitting straight line segments but in
performing perceptual grouping along with the noise filtering
process.
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The edge point data is processed to extract line segments through
two different size window channels. The contour extraction
algorithm, which will be described in the next chapter uses a
multi-level line representation in a pyramid to link these line
segments. The image 1is divided into pre-selected size square
windows (6x6 and 12x12 are wused in this particular
implementation) and a local grouping process for straight line
extraction is applied to each square. The windows are overlapped
by one third of their size. For example the 12x12 square window
is overlapped by four pixels in the horizontal and vertical

directions. In this way it is assumed that the line extracted in
12x12 window belongs to an 8x8 square image centred at the

middle of the 12x12 window. Each local grouping process is
independent of the others, and therefore it can be implemented in
parallel. The main assumption is that in any square window there
can only be one significant line segment. The following are the
different steps involved, in the grouping process.

Step 1:

Apply the modified Hough transform for straight line extraction
introduced by Wallace [1985], to each square window of the
image. For each candidate line, the co-ordinates of its voting edge
points are stored in addition to the total number of votes for that
line.

Step 2: :

From the candidate lines found, select at the most L, lines.
Those lines are selected which are best (in the sense of number of
votes) from all the candidates and whose votes are larger than a
minimum voting threshold V..

Step 3:
For each candidate line selected in Step 2, repeat the following
grouping processes.

Proximity P-Grouping: Apply proximity grouping on

the basis of euclidean distance between each voting
edge and identify the largest cluster of edge points.
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The edge points which are not part of the largest
cluster are dropped from the voting strength of the
particular line. In this way the initial filtering of
edge points is performed. If the number of edge
points in the largest cluster drops below the
threshold for minimum votes Vpi,, it is assumed
that the selected line segment is not significant and
further grouping is aborted for that particular line.
It is not necessary to have a separate test for
proximity which is established by the connectivity
grouping described next.

Connectivity C-Grouping: In this particular
implementation, the connectivity of edge points is
ensured by not allowing any gap between adjacent
points on the line. In the case of a small window the
value of the minimum voting threshold V.,
proximity grouping, and connectivity are tied to
each other. If Vp;, is approximately taken as the
same as the window size then proximity and
connectivity grouping are established by the same
criterion.

Orientation O-Grouping: Grouping based on
similarity in edge orientation is only applied on the
largest cluster of connected edge points. The slow
drift in orientation is allowed by computing the
difference of orientation for each pair of adjacent
edge points. This is equivalent to differentiating
orientation with respect to distance or calculating
curvature along the curved line segment. The edges
are partitioned in such a way that each partition
consists of those edge points whose orientation
change is within a tolerance 66. The edge count for
the largest partition is now taken as the voting
strength of that line and is compared with V;, to
test for the significance of line. If the count is less
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than Vi ;,, then the selected line does not qualify
as a significant line based on orientation grouping.

Contrast and Intensity CI-Grouping: Group
connected edge points for a line on the bases of
similar edge magnitude and edge pixel intensity.
The edge points whose edge magnitude and
intensity are within their respective tolerances are
clustered together. The edge magnitude tolerance
dM, compensates for errors in edge strength
computation while intensity tolerance dJI, helps to
overcome errors due to quantisation in grey levels.
Similar to the orientation grouping process, edge
points in the largest cluster are qualified to vote for
a particular line and their count determines the
significance of line.

If the selected line fails to qualify in both orientation and CI-
Grouping, it is assumed that the line is not significant enough to
participate in contour extraction

Step 4:

If none of the selected lines qualify as a significant line in the
grouping processes of Step 3 then no useful line segment is
present in that window. When more than one line qualifies in one
or both grouping processes, decide as following:

-Preference is given to orientation grouping and if
more than one line qualifies in O-Grouping, the line
with maximum number of votes is selected. The
preference can also be given to the line whose
direction is normal to the edge orientation.

-If orientation grouping fails to identify a line in a
given window then the lines are tested solely on
the basis of CI-Grouping. We select the line with the
largest number of votes.
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The above steps only describe the method in principle. The
algorithm has been implemented in a more efficient way. The CI-
Grouping is only required when the O-Grouping fails.
Alternatively, the above procedures could be implemented using
parallel processing for the individual grouping criteria. In our
implementation on endoscopic images only 10% of the useful lines
are selected on the basis of CI-Grouping because O-Grouping is
more Stable and it identifies most of the significant line segments.

3.5.3 Selection of Thresholds

The grouping algorithm described above uses a number of
thresholds at various steps and the reader may wonder about the
selection of these thresholds and their sensitivity. However, the
algorithm 1is robust to these choices and works well on widely
different endoscope images without changing thresholds. These
thresholds have been optimised by experimental results on a large
number of endoscopic images. The thresholds may require some
fine tuning to enhance the performance of the algorithm for a
particular class of images. The effects and the bases for these
choices are discussed below.

Thresholding of edge points on the basis of their strength is also
known as amplitude thresholding. The amplitude of response from
an edge operator is a function of the magnitude of the edge, its
orientation, and its distance from the centre of the edge operator.
Edge removal on the basis of edge strength also removes the low
amplitude, perceptually significant edges. It is very difficult to
rely solely on this threshold for filtering noisy edges. The noise
amplitude will not be constant throughout the image due to
changes in illumination condition and contrast. In our algorithm
the edge threshold is intended only to remove low accuracy edge
points. It can therefore be set for the whole image. The values that
were used were six to ten for computer generated images
(depending on the amount of noise) and around eighteen for
endoscopic images. These proved low enough to keep all the
significant edges but removed those edges whose orientation may
not be accurate.
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The choice of maximum number of lines, Lnax retained from the
original Hough transform, and the minimum number of votes,
V min required for each line, both depend on the selection of image
window size and the amount of maximum background noise which
may be present in the image. In this algorithm, the maximum
number of lines selected is taken to be equal to the image window
side. The minimum number of votes, Vi, is also affected by the
amount of overlapping of windows and the tight control on
grouping principles. The minimum votes for qualifying as a

significant line is fixed at the window side minus the overlap size
(eight and four for 12x12 and 6x6 windows respectively).

The tolerance threshold for orientation 86 determines the limits on
the curvature of contours to be extracted. In the case of theta-
aggregation it also depends on the psychology of vision. The
orientation tolerance is easy to estimate from the psychological
studies which demonstrate how much tolerance humans allow in
orientation when they group similar oriented patterns. The data
organisation in visual cortex can also be used as a clue in the
selection of orientation tolerance. The cortical table, described in
the previous chapter, shows that the maximum orientation
resolution for line segments is 10°. Our choice of 5° tolerance for
endoscope images and 15° for computer generated images is
influenced by all of these factors and has achieved good results.

The grouping thresholds 8M and 81 for edge magnitude and edge
pixel intensity produce stable results over a wide range of scene
illumination. The stability improves when both grouping criteria
are employed together. When employed individually, the pixel
intensity threshold is affected considerably by the errors in edge
localisation while for edge contrast a small variation changes the
results considerably. For both 8M and 31 the tolerance is fixed at
three. These thresholds are also affected by the errors due to
sampling and the quantisation processes.
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3.6 Experimental Results and Conclusions

In many medical applications of image analysis, noise is present in
the digitised images. Typically, pictures of internal organs
obtained from radiological images or otherwise, have a great
degree of noise. This means that to obtain meaningful results,
segmentation algorithms must be tailored for the application.
Although the line extraction algorithm was developed primarily as
part of a contour detector for endoscopic colon images, it is
expected that it will prove to be of much wider applicability. The
method can be applied to the general problem of line segment
extraction in images containing a variety of unknown noise.

3.6.1 Artificially Generated Images with Added Noise

The performance of the technique was analysed by testing it on
some computer generated images with known amount of random
noise. The results on one of the images with varying amount of
noise are presented here. The image consists of curved elliptical
contours which are well apart. The random noise was added at
each pixel of the image amounting to £10% for one test image and
+22% (of the average signal level) for the other. Both of these
images along with their Sobel edge detector outputs are shown in
Figure 3.6 and 3.7. The image in Figure 3.6 contains +10% random
noise while the image in Figure 3.7 contains $22% random noise.
The outputs for the individual grouping operations are presented
for two resolutions (based on 12x12 and 6x6 images windows) in
Figures 3.8 to 3.11 for demonstrating the capabilities of perceptual
grouping based on connectivity, orientation drift and theta-
aggregation, similarity in edge pixel intensity and edge contrast.

It can be concluded from these results that for random noise of up
to £10%, the grouping based on connectivity filters out most of the
noise but for +22% noise, the output also contains a considerable
number of line segments due to noise. The orientation grouping
performs comfortably well for a large range of noise, although its
performance deteriorates with the increase in noise. This problem
has been overcome in the results presented here by increasing the
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edge magnitude threshold from six to ten for +22% noise. The
edge point grouping based on edge pixel intensity and edge
contrast provides better results for +10% random noise but the
overall results are poor for larger noise and their performance is
not comparable to the orientation or connectivity grouping.

Line extraction based on the O'Gorman and Clowes method has
also been implemented and applied to the same two images
containing +*10% and +22% random noise. Their method only
groups those edge points whose orientation is perpendicular to the
line segment direction (within a tolerance). The line segments of
curved contours are difficult to extract in this way and a high
tolerance between the line normal and edge orientation is
required for extracting all the useful line segments, which may in
turn produce line segments due to noise. The method is optimised
by increasing the tolerance between the edge orientation and the
line normal direction from 15° to +25°. The maximum tolerance is
used beyond which the line segments due to noise start appearing
in the output. Figure 3.12 shows the optimum best results for line
segments extracted by O'Gorman and Clowes method at two
resolutions. Their method misses more than 50% of the useful
contour segments compared to our orientation grouping as given
in Table 3.1. The amount of noise filtering achieved by our
perceptual grouping technique can be estimated by comparing its
output line segments with the total number of segments extracted
without applying perceptual grouping. In Figure 3.13 the line
segments extracted by employing perceptual grouping for two
resolutions are shown while Figure 3.14 contains the line
segments detected without applying perceptual grouping. The
reduction in the line segments extracted by using perceptual
grouping is considerable from 40 to 75% depending on the amount
of noise and without 1osing too many useful line structures. Table
3.1 summarises the total number of line segments extracted by
different grouping processes.
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Figure 3.6: An artificial image having +10% added
noise and the output of Sobel edge detector with thresholding.

In this and subsequent figuTes the edge Poinfs above a  thveshold ate

shown in Ted.

Figure 3.7: An artificial image having #22% added
noise and the output of Sobel edge detector wilh thresholditig.
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Figure 3.8: Line segments extracted by employing connectivity
grouping.

(a) For image containing +10% noise and based on 8x8 window.
(b) For image containing +10% noise and based on 4x4 window.
(c) For image containing +22% noise and based on 8x8 window.
(d) For image containing +22% noise and based on 4x4 window.
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Figure 3.9: Line segments extracted by employing grouping
based on similarity in edge pixel intensity.

(a) For image containing
(b) For image containing
(c) For image containing
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+10% noise and based on 8x8
+10% noise and based on 4x4
+22% noise and based on 8x8
(d) For image containing #22% noise and based on 4x4
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Figure 3.10: Line segments extracted by employing grouping

based on similarity in edge contrast.
(a) For image containing
(b) For image containing
(c) For image containing
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Figure 3.11: Line segments extracted by employing grouping

based on orientation drift and theta-aggregation.
(a) For image containing +10% noise and based on 8x8 window.

(b) For image containing +10% noise and based on 4x4 window.
(c) For image containing +22% noise and based on 8x8 window.
(d) For image containing +22% noise and based on 4x4 window.
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Figure 3.12: Line segments extracted by employing O'Gorman

and Clowes method.
(a) For image containing +10% noise and based on 8x8 window.

(b) For image containing +10% noise and based on 4x4 window.
(c) For image containing +22% noise and based on 8x8 window.
(d) For image containing #22% noise and based on 4x4 window.
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Figure 3.13: Line segments extracted by employing perceptual
grouping criteria.

(a) For image containing +10% noise and based on 8x8 window.
(b) For image containing +10% noise and based on 4x4 window.
(c) For image containing +22% noise and based on 8x8 window.
(d) For image containing +22% noise and based on 4x4 window.
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Figure 3.14: Line segments extracted without applying
perceptual grouping.

(a) For image containing +10% noise and based on 8x8
(b) For image containing +10% noise and based on 4x4
(c) For image containing +22% noise and based on 8x8
(d) For image containing +22% noise and based on 4x4
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Test Image Figure 3.6 Figure 3.7
+10% Noise +22% Noise
Grouping Process 8x8  4x4 8x8 4x4

Line segments extracted
without applying perceptual 481 898 721 1728
grouping principles.

Line segments detected by 183 535 164 468
using perceptual grouping.

Line Segments found by
O'Gorman and Clowes method 75 231 63 225
of collinearity grouping.

Orientation grouping with
slow drift in orientation 177 507 159 461
and theta-aggregation.

Connectivity grouping. 238 697 272 961

Grouping based on similarity
in edge pixel intensity. 84 330 27 168

Similarity in edge contrast. 88 207 27 111
~ Table 3.1: Output line segments for the artificial

image with varying degree of noise and for
different grouping processes.

3.6.2 Endoscopic Colon Images

The line extraction method has also been tested for a large
number of representative colon images. The images have been
digitised at 256 grey levels from a video tape of colonoscopy
procedures. There are a number of sources of different types of
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noise in endoscope images which include but are not limited to
variable specular reflection, texture, and different types of matter
in the colon. The magnetic media has also left some additional
noise in the digitised images due to the process of recording. The
results for three of these images are presented here for
demonstration purposes.

The test pictures of the inner colon and the output of the Sobel
edge detector for these images are shown in Figure 3.15 to 3.17.
All the edge points with magnitude greater than eighteen are kept
for further grouping. Our interest is only with the image contours
due to inner muscles of colon while the images are littered with
edges due to specularity, texture and noise. For comparison of the
performance of perceptual grouping against ordinary edge linking,
different results are presented in Figure 3.18 to 3.26. The line
segments have been extracted at two resolutions which
corresponds to an 8x8 square and a 4x4 square image windows.
The line segments have also been detected without applying any
perceptual grouping principles. The lines due to noise dominate
this representation in both resolutions (see Figure 3.21b to 3.26b).
The perceptual grouping principles described in our algorithm are
then employed to identify relevant line structures. The results of
Figures ‘3.21a to 3.26a demonstrate that most of the line segments
due to noise are unable to qualify as significant line structures and
are eliminated.

The performance of connectivity grouping, which filters out noisy
edges due to random noise effectively in the artificial images, is
not as effective on the endoscopic images (see Figure 3.18 to 3.20)
because a large variety of noise is present in these images. The
extraction of lines on the basis of connectivity and edge
orientation is the most effective way of coping with noise.
O'Gorman and Clowes method of collinearity grouping was also
applied to the same colon images for the purposes of comparing its
performance against the orientation grouping used in our
algorithm. For the sake of providing same edge data to both
algorithms, the connectivity grouping was also applied before
using the O'Gorman and Clowes collinearity grouping. The method
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Figure 3.15: First colon image and the output of Sobel edge
detector with thresholdimg.

Figure 3.16: Second colon image and the output of Sobel edge
detector with thesholdl'ng.
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Figure 3.17: Third colon image and the output of Sobel edge
detector with thvesholding.
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Figure 3.18: Line segments extracted using connectivity

grouping for colon image of Figure 3.15.
(a) Based on 8x8 image window.

(b) Based on 4x4 image window.
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Figure 3.19: Line segments extracted using connectivity

grouping for colon image of Figure
(a) Based on 8x8 image window.
(b) Based on 4x4 image window.
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Figure 3.20: Line segments extracted using connectivity
grouping for colon image of Figure 3.17.

(a) Based on 8x8 image window.
(b) Based on 4x4 image window.
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(a) (b)

(c) (d)

Figure 3.21: Output line segments for the colon image of
Figure 3.15 on the basis of 8x8 image window.

(a) When the perceptual grouping criteria are employed.

(b) Without using perceptual grouping.

(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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Figure 3.22: Qutput line segments for the colon image of

Figure 3.15 on the basis of 4x4 image window.

(a) When the perceptual grouping criteria are employed.

(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.

(d) O'Gorman and Clowes method.
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(c) (d)

Figure 3.23: Output line segments for the colon image of
Figure 3.16 on the basis of 8x8 image window.

(a) When the perceptual grouping criteria are employed.

(b) Without using perceptual grouping.

(c) Grouping based on orientation drift and theta-aggregation.
(d) O'Gorman and Clowes method.
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Figure 3.24: Output line segments for the colon image of
Figure 3.16 on the basis of 4x4 image window.
(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.
(c) Grouping based on orientation drift and theta-aggregation.

(d) O'Gorman and Clowes method.
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Figure 3.25: Output line segments for the colon image of
Figure 3.17 on the basis of 8x8 image window.

(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping.

(c) Grouping based on orientation drift and theta-aggregation.

(d) O'Gorman and Clowes method.
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Figure 3.26: Output line segments for the colon image of
Figure 3.17 on the basis of 4x4 image window.

(a) When the perceptual grouping criteria are employed.
(b) Without using perceptual grouping. |
(¢) Grouping based on orientation drift and theta-aggregation.

(d) O'Gorman and Clowes method.
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used by O'Gorman and Clowes filters out those edge points whose
orientation is not normal to the direction of the line segment
(within a tolerance), from participation in the grouping process.
This type of filtering works well for polyhedral objects with strong
edges and noise free images but for curved object contours the
method is unable to identify all the contour structure. Different
line normal and edge orientation tolerances (from +5° to +259)
have been tried to optimise the method similar to the previous
section, but the line segments which are weak yet form a useful
part of the contours, were missed (see results in Figure 3.21d to
3.26d with optimised tolerance). On the other hand, our method of
orientation grouping which allows a slow drift in edge orientation
(typically 5°) between consecutive edge points as one moves along
the curved line segment, gives better results. The results of
connectivity and orientation grouping based on slow drift and
theta-aggregation are shown in Figure 3.21c to 3.26¢c. The line
segments extracted by our algorithm for the colon and artificial
images are also overlapped on the original images to determine
the accuracy of locating these segments. These overlapped
pictures are presented in the next chapter, where the line
segments are grouped into curved contours.

3.6.3 Conclusions

It is difficult to judge the performance of different line detection
methods based on the total number of extracted line segments
alone. Nevertheless, with the help of the output results presented
already and the statistics of the output of different grouping
processes, we can gain an insight of the ability of different
grouping techniques in reducing the image data for varying
degree of noise and without losing useful information. The total
number of line segments extracted for the artificial and colon
images under different grouping methods and resolutions are
provided in Table 3.1 and 3.2 respectively.

It is easy to see that our perceptual grouping method reduces the

amount of line data almost to 50% without losing useful image
line structures. Another interesting feature is that orientation
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Test Image Figure 3.15 Figure 3.16 Figure 3.17

Grouping Process | 8x8 4x4  8x8 4x4 8x8 4x4

Line segments extracted
without applying perceptual 433 1186 346 558 348 784
grouping principles.

Line segments detected by 177 564 118 255 146 400
using perceptual grouping.

Line Segments found by
O'Gorman and Clowes method 44 320 43 171 47 191
of collinearity grouping.

Connectivity & orientation

grouping with slow drift

in orientation and 160 518 93 230 124 355
theta-aggregation.

The share of CI-Grouping in
total line segments found 17 46 25 25 22 45
by our algorithm.

Table 3.2: OQutput line segments for colon images
using different perceptual and other grouping
processes.

grouping covers up to 90% of the line structures. This is all due to
the introduction of slow drift in orientation and theta-aggregation.
Without this, the O'Gorman and Clowes technique is unable to
extract comparable line segments. The 10 to 15% share of lines
found due to CI-Grouping supports our argument that the
effectiveness of CI-Grouping is poor and is sensitive to tolerance
thresholds.
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In this chapter we have demonstrated the capabilities of
perceptual organisation at a very early level of vision specifically
in filtering noisy edges for image segmentation. The application of
this research is for an on-line image analysis. Therefore during the
whole development process of these grouping principles the
possibility of parallel implementation was kept in mind. Custom
VLSI hardware for the Hough transform [Sher and Tevanian 1984,
Rhodes et al. 1988] encouraged its use as a part of our method.
Hanahara et al. [1988] have also reported a real-time processor for
the Hough transform which takes 0.79 Second for 1024 feature
points. The implementation described here, in which the feature
points will not be more than 144 in an image window, can be
easily achieved below a millisecond. Previously, the Hough
transform has been mostly used as a global method for contour
detection. We have utilised it for detecting line segments locally.
The bias in the Hough transform is prevalent for small image
windows and precise detection of line segments cannot be
guaranteed at different orientations. The image window can be
rotated (e.g. 9°, 189, 279, and 36°) to detect more accurate lines but
in our particular application, line extraction accuracy is adequate
and we are able to identify all the relevant contours at a
reasonable accuracy as shown in the results of next chapter. The
Hough transform for a small window avoids long computation time
and large memory requirements and thus it is possible to
implement the whole perceptual grouping process on a single
VLSI chip. These individual processing elements can serve as a
part of the pyramid architecture for the contour extraction process
which is described in the next chapter.
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CHAPTER 4

CONTOUR DETECTION FROM LINE SEGMENTS

4.1 Introduction

The contours in a single, monocular image provide useful
information about the content of a scene. Although image contours
are two-dimensional, they still yield information about three-
dimensional shape. In the case of endoscopic images the inner
colon muscles generate occluding contours in colon images, which
provide unambiguous depth information essential to navigate the
endoscope. The problem, we are trying to solve is the extraction of
these contours in noisy images. In the previous chapter, a new
method was presented to construct a multi-resolution
intermediate representation for contours by perceptually filtering
noisy edges. The intermediate representation is based on the
approximation of curves by short line segments. The edge points
are grouped into line segments by following the different laws of
perceptual organisation. There is still however a possibility that
line segments may exist where no meaningful image contour does,
and conversely lines may be absent where a boundary exists. The
solution is to apply different perceptual grouping principles for
linking only the relevant line structures and for resolving
ambiguities. Lower level image data (line segments at lower
resolution and edge points) can be employed to fill the gaps for
fragmented parts of contours.

The pyramid based representation can easily represent the line
segments at two resolutions in an organised way which supports
efficient and fast searching of the image data (O[log(n)] for an nxn
image). It also supports the parallel-pipeline implementation of
the contour extraction algorithm. If we assume that the PEs
(processing elements) at different levels in a pyramidal computer
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can perform different operations on the image data then, for
implementing contour extraction, the PEs at the lowest level of
pyramid may perform edge detection and feed edge data to the
PEs at level two and three where perceptual grouping can be

performed using the Hough transform. The level two PEs detect
line segments for a 4x4 window while PEs at level three extract

line segments for 8x8 window. Alternatively, the line segments
can be fed into the pyramid structure as inputs. The second
alternative was adopted and the contour extraction method was
implemented wusing quadtrees to simulate the pyramidal
architecture. The line segments are grouped into contours by using
the collinearity, curvilinearity, and theta-aggregation grouping
principles in an hierarchical manner. The main grouping is
performed on line segments based on an 8x8 window and lower
line segment data is only utilised when a gap is encountered, or
for resolving ambiguities between equally significant competitor
groups. The edge point data can also be employed to fill in short
gaps between contour ends and corners.

As we have mentioned previously, the contour extraction method
consists of bottom-up and data-driven processes and it is
motivated by psychophysical and neurophysiological studies. The
pyramid structure is employed for grouping line segment data
hierarchically. The transition gap between signal to symbols (from
edge points to contours) is traditionally considered a source of
discontinuity for the flow of information in machine vision. Our
approach which utilises a multi-resolution representation offers
the potential for eliminating this discontinuity. The contours are
detected irrespective of their type and source. The only
requirement is that the contour should result from a reasonable
intensity change in the image.

4.2 Shape and Contours
There is no doubt about the power and vividness with which

contours can depict shape. The main question is how do contours
create three-dimensional realism? Psychophysics is unable to
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provide any answer to this question. It is not clear whether there
is only one distinct module in human vision which performs the
job of shape from contour or there are several modules which are
jointly responsible for the vividness of contour perception. The
contour extraction method described in this thesis can only extract
those contours which correspond to a grey level change in the
image. However we are concerned with the extraction of many
types of contours in the image, and it is useful to classify different
types and how they can provide three-dimensional shape
information specifically the third dimension (depth).

4.2.1 Contour Types

There are a number of different conditions under which a contour
can arise in an image, which are:

-Discontinuity in the depth.

-Discontinuity in the surface orientation.
-Change in surface reflectance.

-Different illumination effects in the scene.

The problem of shape from contour becomes more difficult when
from a single, monocular image one tries to identify different
sources of contours. The type of a contour in terms of its source is
essential for conveying information about the shape. The main
categories of contours for interpretation purposes are occluding
contours, surface contours, and contours due to change in surface
orientation.

Occluding Contours
These contours simply occur at discontinuities in the distance of
the surface from the viewer. They are very useful in providing

plenty of clues about the shape. For every occluding contour in the
image, there is a particular curve on the object surface known as
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the contour generator. The contour generator consists of a set of
points on the surface where the surface normal is orthogonal to
the direction of view. When humans interpret occluding contours
there are some a priori assumptions that allow them to infer
shape from an outline or silhouette. Marr [1977] has described
three of these assumptions.

-Each point on the contour generator projects to a
different point in the contour.

-Nearby points on the contour arise from nearby
points on the contour generator.

-The contour generator lie wholly in a single plane.

When these assumptions are satisfied from a distant viewpoint
(orthographic projection) and for a smooth surface, the surface can
be defined by generalised cones. Conversely for a generalised cone
surface, these three conditions always hold. In other words the
concavities and convexities in occluding contours are important in
determining the surface because they are the actual properties of
the surfaces represented by generalised cones. We are proposing a
three-dimensional model of the colon in terms of generalised
cones, which will be described in chapter six. That model promises
to be useful for the estimation of shape from occluding contours in
endoscopic colon images. The only exception is when the
endoscope tip is facing the colon walls (i.e. normal to the colon
axis), or when the inner colon is viewed from a position where its
axis is foreshortened.

Surface Contours

These contours are no longer restricted to the silhouette
boundaries and they can arise within the silhouette. The contour
generator for the surface contours may be due to internal surface
markings or different types of illumination effects. The surface
contours are difficult to analyse because there is no obvious
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source of their regularity which humans can use to infer shape
from them. '

Surface Orientation Contours

The surface orientation contours are along the loci of change in
surface orientation. Generally they follow the creases on the
surface. Regarding the recovery of surface geometry from these
contours, it is difficult to resolve whether the contours correspond
to concavity or convexity in the surface.

4.2.2 Three-Dimensional Structure from Image Contours

In this section we are concerned with the use of image contours in
determining three-dimensional geometric structure in the image.
Lowe and Binford [1981] describe some general and domain
independent constraints for the interpretation of image contours.
The bases of these constraints are the non-accidental argument
and the coincidence assumption for the view point and light
source positions. These constraints can be used to categorise image
contours into their distinct classes described in the previous
section. There may be a large number of constraints and sub-
constraints and some of them are also helpful in the detection of
contours. Here we are discussing only those constraints which
interpret image contours in terms of their distance from the
observer and specifically the contours in colon images. The
individual situations are also explained in Figure 4.1.

Curvilinear Alignment

When two contours are aligned in an image (even if they are
separated by a gap), they are also aligned in space as shown in
Figure 4.1a. The only exception is when contours are parallel and
the viewer happens to be in the plane of the contours. This
constraint is very handy in bridging the gaps in curves due to
errors in the contour extraction method.
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Figure 4.1: Shape from contour: Constraints
(a) Curvilinear alignment. (b) Termination at a
continuous contour. (c) Crossing contours.

(d) Contours ending at a common point.

(e) Vanishing point.
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Termination at a Continuous Contour

When an image contour terminates at a continuous curve
(T Junction), the continuous curve is normally closer to the viewer
than the terminating contour (Figure 4.1b). This is very useful clue
for identifying the closest contour in colon images. Because during
the navigation of the endoscope, the nearest contour should be
avoided and the tip can be aimed towards the hypothesised centre
of that contour.

Contour Crossing

When two continuous contours cross one another (X Junction as
shown in Figure 4.1c), it indicates either an illumination
discontinuity, a transparency, or a rare combination of surface
contours. Both of the crossing contours cannot belong to occluding
geometric boundaries. If one of them is an occluding contour then
the other must be either a wire or the edge of a partially
transparent object and it must be closer to the camera. If one
contour belongs to a shadow boundary then the other must be a
surface marking on the same surface.

Termination at a Common Point

When two or more contours terminate at a common point in the
image (L, Y, K, or Higher order Junctions as shown in Figure 4.1d),
then they also terminate at a common point in space. The
exception is an accidental coincidence when the viewer is aligned
in such a way that separate vertices in space project at a common
point in the image.

Vanishing Point (Parallel Lines)

Due to perspective projection in image formation, the parallel
straight lines in object space converge to a common vanishing
point in the image. Once a vanishing point is found for some lines,
the other lines which are aligned can be assumed to be parallel.
The vanishing point is very important for solving different
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navigational problems and it has been used in road following [Liou
and Jain 1987]. In colon images the inner muscle rings yield their
own vanishing point in terms of reduction in the size of those
rings as their distance from the observer increases (Figure 4.le).
When these muscle rings are partially visible, the length of their
image contours also provide a distance estimate. Generally a short
length contour surrounded by longer contours is further away
from the viewer than the longer contours. Additionally if the colon
is viewed along its axis the darkest region in the image
corresponds to the vanishing point and in this way the endoscope
tip can be guided towards that region.

4.3 Different Approaches to Contour Extraction

The main purpose of contour or boundary extraction is to make
some identifications in the image. This phase of machine vision is
an intermediate step that passes its findings on for post processing
by a higher level stage. There are a number of approaches to
contour extraction which use edge points in one way or another to
form boundaries. All the methods incorporate some sort of
knowledge into the grouping operations which map edge points
into contours. For example, the knowledge of where to expect a
boundary, allows a considerable reduction in the search space. If a
little is known about the contours, the methods rely on the general
knowledge and heuristics which are true for most domains. The
approaches to contour extraction we are examining in this section
include the use of:

-Linking edge points directly.
-Grouping line segments.
-Multi-Resolution or pyramidal methods.
4.3.1 Grouping Edge Points into Contours
The methods which group edge points into contours directly

include graph searching, the minimum spanning tree, the Hough
transform, and relaxation techniques. Graph searching techniques,
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the methods employing minimum spanning tree, and Hough
techniques have been introduced in the previous two chapters.
Relaxation is a widely used method at different levels of computer
vision for refining noisy and impure information. The purpose of
edge grouping is to find sets of edge points which are consistent to
each other. This process can be modelled by the probabilistic
relaxation method proposed by Zucker et al. [1977]. To formulate
the relaxation process, each pixel is assumed to have n labels
which correspond to n-1 directions of the edge and an nth label to
no edge. For every pixel the probability of each label is first
initialised by applying an edge operator to the pixel. The general
idea is to compute some probability updating contribution for the
central edge as a function of the probability of neighbouring
edges. By overlapping the neighbourhood and iterating the
decision process, local changes propagate and affect the
surrounding neighbourhoods. In every iteration the totality of
changes in the local neighbourhood is used to update the existence
of each edge. Several iterations may be required for the relaxation
process to link edges by suppressing noisy edges and enhancing
long smooth edge lines.

The number of iterations and convergence speed is affected
considerably by the amount of noise in the image, which is a
factor to be considered before using relaxation methods in real-
time applications. The idea of refinement by relaxation is closely
related to dynamic systems which has interesting implications for
neurophysiology. If more edge properties are added to the
probability functions for updating, a higher dimensional state
space results and can cause considerable computational
difficulties. Another improvement in relaxation can be sought by
finding global quantities which are optimised in the solution.

4.3.2 Aggregation of Straight Line Segments
There are only a few techniques of image analysis where bottom-

up organisation of the image data has been adopted successfully.
Marr [1976] has given a new life to the idea of bottom-up
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organisation in his theory of early and intermediate levels of
vision. Mainly two types of grouping process have been put
forward for linking line segments into contours. The grouping
principles along with the principle of least commitment play a
central role in organising the raw primal and 21/,-D sketch.

Theta-aggregation is one of the grouping principles in which a set
of similarly oriented line segments are glued in a direction which
differs from the intrinsic orientation of line segments. The
principle is based on very local grouping measures to form a curve
or line which has orientation associated with it rather than the
individual line segments. This principle is also used for combining
virtual lines and in fact it is not necessary to know individual line
orientation explicitly. The second grouping principle which Marr
has argued for linking line segments is known as curvilinear
aggregation. In this grouping principle the line segments are
grouped in such a way that the assembled contours preserve the
orientation of segments. The results of applying both of these
principles are given for different images but it is not clear how
these methods were implemented. It has been mentioned that the
theta-aggregation principle is more basic and an early process,
and therefore it should be applied first on the image data. The
curvilinear aggregation is more successful if applied on the
resulting line segment data from theta-aggregation.

In another implementation for line extraction Weiss and Boldt
[1986] have used geometric grouping to form longer straight lines
by gluing together the shorter line segments. Their grouping
method is based on the proximity and collinearity. A straight line
is defined as a sequence of line segments in such a way that
consecutive pairs of line segments are roughly collinear and have
similar contrast. The main grouping process has two steps. In the
first step, those pairs of straight lines are tentatively linked which
obey proximity and collinearity. The linking based on proximity
and collinearity is implemented by defining different conditions
for grouping which are based on the distance between end points,
overlap, contrast, and orientation of line segments. The main
purpose of this step is to avoid a combinatorial explosion in the
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search space. In the second step, the paired line segments are
further merged into longer straight lines and the usage of
geometric context depends on the search radius which provides an
upper bound on the length of a sequence of segments tested for
their straightness. The sequence of lines which passed this test is
replaced by a single longer line. The authors also describe the
hierarchy in grouping by defining different planes where each
plane is divided into a grid whose size depends on the density of
lines. The main problem with the method is that it cannot cope
with texture and noisy images and it may over-merge the lines.
From the contour extraction point of view, this method is
restricted to detecting straight lines and therefore it is difficult to
adapt it for extracting curved contours.

4.3.3 Multi-Resolution Based Contour Extraction

Pyramidal or multi-resolution methods have their roots in
neurophysiology. The main advantage of using these techniques is
their computational efficiency. In addition to that, the edges at
multiple scales can be used to analyse the underlying physical
causes of the brightness changes. Although similar pyramidal
techniques have been used for the analysis of multi-scale
curvilinear image data, representing boundaries, we are
restricting ourselves to hierarchical linking of edge data into
contours. Their are two alternative approaches to the problem of
extracting contours using multiple resolutions:

-A grey level pyramid is constructed from the
given image and boundary points are extracted at
each scale. Then the grouping rules based on the
proximity, continuation, and similarity in
orientation and contrast are used to link the
boundary points locally within each level and
between adjacent levels of the pyramid.

-In the second approach the input to the pyramids

can be line segments or curves at each level of the
pyramid. Normally line or curve segments are fed
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to the retina (bottom level) of the pyramid. Then at
each level they are grouped into longer lines or
curves and the result is passed on to the next
higher level. In this way the contours are formed
by reaching the root or apex of the pyramid.

Kelly [1971] originated the concept of multi-resolution processing
for contour detection by employing two scale, coarse to fine
planning. A coarser image was computed by averaging the pixels
in every 8x8 window of the original image. The boundary was
detected from the coarse image which was then used to find the
contours in the original image. This is a sequential approach which
saves needless work in uninteresting areas of the highest
resolution image and also serves to verify and localise the results
obtained. A similar coarse to fine method based on two-resolution
has been used for detecting lung tumours in chest radiographs
[Sklansky and Petkovic 1984].

The edge pyramids are also used to extract boundaries of objects
[Hong et al. 1982]. A pyramid is constructed by reducing the
resolution of the image at successive levels and then edge
detectors are applied at each level of the pyramid. The edges
between adjacent levels and at the same level are linked based on
their distance and orientation. The extraction of straight lines and
smooth curves has also been carried out by using overlapped
pyramid structure [Hong et al. 1983]. In this method the boundary
curves can be fed into the appropriate levels of the pyramid. The
contours are approximated by line segments and at each level
segments from the level below are combined using local position,
curvature, and direction to form longer contours. These contours
are then passed on to the higher levels for further grouping. A
similar approach has also been employed to link lines
hierarchically for corner detection [Hartley and Rosenfeld 1985].
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4.4 An Hierarchical Method to Detect Contours

Humans can perceive straight and curved contours easily even if
they are broken and relatively sparse, or they are obscured by
other curves. The pyramid-based techniques make the global
properties of contours local and therefore global operations are
easy to implement in parallel. The main difficulty in pyramidal
methods is that by reducing the resolution, there is a chance of
losing relevant contour information. This problem can be
overcome if the information at lower levels is readily available
and used in an informed way. In our contour extraction algorithm,
the line segments are fed to the lower two levels of pyramid. Then
higher level processing elements group the line data supplied by
their children and pass on the grouped segments to higher levels
for further grouping. In this way contours are constructed in a
single pass when the pyramid root is reached.

4.4.1 From Line Segments to Contours

The approximation of image contours by line segments simplifies
their representation at different resolutions by different length
line segments without losing useful information. The variable
length line segments are easy to detect by using line detectors at
different size image windows. A sequential version of the contour
extraction method which groups line segments only at one
resolution has also been developed [Khan and Gillies 1988b]. The
sequential contour tracing uses a number of heuristics to fill the
gaps in broken parts. The method described here is extended to
parallel implementation and uses line segments extracted at two
resolutions.

A line pyramid is constructed in such a way that its two lower
levels hold line segments extracted for 4x4 and 8x8 image

windows. The pyramid is based on 4x4 overlapping
neighbourhoods and each node has four parents and sixteen
children as shown in Figure 4.2. Each parent performs grouping on
its sixteen children, but it only keeps the grouped line segments in
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scheme, where each node has sixteen children and
all the sixteen children.

Figure 4.2: A 4x4 (50%)
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its central 2x2 block for passing on to the parents. The bottom
level line segments are only considered when gaps are
encountered. Rather than using ad hoc heuristics for filling broken
contours it is better to use lower level data in support of any
decision.

The grouping is mainly carried out on the line segments found in
the 8x8 image window. A number of grouping criteria are used to
achieve the aggregation of line segments into contours. Proximity,
theta-aggregation, curvilinearity, continuity, and similarity in line
contrast are the main grouping principles used in the linking
process.

Theta-Aggregation

For theta-aggregation line segments of similar orientations are
grouped together, whether their individual orientations are
preserved in the resulting contour or not. The grouping based on
theta-aggregation has been explained previously. Here we have
restricted this criterion by grouping only if the resulting contour
direction is not normal to the individual line segments.

Curvilinearity

In curvilinear aggregation only those line segments are grouped,
whose orientation is roughly collinear with the contour direction.
In this way this grouping process preserves the orientation of line
segments.

Proximity

The proximity of line segments is explicitly defined by the
distance between their end points for curvilinear grouping and
perpendicular distance between parallel lines for theta-
aggregation. If lines are well apart they are not linked
immediately and support for their grouping is sought from the
line segments at the bottom level.
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Continuity

The continuity during linking of contour segments is preserved by
grouping those contour segments whose respective end directions
(tangent at contour ends to be joined) are compatible.

Similarity in Line Contrast

In deciding between competitor groups of line segments, their
contrast is also used and similar contrast lines are preferred.

For nodes at an immediate level above the line segment nodes
three neighbours are considered for linking line segments to form
a contour segment. One neighbour is in the prior -grouping
direction and the other two are its left and right side neighbours.
Initially the grouping direction is approximated from line segment
orientation. For example as shown in Figure 4.3, if the grouping
direction is NE, then the three neighbours considered are in NE, N
and E directions. Similarly for N direction the three neighbours are
NE, N, and NW. This means that contours can turn up to a
maximum of 45° over an 8x8 image. For nodes at higher levels
contour segments with compatible end directions are only
considered and they are grouped if the neighbouring line
segments from both groups follow one of the grouping principles,
which are based on theta-aggregation and curvilinearity. During
the linking process which is performed locally by each parent to
link its children, thinning can also be performed to eliminate those
line segments which are parallel to the contour segments and
located within a pre-defined distance. The detail of the overall
grouping process along with its parallel implementation is
discussed in the next section.

4.4.2 The Algorithm

The method of extracting contours in parallel using a pyramid
structure is divided into following steps:
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Step 1: Construction of a 4x4 (50%) Overlapped Pyramid

A 4x4 overlapped pyramid is constructed in such a way that its

nodes at the bottom level (level zero) represent line segments
extracted on the basis of 4x4 image window, while nodes at one

level above (level one) carry line segments for 8x8 image window.

Figure 4.3: Typical three-neighbours used to group
line segments.

-117-



Step 2: Grouping Line Segments

The nodes at an immediate level above the line segments and the

higher levels nodes perform similar grouping operations,

but

different approaches are followed due to different types of input

data.

(i) For each node at one level above the line segments (in
this particular implementation level two) contour segments

are formed by grouping line segments. The three-neighbour
strategy described earlier is also performed at each end of

the segments. The grouping is carried out using proximity,
theta-aggregation, and curvilinearity from the sixteen

children as explained below.

-If the grouped line segments do not pass through
the central 2x2 block, then either no contour exists
in the image area corresponding to that node or
some portion of the contour which passes through
the node is missing. Support for the missing portion
of the contour segment is sought from the bottom
level line data. If no contour segment is found then
a no-contour flag is passed to its parents.

-If one or more contours pass through the central
block then for every line segment, check for the
possibility of grouping it with neighbouring line
segments. Group two line segments: if they are
parallel and located within a pre-defined distance
D max, or if their directions are at the most 45° apart
and end points are within the pre-defined distance
threshold, Dp,x. The central block line segments are
kept as a contour segment along with its tangent
directions at both ends. The tangent direction at the
ends of contours formed by theta-aggregation, may
be different from the individual line orientations.
All contour information is passed on
to the parents for further grouping. This
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information also includes the identification tag for
those neighbours which are in the outer block and
have been identified as part of that particular
contour segment.

(ii) For all the nodes at higher levels, the contour segments
from the central four children are tested for grouping among
themselves or with the outer twelve children. This process
proceeds as follows.

-For every central contour segment, check for the
possibility of grouping it with other neighbouring
contour segments. Group two contour segments if
their respective ends are within a pre-defined
distance Dp,x, end directions (tangents) are
compatible, and the neighbouring line segments of
both contours follow at least one of the grouping
criteria (theta-aggregation or curvilinearity). This
process is repeated on the resulting contours until
there are no more grouping possibilities. From the
resulting groups the central children contour
segments are merged into longer contours by
making a single group of line segments and by
modifying end tangent directions. The information
about the outer children which are part of the
larger group is also passed on to the parent along
with the merged contour.

-The central contours, which are not merged with
any other contour segment, are flagged as
completed and they are passed on to their parents.
The higher level nodes just pass on these completed
contours to their parents until the root is reached.

Step 3: Filtering Short Contours

At the root level, the length of all the contours is checked and only
those with length longer than a threshold CL;,, are retained.
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An additional step for filling the gaps can be added before step 3,
where the edge point data can be used for merging close contours.
At this stage of the contour extraction algorithm, the knowledge
about the shape and size of contours can also be exploited to
achieve better results.

4.4.3 Implementation Details of the Algorithm

The contour tracing problem is basically a sequential process but
we have developed this technique using a pyramid structure in
such a way that it can be easily implementable on a pyramidal
computer. There are two approaches which can be followed.

In the first approach the retina or bottom level processing
elements can extract edge points from the image, while the
processors at the next level above can be used as links to pass on
edge point data to be processed at next two levels simultaneously.

At these two levels, the processing elements can perform
perceptual grouping to extract line segments for 4x4 and 8x8

image windows. In a 4x4  overlapped pyramid structure, the
perceptual grouping process can be extended to 6x6 and 12x12

windows (if the implementation of the previous chapter is
followed strictly) or even more. The processing elements at higher
levels can implement the linking algorithm by forming groups of
line segments which belong to their sixteen children and pass on
the resulting aggregate of segments to next higher level of
processes. In this way, by the time the root of the pyramid will be
reached, all the groups of line segments can be formed and
replaced by different contours easily.

The second approach, which has been adopted 1in our
implementation, is realised by computing edge points and then
grouping them perceptually in a classical parallel way. The line
data is then fed to an overlapped pyramid computer which links
these line segments hierarchically similar to the first approach.

The pyramid computer architecture is simulated by constructing a
quadtree based on 4x4 overlapping neighbourhood. For a 256x256
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image size, where line segments are extracted based on 4x4 and
8x8 image windows, the line pyramid has a total of seven levels
~ labelled from zero to six (see Figure 2.5). The level zero which is
also the bottom level of the pyramid holds 64x64 array of line
segments and level one carries 32x32 array of longer line
segments.

The higher level nodes require a data structure to keep multiple
contour segments. A pointer field which points to the contour
linked-list structure is provided in the node. For each contour
segment a linked-list of line segments, ordered from one end of
the contour to the other, is kept. While for multiple contours, a
linked-list of contours is used and in addition to having the
contour pointer, it also has fields to keep a record of the end
directions of that particular contour, the number of line segment
in the contour, and neighbour information about those outer block
contour segments which can be grouped to form a longer contour
at higher levels.

4.5 Experimental Results and Discussion

The line segments extracted by using the perceptual grouping
method of previous chapter are used as input to the contour
extraction algorithm. The algorithm has been tested on a large
number of typical endoscopic colon images and the results from
three of them with different type of contours and noise conditions
are presented here. In addition to that the results of grouping line
segments, extracted by employing connectivity grouping on one of
the artificial images of previous chapter, is also presented. Four
test images, with line segments overlaid, are shown in Figure 4.4
to 4.7. Red lines correspond to the line segments extracted on the
basis of 8x8 image window while the blue lines correspond to 4x4
image windows. The grouped line segments for contours are
shown in Figure 4.8. These groups have been formed in a single

pass by traveling from the 2nd level of the pyramid to the top.
The longer lines, which are based on 8x8 image window, are

dominant in these groups because the 4x4 window based lines

-121-



(b)

Figure 4.4: Line segments extracted for the first colon test
image.

(a) Based on 8x8 image window.

(b) Based on 4x4 image window.

Figure 4.5: Line segments extracted for the second colon

test image.
(a) Based on 8x8 image window.

(b) Based on 4x4 image window.
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Figure 4.6: Line segments extracted for the third colon
test image.

(a) Based on 8x8 image window.

(b) Based on 4x4 image window.

(a) (b)

Figure 4.7: Line segments extracted using connectivity

grouping for the artificial test image.
(a) Based on 8x8 image window.

(b) Based on 4x4 image window.
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Figure 4.8: Groups of line segments formed.

(a) For the first colon image line data of Figure 4.4.
(b) For the second colon image line data of Figure 4.5.
(c) For the third colon image line data of Figure 4.6.
(d) For the artificial image line data of Figure 4.7.
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(shown as thicker lines in Figure 4.8.) are only used for filling the
gaps. The proximity grouping threshold (Dpax), is used as eight
pixels for line segments which are based on 8x8 image window
-and four pixels for 4x4 lines. If the line end points (for curvilinear
aggregation) or lines themselves (for theta-aggregation) are
separated more than this threshold, they are not grouped.

During the grouping of test line data of Figure 4.6, thinning was
also performed. The group formation process, when combined
with thinning, produces cleaner groups of lines as shown in Figure
4.8c. The results without applying thinning are not affected
considerably because additional contours, which are of shorter
length, can also be filtered out during the Step 3 of the algorithm.
The groups of line segments are then replaced by contours which
are shown in Figure 4.9 overlaid on the images. Only those
contours are retained whose length is greater than a threshold
CL nin, which is chosen to be at least four line segments in the
results shown.

We now consider the statistics about the amount of visual data,
processed at different levels of hierarchical representations,
starting from the edges until contours are formed. The two visual
data representations between the raw image and contours are
edges and line segments. Table 4.1 provides an insight to the
visual data reduction at each level of representations for the colon
and artificial test images. It also illustrates the amount of filtering
performed by perceptual grouping of edge points and line
segments. The considerable reduction in image data from pixel to
the higher level representations justifies our argument for an
intermediate line segment representation in-between edge points
and contours.

The main problem with the resulting contours are their lack of
smoothness and precise location. This has happened mainly due to
the use of the theta-aggregation principle. It is difficult to locate
the position of contours accurately when parallel line segments
are replaced by a contour which does not preserve the orientation
of the individual line segments. In the results of Figure 4.9, we
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(c) (d)
Figure 4.9: The output contours overlaid on the images.

(a) First colon test image. (b) Second colon test image.
(c) Third colon test image. (d) Artificial test image.
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have simply placed the contours in such a way that they pass
through the mid-points of each line segment. Theta-aggregation is
an important principle which detects significant contours but at

the cost of imprecision in locating the contours.

Visual Artificial 1st Colon 2nd Colon  3rd Colon
Data Image Image Image Image
Representations Figure 3.6 Figure 3.15 Figure 3.16 Figure 3.17
Image Size. 256x%256 225x%310 225%310 225x310
Number of

pixels. , 65536 69750 69750 69750
Number of

edges 28688 20925 13398 16406
retained.

Number of

line segments

found based on:

8x 8 window. 238 177 118 146
4x4 window. 697 564 255 400
Number of

line segments

emerged as part

of contours. 301 137 78 103
Number of

contours

formed. 4 10 5 8

Table 4.1: Image data reduction at the different

levels of visual representation.
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In addition to that the method is also prone to accidentally
forming curves due to texture. This problem can be overcome by
using a higher threshold for the minimum length of contours. A
similar problem was reported by Weiss and Boldt [1986] in their
method of extracting straight lines. Nevertheless, this is the first
successful attempt to use perceptual grouping in detecting
arbitrary shaped contours from noisy images and the contour
extraction method can be improved further for other applications.

The closest work to our method has been reported by Hong et al.
[1983]. They have employed good continuity for merging contour
segments based on proximity of end points and compatible end
directions. Our algorithm departs from their method in a number
of ways. First of all in addition to continuity, we have used two
very important grouping principles based on curvilinearity and
theta-aggregation. Secondly to reduce computation, children pass
on the information to their parents about the prospective contour
segments which can be grouped to a particular contour. In
addition to that line segments are not replaced by contours until
the top level is reached. This in turn helps in applying grouping
criteria on neighbouring line segments, which belong to two
different contour segments. The main criterion used by Hong et al.
for detecting compatibility between contour ends is also not
general and it depends on the radius of the circle, which they try
to fit between end points. To achieve good results for straight lines
the radius of the circle is set to a very high value (typically 1000)
while for circular curves the radius must be a small value
(typically 10).

The examples they have chosen to demonstrate their method, are
very simple synthesised curves and lines. The technique has not
been tried on real world images. In contrast we have shown how
our algorithm performs on endoscopic and artificial images which
contain a large variety of noise. The input to contour extraction
algorithm contains a number of false line segments and the results
demonstrate that our algorithm is robust and applicable to a more
general class of real images.
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CHAPTER 5

ESTIMATING RELATIVE DEPTH BY REGION EXTRACTION

5.1 Introduction

In addition to occluding contours, the darker regions in the
endoscopic colon images provide important depth cues for
navigating the endoscope in colon. The task of locating these
regions in colon images is closely related to region based image
segmentation. The region based methods aim to extract regions of
similar properties. They partition images by grouping pixels and
regions on the basis of proximity and similarity in intensity,
colour, range, or texture. Using these methods, the image is
divided into uniform and homogeneous sub-regions in terms of
some property.

The region extraction algorithms presented in this chapter, detect
a uniform and coherent region of given properties. In the specific
application of depth estimation in endoscopic images, the darker
region is the deepest and free of obstacles. The task is to extract
the lowest intensity region in noisy colon images. The endoscope
application also requires that the region should be detected in
real-time. The classical implementations of region extraction
methods are sequential which makes them less applicable to real-
time image analysis. Consequently, a pyramid structure has been
used in our technique for region extraction. The use of pyramid
structure has allowed us to devise a highly parallel
implementation of the algorithm. The image histogram is used to
estimate the average intensity of the darker region. A variance-
average pyramid is constructed in which each node consists of the
comprehensive properties of its corresponding region in the form
of intensity mean and variance. These properties are calculated
recursively by using the mean and variance of child nodes. During
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this process a record is also kept for the largest dark and uniform
region in each sub-tree of the pyramid under construction. In this
way, starting from the pixel level, when the pyramid is completely
built, the largest dark and uniform square region is identified in a
single pass. This region may itself be large enough to provide
insertion direction for the endoscope or, for a more general case, it
can be used as a seed for the region growing process. The merging
of regions can then take place to extract the complete region.

An extension of the algorithm is also implemented for image
partitioning. The same technique is used to extract uniform seed
regions, which can play an effective role in partitioning any given
image. The improper selection of seeds can lead to inaccurate
partitioning of an image. Ideally a seed region should be large and
uniform. For image partitioning, a similar pyramid is constructed
but only the record is kept for the uniform square regions which
satisfy the uniformity criterion in terms of the region intensity
variance and mean. When the pyramid is completed, the root node
of each sub-tree in the pyramid contains the address of the node
which corresponds to the seed region in that sub-tree. The nodes
of each plane of the pyramid are treated as sub-trees and a link to
the seed region for each sub-tree is established. An additional top-
down pass in the pyramid is then initiated in which these seed
regions are grown in parallel to identify complete uniform regions.
A specific case of the algorithm is also investigated for detecting
bright or dark regions without using the histogram information.
The same pyramid construction steps which extract seed regions
are employed with an additional restriction. For detecting bright
regions, during the construction of pyramid when the seed region
for a parent is selected from the seeds of its children, the brighter
and larger size seeds are preferred. Similarly the darker region
can be extracted by preferring darker seeds during the selection
process.

In the experimental results, the endoscopic images of the human

colon are presented to demonstrate the dark region extraction
method. The image partitioning algorithm is applied to other
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medical images and the results are also demonstrated on a variety
of images including the computer generated images.

5.2 Depth from Intensity in Colon Images

Depth is the most important information which any navigation
system needs to know for path planning and obstacle avoidance.
Humans estimate depth by means of various cues including
shading, texture and stereo visual processing, while some animals
such as bats utilise a time of flight method for distance
measurement.

Although there is a possibility of redesigning the tip layout of the
endoscope to allow either the use of stereo vision or addition of a
dedicated range sensor, we are currently assuming that the colon
scene information is only available from a single camera. In this
case the properties of the illumination and physical layout of the
endoscope can be used. The inner body surfaces of the colon are
illuminated by a single point-like light source. Although there is a
lot of reflected light due to specularity, we still assume a point
light source for the purposes of estimating the deepest region.
Moreover the light source and the viewer are located almost at the
same position and the light source is near to the colon surfaces.
This simple illumination model resulting from the physical layout
of the endoscope tip has led to the development of the method for
estimating depth inside the colon, described here.

Under this arrangement, the colon surfaces which are nearer to
the point light source are more brightly illuminated than the
farther surfaces. When the light source is close to the object, which
is the case in colon images, the light rays cannot be assumed
parallel and the reflected light intensity becomes a function of the
distance between the light source and the surface. The above
condition is illustrated in Figure 5.1. The normal assumption is
that the incident light intensity I;,., varies inversely with the
square of the distance r, between the light source and the point of
reflection on the surface.
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Figure 5.1: The farthest part of the colon receives
the smaller amount of incident light.
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In other words
Lipe = Ip/12 (5.1)
where I, is the light intensity at the light source.

Since the light source and camera are almost at the same location,
the deepest area in the colon with respect to the viewer
corresponds to the darkest region in the image. This is illustrated
in Figure 5.1 and 5.2. In the case of Figure 5.1, the darkest part is
in the centre. Therefore the endoscope is moved straight forward
while keeping its tip controlled in the previous direction. For
Figure 5.2, the darkest part of the endoscopic image is in the
upper part, therefore the endoscope must be advanced in the
upward direction and the tip direction is controlled accordingly.

5.3 Region Extraction Techniques

In region extraction the image is divided into sub-regions on the
basis of their properties including intensity, colour, texture, or
range. Zucker [1976] has written an excellent survey on different
region extraction techniques. These techniques can be categorised
as merging, splitting, and split and merge.

5.3.1 Region Merging

Merging starts with a uniform region of one or more properties.
In the simplest case this region can be a single pixel. An attempt is
made to enlarge the region by searching for the similar properties
in neighbouring regions, one at a time. The whole process is
sequential and the resulting region's shape may depend on the
starting region or pixel, known as seed, and the direction of
search.
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Different forms of the basic method have been successfully
applied. For example, Muerle and Allen [1968] have used a three
stage approach for region merging: firstly, the entire picture is
segmented into square blocks (of size 2x2, 4x4 etc.); secondly, a
statistical measure is determined for each of these regions, and
finally the regional neighbour search method is used to merge the
blocks of similar statistics. The estimate of the statistical measure
for a region is updated after every merge operation, which makes
it an accurate description of regions. Brice and Fennema [1970]
use the so called atomic regions of constant grey level to start
with, then these atomic regions are merged by applying
successively phagocyte and weakness heuristics. These heuristics
use the properties of the edge boundaries between regions. The
adjacent regions are merged if the boundary between them is
weak and the resulting region has a shorter boundary than the
original regions. Pavlidis [1972] has presented an algorithm which
divides the image into one-dimensional thin strips. These strips
are then segmented into a small number of partitions using an
approximation method. Merging is then performed utilising the
partitions of every strip. Levine and Shaheen [1981] have grown
regions by merging as many adjacent pixels as possible based on
the colour features. The threshold for merging is adapted
according to the coherence of regions for limiting the growth of
less uniform regions.

5.3.2 Region Splitting

This is the opposite approach to merging for image segmentation.
Splitting starts with the whole image which is considered as one
region. It is then divided successively into smaller regions until
each smaller region satisfies the uniformity criterion. Normally the
histogram of a coherent or uniform region is unimodal. Therefore
when a region has a multimodal histogram, an attempt is made to
partition it in such a manner that the histograms of resulting
regions are unimodal.

Like merging, splitting has been used successfully as the basis of
several algorithms. For example, Robertson et al. [1973] have
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developed an algorithm for partitioning maulti-spectral images
recursively. Their criterion for region uniformity, known as G-
regularity, is based on the mean vector of grey levels. The
algorithm continues to subdivide blocks until a sub-region is
found whose mean grey level does not differ from that of its
parents. The histogram information has also been used to
determine a threshold for separating an object from its
background. The same idea is utilised in a more general sense for
region splitting. Tomita et al. [1973] have calculated histograms on
the basis of texture properties, while Ohlander et al. [1978] have
employed nine colour attributes. These authors have suggested a
recursive region splitting technique. By using histograms of
several different feature values of a given region, a threshold in
one of the features can be used to split the region into sub-
regions. This process is repeated on each split region until all their
histograms are unimodal.

5.3.3 Pyramid Based Techniques

The first major algorithm to employ a pyramid was due to Horwitz
and Pavlidis [1974]. They employed the principle of split and
merge for segmentation. The split and merge process starts from
any given partition of the image. The adjacent regions are merged
if they satisfy the uniformity criterion and a single region is split,
if it is not sufficiently uniform. The process continues until there
are no regions to merge or split. For a given image, the pyramid is
constructed whose nodes correspond to square regions and whose
leaves represent single pixels. Each node has also an associated
value attached to it which is the maximum and minimum
brightness functions of the corresponding block. The algorithm
begins with an arbitrarily chosen cut-set of the nodes (partition of
the image), which is subsequently refined by splitting and
merging. Merging of four nodes is performed by removing them
from the cut-set and replacing them with the single node. The
pyramidal data structure is abandoned by a grouping process
which follows the split and merge. The segmentation is further
improved by combining small regions with their neighbours and
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by merging similar regions of different sizes by using an
adjacency graph structure.

Other researchers have also employed different pyramidal
structures for image segmentation [Burt et al. 1981, Hong and
Rosenfeld 1984]. An overlapped pyramid, defined by 4x4 block
averaging, has been employed successfully for image
segmentation. Each block has four parents and sixteen children. In
this way the blocks overlap by 50% on all four sides. The links
between adjacent levels are weighted and their strength is
adjusted by recalculating their values iteratively. This process is
continued until the link strength shows no further changes. The
links which remain intact provide the sub-trees in the pyramid
and the leaves of each sub-tree represent a homogeneous region
in the image [Hong and Rosenfeld 1984]. In a simpler approach,
each block is linked to that of its parents whose average grey level
value is closest to its own [Burt et al. 1981]. The values associated
with each block are recomputed by averaging only those blocks on
the level below that are linked to it. The links are changed based
on these new values, if necessary. This process is repeated until
there are no further changes. Pietikainen et al. [1982] have
suggested different techniques for splitting and linking the
overlapped pyramid. The pyramid structure has also been used
for determining thresholds for blob detection [Shneier 1983], and
more recently Blanford and Tanimoto [1988] have reported a
variety of bright-spot detection techniques.

5.4 The Pyramid Structure for Region Extraction

Region based segmentation techniques -which employ a two-
dimensional pyramid based representation are the fastest
currently available. They are also the most cost effective since,
with recent developments in VLSI and ULSI technologies, memory
is cheap and it is unnecessary to save space for the representation
selected. The important features of a representation are the
facility for computationally efficient operations and ease of access
to arbitrary regions. The most common operation is the searching
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for suitable seeds from the entire image for region growing. We
have found that these operations are best supported by the
pyramid structure. The root of the pyramid represents the entire
image and any required region can be reached from the root in a
few steps. The pyramid based image representations are based on
the organisation of the interior of a region and can be categorised
as a collection of maximal blocks which partition a given region of
the image. They do not follow strictly the maximal block
representation and their blocks are disjoint and have a standard
size and location depending on the level of the tree. This provides
a systematic hierarchical way of representing squared regions in
the image.

A pyramid architecture computer in its most basic form consists of
successively smaller planes of processing elements stacked over
one another in such a way that the largest plane is at the bottom
and the smallest which consists of a single processing element at
the top. These planes are linked via a tree (e.g. quadtree). The
internal links of each plane provide efficient implementations of
parallel and local operations, while the logarithmic based
connections between planes of consecutive levels reduce the
distance of order n to logy(n). The pyramid based techniques can
be simulated using quadtrees on ordinary sequential computers.
Therefore the specially tailored image partitioning methods, which
utilise quadtrees, can be implemented on pyramidal computers in
parallel. The methods described in this chapter are best suited for
parallel implementation, specifically the step concerning the
extraction of seed regions.

In quadtrees the image representation is based on the successive
subdivision of image into quadrants. A quadtree is represented in
the memory by a tree of outdegree four, where the root
represents the whole image of 2Nx2N pixels. The pyramid based
on a quadtree is made of N+1 planes stacked one over the other,
with the original image at the base and the root of the tree at the
top. For a plane of size 28x21  the level L is given by, L=N-n, and
each pyramid plane is denoted by g; as shown in Figure 5.3.

-138-



20 x 20

gL(x,y) L = N-n
N-1 N-1
gl (x,y) / 2 x 2 \ L
N N
2 x 2
g, (x,y) L=0
A Parent block
’ 3
NwW NE
4 .
SW SE Child blocks

Figure 5.3: The quadtree based pyramid structure
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For a given level k, the plane at level k+1 is constructed by
employing one of a possible set of transformations. If gy, g5, &3>

and g, 4 represent an intensity or other property of four quadrants
on which the parent node g, ; is based, Then

Ek+1 ™ T{gkl, gkz, 8k3» 8ka) (5.2)

Where T, is a particular transformation. One simple example of a
transformation is the average transformation T,,., which is:

Tave = [g1+ 82 + &3 + Eral/4 (5.3)

It sets gy ,q to the mean of its four son nodes at level k. We have
employed both the average transformation, T,,. and a variance
based transformation. Other possible transformations are, Tpjn
which selects the minimum, or Ty, which selects the maximum
of some property of the four regions. The typical properties can be
one or a set of different histogram features like standard
deviation, variance, skewness, energy, or entropy. The
transformation based on variance, Ty, is formulated and used, as
far as we know, for the first time in our algorithm.

5.5 Detection of Dark Regions
5.5.1 The Algorithm

We now introduce the algorithm which uses a variance-average
pyramid structure for detecting a dark homogeneous region in an
image. The method, which has been developed from an initial
version [Khan and Gillies 1988a], has three distinct steps.

Step 1: Estimation of Intensity for Darker Region
The darker areas of colon images which correspond to the deepest
and obstacle free part in the colon, are often clearly visible. The

first peak in the intensity histogram can be used as an estimate of
the average grey level of the area desired. An intensity histogram
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is constructed for the given colon image and then a range of grey
levels, surrounding the first peak in the histogram, is estimated

(see Figures 5.5 to 5.8). The §irst Peak is faken to be the maximum
below an i"n’fe*ns'\fj level of 20-

Step 2: Detection of Seed Region

An intensity variance-average pyramid is constructed by starting
from the pixel level and averaging the pixels in each square group
of four to produce an image of half the resolution. The T,y.
transformation, described in the previous section, is used. In
addition to the mean grey level, variance is also calculated
recursively for every square region corresponding to a particular
node in the quadtree. Using the terminology of previous section,
for variances Vg1, Vg2, Vg3, and Vg4 of the son nodes at a given

level k, the variance at the parent level, Vi, is calculated using:

Vi+1 = Tvar{Hk1, Hk2, k3> Hk4> Vk1, Vk2, Vi3, Vka) (5.4)

where i1, Hg2, Mk3, and Hy4 are the mean intensity of child nodes
at level k.

and

Tyar = [Vk1 + Vg2 + Vg3 + Vka + Hi1? + Hio? + Uia? + Rya?)/4 = Pyiq?

(5.5)
where My = [Mk1 + Hk2 + His + Hgal/4

For the one level above the bottom level of the pyramid, variance
is calculated directly from the pixel intensities of the given image.

The proof that Equation (5.5) does correctly calculate the variance,
can be done by induction. Starting with the definition of variance
as:

n
v= > (xi-pW)2/n (5.6)
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expandiﬁg the squared term and rearranging we get:

n
v= 3 xi2/n - p2 (5.7)

i=1

In the base case we are dealing with single pixels, and thus by
definition:

Vo1 =Vp2 =Vp3=Vp4 =0
Ho1 =X15 Ho2 =X2; Ho3 =X3; Hoa = X4,

where xi, X2, X3, and x4 are the individual pixel intensities.
Thus, using eqﬁation (5.5) we have that:
V1 = (x12 + x22 + x32 + x42)/4 - (( X1 + X2 + X3 + x4)/4)2
= Z x;2/n - pu2
as required.

Assuming that the result is true for n, we use equation (5.5) to
perform the inductive step giving:

Un+1 = (Unl + Vn2 + Vn3 + Vnd + Un12 + Un22 + Un32 + Una2)/4 - fne1?

(5.8)

Now since for any sub-tree at level n in the pyramid there are
(21)2 pixels, we have that:

Vnl +Mn12 = >0 x2/(2M)2 - un12 + U2
[xi € sub-tree nl]

= > xi2/(n)2 (5.9)

[xi € sub-tree nl]
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And by substituting it in equation (5.8) we have:

V= { > x2/@EM2 + 3 x2 /(D)2 +

[xi € sub-tree nl} [xi € sub-tree n2]

> xi2/@M2 + > x2/@M2) /4 - pgyq?

[xi € sub-tree n3] [xi € sub-tree n4]
giving:

Vne1= D xi2 /@012 g2

[xi € sub-tree n+1]
as required.

The calculation of intensity mean and variance is formulated in
such a manner that each node uses only the intensity mean and
variance of its children. During this process, it is also determined
whether the area corresponding to a particular node is uniform by
comparing its variance to a uniformity threshold, vV,,. The
uniformity is a function of both intensity mean and variance of
the region. A suitable heuristic law for combining both properties
into one is:

Uniformity = [ 1 = /U2 ] (5.10)

This region uniformity has been specifically used in the region
growing step for adapting the user supplied average grey level
tolerance, My, between adjacent regions to avoid over merging. A
similar approach has been employed by Levine and Shaheen
[1981] in their region growing method.

A special link belonging to each node, the u_link is used to
indicate the seed for the darker region in the sub-tree of that
node in the pyramid. If the node mean grey level is within the
grey level range estimated in step 1 and its corresponding region
also satisfies the uniformity criterion, it is labelled as the seed for
the whole of its sub-tree by connecting its u_link to itself.
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Otherwise, following steps are carried out to determine the largest
dark and uniform region in the sub-tree.

-The four children of a given node are examined
and the one which has the largest seed region in its
sub-tree is selected. The seed area for that child is
also identified as the seed area of the parent by
assigning its u_link value to the parent u_link. An
example showing several u_links is shown in Figure
5.4. If the seeds provided by more than one child
are of equal size then that seed is selected which is
more uniform and whose grey level is
comparatively near to the grey level range
estimated in Step 1.

-When none of the children have any seed region in
their sub-trees, their u_links will point to a pre-
defined location (e.g. NULL in C Language) and the
parent u_link is also assigned to NULL.

Therefore in a single pass when the pyramid is completed and the
root of the pyramid is reached, the u_links of each node in the
pyramid points to a uniform and dark square region in its sub-
tree. The u_link for the root of the pyramid provides the address
of the largest uniform and darker square region in the whole
image. This region may itself be large enough to determine the
insertion direction of endoscope in the colon, or for a more general
case it can be used as a seed to extract a complete darker region
by the region growing process of Step 3.

Step 3: Region Growing
After successfully identifying the seed region, adjacent areas of
the seed are considered for merging if they satisfy the following

two conditions.

(i) The intensity mean is within the grey level
range estimated in step 1.
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(ii) The intensity variance does not violate the
uniformity criterion.

k+1 . k+1 Level =

Yy . Ky . ' . Level =

PO OI®
Level

4}3}

/A

hf

Figure 5.4: A part of an intensity variance-average

pyramid, explaining the u_links which are shown in
dotted lines.

The neighbouring areas of the seed are examined and merged if
their average intensity is equal to the intensity of seed (within
some tolerance, M;y,) and their variance is below the variance
threshold, Vy;. The merging threshold in intensity mean for two
adjacent regions, My is adapted from the user supplied
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threshold, M, depending on the uniformity of the merged
region. The threshold value, M;,, decreases with the decrease in
uniformity or increase in the ratio [Uy/|,2]. Therefore the growing

of less uniform regions are restricted and user need to supply only
a constant threshold, Myg;.

Mpr= [1- Vi/Hi? 1 Myg; (5.11)

The merging process continues for all the neighbours of newly
attached regions until there is no neighbour left which satisfies
the uniformity and similar grey level criteria. The merging can be
performed either using only those nodes of the pyramid which are
at the same level, in which case the regions of equal area are
connected, or by using nodes lower in the pyramid for extracting
regions with more accurate boundaries.

5.5.2 Implementation Details and Experimental Results

Work has already been reported for converting different two-
dimensional image representations to quadtrees such as binary
arrays [Samet 1980]. The method to build a quadtree from a
binary image has been modified here, to deal with an image array
of 256 grey levels and to compute mean and variance of intensity
values for each node. Each node of the tree structure corresponds
to a squared region in the image and contains four types of fields.

-The intensity mean of the corresponding region.

-The intensity variance of the region which defines
its uniformity and cohesiveness.

-The relation of the node to the decomposition of its
parent, which may be one of the set NW, NE, SW, or
SE as shown in Figure 5.3.

-Four links (pointers) for its children and one to its

parent, and an additional special link, u_link, which
points to the the largest uniform and dark region
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in the sub-tree of the node. If there is no uniform
area, the u_link points to a NULL.

The algorithm has been implemented on an 80386 based host for
an Imaging Technology series 151 Image Processor using XENIX
operating system. The image processor grabs the image from a
video recorder and constructs the intensity histogram at the video
rate. The first peak in the histogram is determined using the host
computer, where the pyramid structure is also constructed for the
given image. The method has been employed for a number of
typical endoscopic images taken inside a human colon. The chosen
pictures of human colon are representative of 70 to 80% of the
whole class of colon images encountered during colonoscopy.
These pictures are digitised using 256 grey levels and contain a lot
of noise, particularly due to specular reflections.

Four selected pictures, along with their histograms, are given in
Figures 5.5a, 5.6a, 5.7a, and 5.8a. The first significant peak in the
histogram is indicated by a red vertical line. The extracted regions
are shown in Figures 5.5b, 5.6b, 5.7b, and 5.8b in the form of a
group of squared areas. In this implementation the pyramid is
only built from the second level upward but uniformity of the
regions is not sacrificed in this process since the variance is
calculated for every 4x4 region and stored with the leaves of the
tree. The seed regions, shown in sharp white boundaries, are
detected by setting the variance threshold, v, at 100. The
uniformity threshold is also varied form 80 to 250 and it is
observed that for this range the detection of dark regions, for the
same images, is not affected. In the merging step, the user
supplied average grey level tolerance between the seed and
merged regions, My, is set at seven. The merged regions have the
red boundaries while the boundary of the detected region is
shown in a yellowish green colour. The dark region extraction time
was within eight seconds in most of the colon images we have
tested. The overall boundary of the darker region is quite rough
because the merging of regions is performed only down to the
third level. The boundaries of the extracted regions will be
smoother and more accurate when the pyramid is built from pixel
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Figure 5.5: Dark region extraction in the first colon

image.
(a) The image and its histogram.
(b) The seed and neighbouring merged regions.
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Figure 5.6: Dark region extraction in the second colon
image.

(a) The image and its histogram.

(b) The seed and neighbouring merged regions.
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Figure 5.7: Dark region extraction in the third colon
image.

(a) The image and its histogram.

(b) The seed and neighbouring merged regions.
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Figure 5.8: Dark region extraction in the fourth colon
image.

(a) The image and its histogram.

(b) The seed and neighbouring merged regions.
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level and the merging operation is also performed down to the
pixel level at the cost of a large amount of additional processing
time.

5.6 Extension to Image Partitioning

The method to detect darker region in an image can easily be
modified for extracting seed regions on the basis of uniformity
and cohesiveness of image intensity or any other property. These
seed regions can then be grown to uniform sub-regions in an
image. It is worth pointing out that the image partitioning method
described in this section gives excellent results for partitioning
piece-wise homogeneous images.

5.6.1 Image Partitioning into Uniform Regions

For detection of seed regions to partition an image, the condition
whether a seed is dark or not, is not required. Therefore no
histogram is constructed. The method has two distinct steps:
firstly, the intensity variance-average pyramid is constructed
similar to the darker region extraction and secondly, a top-down
pass in the pyramid is performed for the region growing process.

Step:1 Establishing Seeds for Uniform Regions

The intensity variance-average pyramid construction is achieved
by following step 2 of the dark region extraction algorithm. Only
the uniformity criterion (variance threshold, Vy;,) is employed in
determining the seed region node for each sub-tree of the
pyramid. If the node satisfies the uniformity criterion, it is
labelled as the seed for the whole of its sub-tree by connecting its
u_link to itself. Otherwise, the four children of the node are
examined and the one which has the largest seed region in its sub-
tree is selected. The seed area for that child is also identified as
the seed area of the parent by assigning its u_link value to the
parent u_link as explained in Figure 5.4.
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If none of the children have any seed region in their sub-trees,
their u_links point to a pre-defined location (e.g. NULL) and the
parent u_link is also assigned to NULL. Therefore in a single
bottom-up pass, when the pyramid is completed, the u_link of
every node in the pyramid points to a uniform square region in its
sub-tree.

Step 2: Parallel Region Growing

After constructing the variance-average pyramid, the nodes of
every plane in the pyramid are treated as sub-trees and each sub-
tree has a distinct seed region which is grown in this step. Starting
from the top of the pyramid, a top-down pass is initiated and for
each plane of the pyramid following two steps are performed.

-For each node in a plane of the pyramid, a seed
region is reached by testing its u_link. If the seed
region exists, it is grown to form a complete
uniform region. The neighbouring areas of the seed
are examined and merged if their average intensity
is equal to the intensity of the seed (within some
tolerance, M;;;) and their uniformity is below the
variance threshold, V;,. The merging threshold in
average intensity for two adjacent regions, My is
adapted from the user supplied threshold, Mg
depending on the uniformity of the merged regions
as given in equation (5.11). The merging process
continues for all the neighbours of the newly
attached regions until there is no neighbour left
which satisfies the uniformity and similar grey
level criteria. The merging can be performed by
using nodes at the seed level, in which case the
regions of equal area are connected, or by using
nodes at lower levels in the pyramid for extracting
regions with more accurate boundaries.

-All the nodes of the sub-trees of the seed region
and merged regions in the merging process are
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flagged as processed by assigning their u_links to a
pre-defined node (e.g. NULL). Similarly all the
nodes above the level of these sub-trees whose
u_links point to the seed or merged regions are also
flagged as processed.

This process is continued for each plane of the pyramid until a
plane in the pyramid is encountered from which no seed region is
reached. If the u_links of all the nodes in a particular plane of the
pyramid do not provide a seed region then the u_links of all the
nodes below that plane also cannot provide any additional seed
region. This also confirms that the image has been partitioned into
uniform regions and there is no unpartitioned region left. The
boundary of the regions can also be traced in parallel.

5.6.2 Results and Comments

The region growing on the basis of seed regions provided by a
particular plane can easily work in parallel. For the complete
partitioning of an image two passes are required; the first pass is
bottom-up which builds the variance-average pyramid and
identifies seed regions for each node in the pyramid and the
second pass, which is top-down, grows these seed regions into
larger uniform regions. The method has been demonstrated on
two heart ventricular images and a computer generated image
which are shown in Figure 5.9a, 5.10a, and S5.11a. The pyramid in
this case is also constructed from the level two and the merging is
also performed down to level two. The uniformity threshold for a
uniform region, V. is set at ninety for heart ventricular images
and twenty for the artificial image. In the merging step, the grey
level tolerance between the seed region and merged regions, Mg
is selected as seven. The extracted seed regions shown in red
colour, along with the complete partitioned regions shown in green
colour, for the test images are given in Figure 5.9b, 5.10b, and
5.11b. In Figure 5.9c, 5.10c, and 5.11c, the boundaries of the
partitioned regions are superimposed on the test images. The
same images are then partitioned by constructing the pyramid
from level one upward and merging is also performed down to
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Figure 5.9: Partitions of the first heart ventricular image.
(a) Heart ventricular image. (b) Seed regions and image
partitions when the pyramid is built from level two.

(c) Segmentation results overlaid on the image.

(d) Seed regions and image partitions when the pyramid
is built from level one.
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(d)

Figure 5.10: Partitions of the second heart ventricular image.
(a) Heart ventricular image. (b) Seed regions and image
partitions when the pyramid is built from level two.

(c) Segmentation results overlaid on the image.

(d) Seed regions and image partitions when the pyramid is
built from level one.

-156-




(a)

(b) (c)

(d)

Figure 5.11: Partitions of the computer generated image.
(a) The artificial image. (b) Seed regions and image
partitions when the pyramid is built from level two.

(c) Segmentation results overlaid on the image.

(d) Seed regions and image partitions when the pyramid
is built from level one.
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level one. The results which are shown in Figure 5.9d, 5.10d, and
5.11d demonstrate more accurate region boundaries and image
partitioning. The merging process can be extended to pixel level
but it takes considerable amount of computing time. T o
demonstrate that the method works on images containing a large
amount of noise, the artificial image of Figure 5.12a, which
contains random noise amounting to *22% of the average image
signal is segmented. The uniformity threshold, v, is raised to
300 for coping with noise. The partitioned image is shown in
Figure 5.12b.

The image partitioning method is easy to modify for extracting a
single region of given properties, without using the histogram
information, as employed in the darker region extraction for
endoscopic colon images. For bright region extraction the variance-
average pyramid is constructed similarly but during the
assignment of the value to the u_link, the brightness test is also
performed in addition to the uniformity. In the brightness test,
the intensity mean of the seed regions of four children are
compared and the seed with the higher intensity mean, which
belongs to a higher level in the pyramid, is preferred. In this way
the u_link of the root provides the brighter seed region. A conflict
in decision can arise between the brighter and larger size seed
conditions. An additional threshold for the brightness test for
adequate region size may be introduced to resolve this conflict.
For darker region detection, instead of applying the brightness
test the darkness condition may be used and that seed is selected,
which is darker and of considerable size.

5.7 Parallel-Serial Region Extraction: Discussion

Fast detection of global structure from digital images is an
essential component of real-time machine vision. The real-time
performance of human perception on complex images indicates
that our visual system uses highly evolved parallel processing. We
have already discussed the close relationship between the
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(a)

(b)

Figure 5.12: Partitions of the artificial image with added
noise.

(a) Artificial image containing #22% random noise.

(b) Region boundaries overlaid on the image.
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pyramidal computers and organic brain architecture in the second
chapter.

On the basis of pyramid architecture, a number of specially
tailored parallel computer architectures are beginning to emerge.
The first version of the PAPIA chip, which has five processing
elements, was developed at Rome University [Cantoni and Levialdi
1987]. The second version having three levels with twenty one
processing elements is also being developed. The GAM pyramid,
which is also a multi-layer pyramid structure, consists of 341
general and special purpose processing elements [Schaefer et al.
1987]. The GAM has five levels and it can implement a 16x16
pixel array. Each of its processing elements has nine connections,
which are grouped into four to the children, four to the
neighbours, and one to the parent. The pyramid machine
described by Tanimoto et al. [1987] uses a special VLSI chip in
which each processing element can communicate to thirteen
elements. They have employed eight connections to neighbours at
the same level instead of the four used in GAM. The pyramid
structure is implementable using (4n+1 - 1)/3 (1, 5, 21, 85 etc.)
processors. These developments in pyramid computer architecture
could provide a true parallel implementation of our depth
estimation and image segmentation techniques, and are capable of
producing a real-time performance for endoscope navigation.

We can easily compare the performance of our algorithm with the
earlier work on pyramid base segmentation. The split and merge
method of Horwitz and Pavlidis [1974] does not make use of the
pyramid structure for the whole process. They start from an
arbitrary image partition and sometimes a large number of
iterations may be required for segmentation. Moreover their
method uses an adjacency graph structure for merging to achieve
good segmentation results. The overlapped pyramid techniques
[Burt et al. 1981, Hong and Rosenfeld 1984] are comparable but
their iterative scheme for recomputation of links make these
methods less applicable in real-time. The number of iterations
required to stabilise the links increases with the complexity of the
image. In our method, the image segmentation involves only two
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passes on a pyramidal computer and does not depend on the
complexity and busyness of the image. The bright-spot and blob
detection methods are comparable to our dark and bright region
detection techniques [Shneier 1983, Blanford and Tanimoto 1988].
In the blob detection only the thresholds are detected by using
the pyramid and in bright-spot detection two types of pyramid
structures have been used. One is based on the maximum
transformation, Tp,x while the other uses a mixture of average
and maximum transformations. The authors are still not sure
whether the averaging process will keep the bright spot in tact or
not. Our method ‘is more general and has the advantage that it can
detect any type of regions including bright, dark, and other
regions of given property.

5.8 Concluding Remarks

We started with the objective of investigating some parallel and
fast way of estimating depth in colon images for automatic control
of the endoscope tip. The world and illumination model for
endoscopy ensures that the deepest part in the colon corresponds
to the lowest intensity region in the colon images. The tracking of
these darkest regions in a series of images provides an important
part of the information required for guiding the endoscope. The
extraction of a single region of given properties in real-time is an
important goal. This led us to the development of a region
extraction method based on the pyramid structure. The technique
is particularly applicable to a domain where the world is
illuminated only by a single light source located near the object
surfaces and viewer. In this case, the darkest region in the image
represents deepest point in the scene. Detection of the darkest
region can therefore be used for automatic navigation in pipes and
ducts for a variety of instrumentation purposes. The same method
could also be applied in warehouses and buildings with
appropriate lighting and for robot guidance in tunnels and
automated factory environments.
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The method is so effective and successful that we have extended it
to partition the images into uniform regions rather than detecting
single regions of given properties. The pyramidal image
partitioning techniques are most promising in terms of segmenting
images in real-time. None of the existing techniques provide true
parallel implementation and real-time performance. Some of them
do not employ the pyramid structure throughout the partitioning
process, while the others use iterative techniques. The method we
have introduced does not involve any iterative scheme and is
implementable in parallel. Two passes in the pyramid are
required to partition an image into uniform regions. For detecting
a single region (dark or bright) only one bottom-up pass is
needed. The main feature of our method is the ease of its
implementation on a pyramid architecture based computer,
specifically the bottom-up step which detects seed regions. The
region growing process which uses the seed regions provided by a
particular plane of the pyramid is also implementable in parallel.

Currently the algorithm is being implemented using five
transputers on the same XENIX based host to process a sequence
of colon images, which the system receives from a video tape
made during colonoscopy. The parallel implementation of the split
and merge process has already been attempted using transputers
[Mansoor and Sokolowska 1988]. The main restrictions of the split
and merge technique are avoided in our algorithm, as there is no
change of representation from a pyramidal tree to graph
structure. Hopefully with the introduction of transputers and true
parallelism, the region extraction time will be reduced from eight
seconds to video rate. Therefore the tracking of lumen from on-
line colon images, digitised from a U-matic video recorder, will be
achieved. This set up provides a simulation facility for testing the
automatic control of endoscope. In the final system, the
information gathered during lumen tracking, will be used by the
navigation system to generate different tip control commands for
the pilot sub-module. This approach provides a safe way of testing
the vision and control algorithms, before using a prototype on the
patients. The proposed endoscope navigation and control system is
described in detail in the next chapter.
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CHAPTER 6

NAVIGATION OF THE ENDOSCOPE

6.1 Introduction

The main results of this research are the development of two new
machine vision techniques for identifying contours and darker
regions, which we have already presented in the previous
chapters. The contours, which are formed by inner colon muscles,
and dark regions, which correspond to obstacle free areas in the
colon, are the most important landmarks for navigating the
endoscope. In this chapter, we are investigating the ways and
methods to integrate contour and region extraction techniques
with the endoscope navigation system. The endoscope navigation
is not very similar to that of mobile robots or autonomous
vehicles. Prior navigation techniques are explored in this chapter
before proposing an hierarchical navigation control system for an
automatic endoscope. The endoscope navigation system consists of
three sub-systems: global planner, navigator, and pilot. Perception
plays an important role in navigating the endoscope and the world
model of colon relies mostly on the information provided by a
single CCD camera. The colon is modelled by using the generalised
cylinder, which facilitates depth estimation in colon from inner
muscle contours by following Marr's [1977] work on occluding
contours. An efficient data structure the Quad-List tree (QL-tree),
has been developed for world and search space representation.
The QL-tree representation is compatible with the machine vision
techniques, described earlier and the scene primitives supplied by
them can be easily added to the structure directly. The QL-tree is
not only suitable for world representation in navigation and it has
also been employed as a more general representation for ray
tracing in computer graphics [Nicholls, Khan and Gillies 1988].

-163-



A navigation system usually has three main components, the
sensing system which provides information about the local and
global world, the planner to plan a path to a specified goal, and the
controller which executes the planned path. In general the
planned path should be flexible enough to be modified for coping
with any unexpected changes. The role of sensing in a navigation
system depends on the domain of the world in which the
autonomous vehicle is supposed to navigate. In a finite world (e.g.
factory environment), the navigation system can use a global
model which consists of a plan of the domain, but the model can
only be utilised for planning a path to the goal. During the
execution phase, the navigation system has to use the expected
local model of the world. Whatever the world domain is, a
navigation system is required to monitor the motion during the
execution phase to verify that the movement is according to the
plan. The monitoring alone requires a good sensing system.
Additionally for an unknown world, sensors provide information
about the environment from which the updated world model is
constructed. Sensors play a vital role in adaptive navigation as
well as object identification. Moreover, they are the only link to
the outside world which is changing all the time. The best general
purpose navigation system is considered to be that of humans and
we believe that one of the reasons behind our navigational ability
is our access to a variety of sensing capabilities including vision,
touch, and hearing which helps directly or indirectly during
navigation.

6.2 Navigation Techniques: A Review

A number of research groups have reported interesting results
which are relevant to the navigation of mobile robots and
autonomous vehicles. A review of their work provides a current
picture of the research on navigation. Instead of describing the
work of individual groups separately, we are presenting the
previous work in terms of different components of the navigation
system such as sensing, path planning, and obstacle avoidance.
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6.2.1 Machine Perception for Autonomous Vehicles

The Jet Propulsion Lab. (JPL) robot was originally intended for use
in remote planetary exploration [Thompson 1977]. The terrain
model for its navigation is constructed primarily from its vision
system. The main sensing unit consists of stereo cameras and a
laser range finder, in addition to proximity and touch sensors for
the different manipulator processes.

The perception in the case of Hilare [Giralt et al. 1979] is provided
by a video camera for object recognition and a laser range finder
for depth measurement. Both of these units are mounted on the
same scanning platform which can rotate around two axes. Hilare
is a mobile robot developed for research and investigation
purposes at the LAAS laboratory in Toulous. In addition to the
main perception system, ultrasonic proximity sensors have been
employed to cope with unexpected obstacles. It navigates
primarily by following side walls using its sonars. Recent progress
in the perception for Hilare is presented by de Saint Vincent
[1986], describing a scene analysis module, using stereo cameras
and a laser range finder, and a dynamic vision module for robot
position correction and tracking world features.

The sensing system of Stanford Cart [Moravec 1979, 1983] consists
of a single video camera which slides horizontally to capture a
nine-way stereo vision for scanning the environment. The system
moves the camera horizontally in nine precise steps to get nine
images of the scene. During this whole process the cart remains
stationary. Then an interest operator is applied to one image for
selecting a fixed number of candidate points. The depth estimation
is performed by matching these feature points in the rest of the
images. This processing takes 10 to 15 minutes on PDP-10 after
which the cart is only allowed to travel one meter. The same
process of slider stereo is then repeated after each meter and
motion stereo is also performed to confirm or add to the depth
information.

-165-



The work on the Stanford Cart by Moravec was extended at
Carnegie-Mellon University (CMU). Thorpe [1984] has described
some additional work on the interest operators for stereo vision.
Additional results on robot road following at CMU, on other mobile
robots named as Terregator and Neptune, have also been
reported [Wallace et al. 1985]. In these, two camera stereo was
employed in addition to a ring of twenty four proximity sensors
for obstacle avoidance. The main task of navigating during road-
following is to keep the vehicle in the centre of the road as it
moves. For road-following the road images are digitised
continuously and the road edges are located. After determining
the deviation of road edges from the centre line of the road,
steering commands are issued for keeping the vehicle aligned to
the centre of the road. At the low level of vision they have
experimented with seven edge detection and three line extraction
techniques. It has been observed that all of these techniques work
in simple cases but give conflicting results in difficult cases.
Neptune has achieved a continuous motion in road following at
the rate of 2 cm/s. Constraining the search for road edge location
to a sub-image and application of simple edge detection
techniques in addition to image processing hardware have led to
the reduction in processing time and therefore high speed motion
as compared to Stanford Cart. The CMU Naviab (Navigation
Laboratory) [Thorpe et al. 1988] has achieved a maximum speed
of 10 cm/s during road following. Navlab is equipped with a TV
camera and a laser range finder. Instead of tracking road
boundary lines, a classification method has been used to identify
clusters of on-road and off-road pixels. The pixel classification is
based on colour and texture properties. The colour parameters are
adapted with the changes in colour and environment. The
information from a laser range finder has been used for obstacle
detection and avoidance.

Recently results on the navigation of a tracked vehicle (M113A2
armoured personnel carrier) at FMC corporation has been
reported. The hierarchical sensing system for the FMC vehicle can
be classified at two levels of components. At the global level,
machine vision is applied to gather information for building a

-166-



global model of the world [Kuan et al. 1986]. The colour images are
acquired continuously and segmented into road and non-road
regions by a pixel classification algorithm. Then geometric
reasoning is applied for perceiving real road edges. Road side
consistency, smoothness, and continuity are the most promising
geometric reasoning used for perception. The local level sensing
for the FMC vehicle is used by the pilot sub-system which is
responsible for guiding the vehicle along a dynamically feasible
route and avoiding the obstacles while maintaining the vehicle on
globally planned paths [Nitao and Parodi 1985]. A sonic imaging
system gives sensing information, including the information about
those obstacles which may be missed by the main vision system,
to the reflexive pilot. The reflexive pilot has also a fast response
time to unforeseen conditions which might come up locally. This
hierarchical sensing system has enabled the navigation of FMC
vehicle at the speed of 8 km/hr.

Among the different sensing units, machine vision is the main
source of information for constructing a world model to plan paths
in addition to its use for monitoring the movement of any
autonomous vehicle or robot according to the planned path. A set
of algorithms for vision guidance has been proposed, which are
implementable in real-time [Inigo et al. 1984]. They have used a
single camera for locating road way boundaries while stereo vision
is needed for obstacle detection. Most recently the use of the
vanishing point concept for road-following has been put forward
[Liou and Jain 1987]. Liou and Jain have argued that it is more
helpful for processing low quality pictures in the search for
convergent line (road sides) rather than using classical data driven
line fitting and approximation techniques. After selecting the best
vanishing point (where the pair of lines due to road sides meet),
the vehicle can be easily guided towards that point.

6.2.2 Find-Path Problem
Path planning is one of the most important components of the

software required for navigating an autonomous vehicle in a
completely or partially mapped environment. Most of the well
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developed path planning algorithms assume a completely known
environment. The hierarchical path planning techniques for a
cluttered and partially mapped environment may first extract
path segments locally and then string together some of these
segments for a complete path. The modelling of the environment
is critical for path planning. It includes the representation of free
space, obstacles, and the moving vehicle itself.

In the following discussion different find-path techniques are
reviewed. Most of these methods, with the exception of the
potential field approach, abstract the environment into a graph of
possible paths. Then the graph is searched and an optimal path is
determined.

Visibility Graph Methods

The visibility graph, vgraph concept was used to navigate Shakey
in the labs. of SRI [Nilsson 1969]. The environment of the robot is
represented as a grid model which is updated continuously. A
vertex graph is then constructed from the grid model. The vgraph
consists of vertices of opposite corners of obstacles, start vertex,
goal vertex, and links connecting the vertices in straight lines
without overlapping any obstacle. The shortest collision free path
from start to goal in vgraph is found by weighting each link by its
euclidean distance and then searching for the lowest cost path. A
similar technique is employed to plan a path for the JPL robot but
the cost function associated with each link is the energy required
to traverse that link [Thompson 1977]. This makes the vehicle
more suitable for planetary exploration than Shakey. Additionally
a combinatorial explosion is avoided during the derivation of links.
The graph search for path planning is reduced to a tree search by
properly choosing successive vertices and pruning.

All of the vgraph algorithms assume that the moving object is a
point which is a fair approximation comparing the object size with
the obstacles. It can cause problems when the size of the vehicle is
larger than a narrow free space. Lozano-Perez and Wesley [1979]
have introduced a solution to this problem. First a generalisation
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can be made by considering the moving object to be a circular
shape of radius, r. Then the obstacle vertices are moved away by
the same distance, r from actual obstacle corners. The moving
object is guided in such a way that its reference point moves
through the new displaced vertices, producing a collision free
path. This concept was introduced in Shakey but Lozano-Perez
and Wesley have tackled the problem for more general shapes of
the moving object by growing the polyhedral obstacles according
to the shape and size of moving object. The utilisation of rotation
is also suggested for moving objects when their shape is
rectangular. Path planning in the case of the Stanford Cart is also
based on the concept of vgraph.

Find-Path by Representing Empty Space

In the free space techniques the moving object is explicitly forced
to travel on those path segments which run in the middle of the
free space corridors between obstacles. In the case of Hilare, the
pre-learned floor plan is divided into empty convex regions,
known, and unknown obstacles. The convex regions are formed by
connecting the nearest vertices to create a representation of
empty areas which are called the C-cells. A trajectory within such
cells is then sought for the optimal paths. Laumond [1983] has
extended the concept of free space to an hierarchical
representation of C-cells in terms of topology of places such as
rooms, work areas, and other parts of the known domain.

Brooks [1982] also proposes another approach to path planning
which models the free space between obstacles by fitting
generalised cylinders. The solution was developed for a two-
dimensional plane and pathways are obtained from the fitted
generalised cylinders in which the moving object can freely travel
on a plane. Then the technique is extended to three dimensions by
stacking these planes. Meng [1988] has modelled the free space by
a spatial graph, known as Voronoi graph. The obstacles are
assumed as randomly shaped. A solution to the find-path problem,
in a 2-D plane, is proposed by interpreting the Voronoi diagram as
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a spatially oriented graph representing the skeleton of the free
space.

Lozano-Perez [1983] has provided a mathematical treatment of
the find-path problem by using a configuration space approach.
The path planning is treated as two problems, find space and find
path. Conceptually, those parts of the free space are found in
which the moving object can reside without colliding with the
obstacles. Gouzenes [1984] has also addressed the problem of
empty-space and find-path. Different heuristics are suggested for
the construction of free-space by introducing an intrinsic tree
structure to represent empty space.

Potential Methods

In the potential field approach the moving object is assumed to be
a rolling ball, and the floor is tilted toward the goal point. The
direction to which the ball rolls for the optimal path is observed
[Andrew 1983, Krogh 1984, Khatib 1986]. The obstacles are
presented as hills with sloping sides so that the ball rolls away
from them and seeks the path between them. Momentum can also
be given to rolling ball by taking into account the energy required
to accelerate, decelerate, or turn.

Another way of describing these techniques is by considering the
environment as a field of forces, where the destination point
attracts the moving object and obstacles or barriers produce
repulsive forces for the moving vehicle. The trouble with these
techniques, in common with multi-dimensional optimisation
techniques, is that they can get caught in dead ends and require
special procedures for backtracking and starting again. When they
are combined with intelligent path planning, they can prove to be
very useful and offer a quick response and thus the possibilities of
real-time implementation. The use of potential methods for real-
time collision avoidance has been demonstrated effectively by
Khatib [1986].
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6.3 Navigation System for the Endoscope
6.3.1 The Find-Path Problem and Guiding the Endoscope

Collision avoidance during the navigation of autonomous vehicles
is traditionally considered as a high level path planning problem.
From this point of view, different levels of control have been
established. For example, collision avoidance is preferably
performed at higher levels while low level control is limited to the
execution of elementary operations for which the route has been
precisely specified by the high level planning.

The find-path problem in a cluttered but completely known
world is well understood and has been solved in most of the cases,
as discussed in the previous section. However, all of the developed
algorithms are not directly applicable in endoscope navigation
because the detailed world model is not known. The development
of a navigation system for the endoscope on the basis of find-path
problem will be a disaster in terms of its real-time capabilities. It
is also not feasible in any case. The interaction of endoscope with
its environment will be passed through a long time cycle of
planning and high level control. This actually places a limit on its
navigation capabilities in the rapidly changing environment of
human colon. Therefore, the role of low level control and
navigation should be enhanced for real-time performance. High
level navigation should not be replaced by low level functions but
it is necessary to make better use of low level navigation
techniques by increasing their degree of competence.

Early attempts at navigation in an unexplored world were solely
based on image understanding (JPL Robot, CMU Rover). Then
Crowley [1985] and Parodi [1985] provided some hierarchical
approaches, where global and local models are updated from
sensor information. This problem has also been researched by
many scientists [Chatila 1982, Iyengar et al. 1985, Turchan and
Wong 1985, Oommen et al. 1986]. Chattergy [1985] has also
described some heuristic strategies to aid the navigation of a robot
in an unexplored environment.

-171-



Navigation in a more general case (like endoscope navigation)
requires the collision free movement of autonomous vehicles in an
unexplored world. The problem of planning an optimal or near
optimal path by avoiding collisions with obstacles in such an
environment is a challenging task. Unlike the find-path problem
the endoscope navigation can not be subjected to a rigorous
mathematical treatment and this is because of the inherent nature
of the problem. The work on endoscope navigation builds upon
many of these ideas put forward for navigating robots in an
unexplored world.

6.3.2 An Hierarchical Navigation Control System

The utilisation of sensory information is necessary for controlling
autonomously the movements of the endoscope tip. An
hierarchical navigation and control system is suggested which will
be able to perform path planning and endoscope tip control in
real-time. A multi-level production system for similar tasks has
already been described [Chavez and Meystel 1984, Koch et al.
1985]. In order to simplify the problem, we are proposing the
decomposition of the hierarchical navigation system into three
distinct modules at different levels: global planner, navigator, and
pilot sub-systems. From the previous section we argue that due to
the specific nature of the problem, the navigator plays the most
important role in endoscope navigation. These three sub-systems
are described in an effort to define the endoscope environment,
sensing capabilities, environment modelling, and path planning.

Global Planner and Expert

The global planner which is at the highest level, holds specific and
abstract information about the overall environment. For example
in the case of an autonomous land vehicle, it can have the map of
the terrain, general weather conditions, terrain nature e.g.
whether it is hazardous, passing through hills, jungles, planes,
populated, or un-populated areas. Here for colonoscopy, it utilises
the general model of the colon in the form of its typical shape
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features like the number of bends and levels of difficulties in each
portion of the colon. It can also keep some knowledge based rules
from the colonoscopy expert to guide the navigator when it is
stuck in some dead end and cannot continue on the basis of sensor
information.

The global planner is an expert which does path planning at the
highest level and advises the navigator. It also keeps itself
informed about the most recent conditions of navigation by
receiving current environment information from the navigator,
and makes itself ready to be consulted for expert level advice. The
global planner is not directly involved in issuing different
navigational controls but takes the role of a specialist to be
consulted. In this way, the reacting capabilities of the endoscope
will be improved by excluding the global planner from the main
control loop.

Navigator

The navigator is at the intermediate level of the hierarchical
structure of the navigation system. Its main task is to plan the
path on the basis of information received from the sensing system
after consulting the global planner in difficult cases. It issues
different sub-goals, to achieve the planned path, and other control
commands to the pilot for execution. The navigator holds a key
position in the overall control system and it decides autonomously
about navigation. The principle functions of the navigator for
endoscopy are explained as follows.

-The navigator receives image information in the
form of regions of interest and occluding contours
continuously from the sensing system.

-It keeps a three-dimensional representation of the

environment and updates it according to the
information received from the sensing system.
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-It plans the path Dbased on the world
representation already built and then generates
sub-goals and other control commands for the pilot
to execute.

-During path planning it consults and gets expert
advice from the global planner, especially when
there is an ambiguity in the world information
supplied by the sensors. The global planner is also
kept informed about the current environment and
the whereabouts of the endoscope so that it can
provide its expertise without any delay.

-The navigator instructs the- pilot to execute already
planned sub-goals and other control commands. It
can have an option to monitor the execution of
those commands. As there is no arrangement for
the control of forward and backward movement of
the endoscope tube, the navigator is also
responsible for counting the number of rings of
muscle that the tip has passed through, to make an
estimate of the tip position in the colon.

These functions indicate that the navigator is the back bone of the
whole navigation system and performs most of the on line tasks
and control. Therefore it can be argued that the response of the
automatic endoscope to any changes in the environment will be
quick and in real-time due to the shorter control path. Currently
we are concentrating on the development of a reliable, real-time,
navigator.

Pilot

The pilot has a very simple job to do in the proposed hierarchical
navigation system. It executes different endoscope tip movement
commands (for autonomous vehicles known as steering
commands) to achieve the sub-goals issued by the navigator. It
also performs other functions like spraying of water or suction of
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air. Some additional tasks can also be assigned to the pilot such as
avoiding‘ unexpected obstacles which have been missed or ignored
by the navigator. For these types of tasks the pilot may require its
own reflexive sensors. The pilot should also be able to monitor the
execution of local control commands for error correction.

The navigational control structure in the form of global planner,
navigator, and pilot is a suitable basis for the development of a
general purpose navigation system for an unknown or partially
known environment. In the automation of endoscopy the global
planner and expert keep most of the information about the world
domain in the form of colon, upper gastrointestinal, or bronchus
models. Therefore different types of automatic endoscopy can be
performed by switching the related expert model and rules in the
global planner -and expert, while the same navigator and pilot
modules can be employed without any changes. This is a useful
feature which makes this system suitable for general purpose
navigation.

As far as the navigator module is concerned, the information
provided by the sensing system and the representation of the
environment based on this information plays an important role in
its operation. Therefore the sensing system and representation of
environment requires detailed explanation in the context of
navigator operations.

6.3.3 Environment Representation for Navigation

The selection of a data structure for the environment
representation normally depends on the nature of the world
whether it 1is pre-learned, partially known, or completely
unknown. When the environment is unknown, the construction of
its model for path planning is based only on the information
provided by different sensors. This means that the environment
model only knows what the sensors has told. Moreover, there is
also some sort of uncertainty in the information provided by the
sensors. The sensors (video camera) do not provide information
about the environment beyond their range (field of view).
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Sometimes they may track phantom objects which therefore must
be removed from the representation. All of these arguments
suggest that for the representation of a previously unknown
environment, the data structure should support features like
inaccuracy and uncertainty. In other words, it should allow the
easy addition or removal of any information from the structure.
Another representation which is used for performing search for
the optimal paths is known as the search space representation.
Configuration space, Voronoi base spaces, generalised cylinder free
spaces, and medial axis free space have been used as search space
representations [Lozano-Perez 1981, Canny 1985, Brooks 1982,
Ruff and Ahuja 1984]. In all of these cases, mapping functions are
needed to map the world space to a search space. This
arrangement limits the on line reacting capabilities of the
navigation system. We have developed an environment
representation which provides a reliable access of the data to
different types of search algorithms for finding paths. An effective
representation for path planning methodologies in endoscopy
should meet some of the general objectives which are given below.

-The world representation should provide different
means of locating important navigational
landmarks. The typical landmarks in colonoscopy
are inner ring type muscles of colon which can be
followed by the endoscope. There are also vanishing
points supplied by the vision system in the form of
different dark regions in the image. This means that
the representation should be able to accommodate
these regions and circular curves.

-The path planning algorithms should also be able
to update the world representation to take care of
inaccuracy and uncertainty in the information
supplied by the sensing system. This objective is
very important to solve navigational problems for
an unknown or partially known world.
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-The representation should be so general that it
allows the movement constraints of the endoscope.
This objective is helpful in the case of endoscopy
because, for the time being, we do not have any
control on backward, forward, or rotational
movements of the endoscope.

-Where the same world representation is used as
search space, the world representation should also
support efficient search procedures.

A simple model of the colon is presented in the next section by
keeping in view the above objectives. The environment and search
space representation of the world is also proposed for navigational
purposes.

6.3.4 Colon Model for Endoscopy

It is very difficult and computationally expensive to model the
colon accurately. Moreover, we believe that it is also not feasible
to use precise modelling for navigating the endoscope.
Consequently we propose that the colon can be modelled as a
series of circular or elliptical rings which are joined to give a
hollow cylindrical figure. No restriction is imposed on the size of
these rings so that rings of different sizes can be interconnected.
When the rings are arranged in such a way that they are parallel
to a plane and their centres are on a straight line normal to the
planes, they model a straight portion of the colon in three-
dimensional space as shown in the Figure 6.1. In this way, the
inner space covered by this irregular cylinder roughly models the
inside of a colon. When the condition of stacking the rings on a
single plane is relaxed and it is assumed that the plane in which
the subsequent rings lie can be at any orientation in the 3-D space,
then the proposed scheme can model different bends in the colon.

Alternatively the colon model can be described by using

generalised cylinders. Generalised cylinders were introduced by
Binford [1971]. A circular homogeneous generalised cylinder can
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be used. to model the whole colon. It consists of four basic
components which are also explained in Figure 6.2.

(1) A space curve which acts as the axis of colon and
is shown as the locus of L(s) in the vector form.

z-axis

Figure 6.1: A simple model of the colon.

(i1) A cross-section plane defined for every point on
the axis and at some angle, a to the tangent of the

axis at the corresponding point. In the proposed
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model the angle, o can be taken as n/2. Moreover,
instead of considering these planes at every point
on the axis, the planes are taken only at those
points which correspond to the inner muscular
rings of the colon. For other points the two adjacent
planes can be interpolated to achieve a continuous
representation.

Radius

Figure 6.2: A homogeneous generalised cylinder.

(iii) The shape of the object in the plane which is
described by a planar curve, C(t) on the plane. In
the case of the colon a circular or elliptical curve
which corresponds to the muscular rings can be
assumed.

(iv) A transformation rule, r(s) which specifies a
homogeneous change in the shape of the object as
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the plane moves along the axis L(s). For colon
modelling if the shape can be fixed as circular, the
transformation can only affect the size of the circle.
If the centre of the circles are assumed to be on the
axis, the transformation can be easily specified as a
linear variation to the radius of the circle with
respect tos.

In this way the colon is represented and modelled only by a four-
tuple (L, C, 1, o) in terms of a generalised cylinder.

Most of the useful contours formed due to inner muscles of colon
are classified as occluding contours. Therefore modelling of the
colon world space by a generalised cylinder helps in extracting
shape information from the contours in colon images. In chapter
four, the problem of shape from contour has been discussed. In its
particular implementation for endoscope navigation, the
constraints which can be employed for shape extraction are:

-Each point on the contour generator projects to a
distinct different point in the image contour and
nearby points of the occluding contour arise from
nearby points of the contour generator. It means
that the occluding contours in colon images provide
unambiguous information about the contour
generator which is used to extract the colon shape
from contours.

-As suggested by Marr [1977], when the surface is
representable by a generalised cylinder, each
‘'occluding contour in the image which belongs to a
contour generator must lie in a single distinct plane.
These planes are distinct with respect to the
viewer. In fact, this is very helpful in identifying
the relative distance of image contours in colon
images and then guiding the endoscope accordingly,
avoiding the nearest contour first. The distance
between each plane of an occluding contour can also
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be approximated by the size of contours and other
constraints described in chapter four.

We see that modelling of the colon world space by a generalised
cylinder along with the knowledge of occluding contours in colon
images, plays an important part in estimating depth and obstacle
free space in the colon for endoscope navigation.

6.4 World and Search Space Representation

After modelling the inner colon space as explained in the previous
section, a suitable representation is required to support the model.
The best representation of the world is that which avoids
excessive detail of the parts of the space and which do not affect
the operation [Lozano-Perez 1981]. We have proposed the colon
model as a series of planes rather than a volumetric
representation by following the same heuristics. The world
representation, we are introducing, not only models the world
(colon), but also represents the search space. Moreover the
representation structure is general enough to represent any three-
dimensional space for navigational purposes, especially where the
autonomous moving object has three degrees of freedom.

It is possible to represent the colon as a series of two-dimensional
cross-sections with the assumption that the forward and
backward movements of the endoscope at its intersection to the
plane will be always in the direction of the normal vector. This
assumption can only be realised, if we consider small movements
of the endoscope and then shift the co-ordinates from frame to
frame after each tiny movement. The distance between two planes
(depth) is also provided in the data structure. This distance can
vary for different plane pairs depending on the busyness and the
required resolution of the environment. The better option is to fix
the reference co-ordinate system in the current plane (e.g. the x-y
plane) such that its origin is at the camera position. Then assume
that the series of planes ahead may not be parallel to the current
plane but for the first two planes they are approximately parallel
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to each other and perpendicular to the line joining the camera
position and the target point for navigation in the next plane. The
new co-ordinate system can be established in the next plane by
fixing its origin at the target point and moving the z-axis along the
line joining the origins of current and new co-ordinate systems.
This scheme of representing the three-dimensional space as a
series of planes also takes care of all the bends in the colon. The
transformation from one co-ordinate system to the next is
explained below and also shown in Figure 6.3.

Suppose that the camera (endoscope tip) is at point O in the
current plane and the navigator provides the target point Q(a,b,c)
in the next plane with origin O. Then to move the co-ordinate
system from O to Q such that the z-axis of the new co-ordinate
system is ‘along the line OQ requires one translation and two
rotations one about the z-axis and the other about the x-axis. The
translation and rotation matrices are:

1 0 0 0
Translate: 0 1 0 0

0 0 1 0 :

-a -b -C 1

Cos6 -Sin6 0 0
Rotate about z: | Sin8 Cos6 0 0

0 0 1 0 ;

0 0 0 1

1 0 0 0
Rotate about x: | 0 Cos¢ -Sin¢ 0

O Sin¢ Cos¢ O

0 0 0 1

Where 6 1is the skew between the axis systems, and would
normally be zero.
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and
= tan'l(c/a/?'a2 + b2 + ¢2))

The quadtrees are best suited for the representation of each plane
due to their pyramid structure. They have previously been used
for representing the 3-D environment, by three orthogonal two-
dimensional projections, in path planning [Wong and Fu 1985].
Octrees have also been employed for representing the three-
dimensional space in path planning [Shneier et al. 1984, Ruff and
Ahuja 1984, Herman 1986].

z-axis

X-axis

Figure 6.3: Moving co-ordinate system from point O
to Q in space.
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The Quad-List structure, QL-tree (quadtree based search space
and world representation), we are proposing, is a tree structure
in-between the quadtree and octrees. Each cross-sectional plane is
represented by a separate quadtree, while the tree nodes have
two additional links (previous and mnext) which interconnect
consecutive planes to each other at each hierarchical level of the
~ pyramid. An additional field is also provided with each node of
the tree to store the distance between consecutive planes from
pixel to regional levels. A small section of the data structure is also
shown in Figure 6.4. The QL-tree based search space and world
representation satisfies all the general objectives described
earlier. It provides a spatially indexed representation of the world
and can be viewed at several level of resolutions like octrees but
it is less complicated in terms of memory and search operations.
The representation allows an easy access to each plane
represented by quadtrees and more efficient algorithms exist for
searching quadtrees.

The main advantage of the QL-tree representation is that the
environment information can be stored in each plane in such a
way that the plane nearest to the camera contains the most
updated and correct information about the objects in the space,
while the further planes ahead need only to hold some rough
shape of the objects. The accuracy and completeness of this
information will depend on the field of view of the sensors. The
scene information in the further planes is refined and corrected
incrementally as the sensing system provides more data. Thus the
QL—tree provides the important capability of learning as new data
becomes available, and forgetting the unimportant. The entire
data of a plane can be easily updated when the sensor provides
more data and removed from the structure as the endoscope
navigates successfully through it. The quadtree structure is also
useful for other sensing tasks (e.g. image segmentation) because it
provides an hierarchical image representation. It is interesting to
note that in the overall endoscope control and sensing system, the
pyramid structure has been used for estimating depth by region
based segmentation, contour extraction, and representing the
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muscle rings detected in colon images [Khan and Gillies 1988a,
1988b, 1989a, 1989b]. The effective cost of generating pyramids
is much lower than if we had to generate a different
representation for each task.

Figure 6.4: A section of Quad-List tree, (QL-tree)
environment and search space representation.

6.5 Concluding Remarks

As part of an in-depth study for the development of a navigation
system for the endoscope, different navigation techniques have
been surveyed. These provide an overall picture of the research in
navigation specifically in the areas like sensing units, machine
perception, and the find-path problem. During the review it
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appeared that the existing techniques for navigating autonomous
vehicles are not directly applicable to endoscopy because the
sensing capabilities of the endoscope are limited and its world
domain is changing rapidly.

An hierarchical control structure for endoscope navigation has
been presented which has three distinct levels known as the
global planner, navigator, and pilot. The navigator which is at the
intermediate level, receives world information from the vision
system and controls the endoscope autonomously by issuing
commands to the pilot. This improves the reflexive capabilities of
navigation, as the global planner has only been employed as a
consultant to the navigator rather than directly in the control loop.
The world and search space representation is also very important
for the development of a real-time navigation system. A new
representation, the QL-tree has been developed and employed to
model the search space. It consists of a series of planes which are
organised as a list of quadtrees linked together by the distance
(which is depth in terms of machine vision) between consecutive
planes. This search space representation is also suitable for
autonomous vehicles. The colon is modelled by using the
generalised cylinder concept. The two-dimensional version of
generalised cylinder has already been used for defining empty
space in the find-path problem. The colon is represented by a
single generalised cylinder and the model is constructed
incrementally from the information provided by the vision
techniques we have presented in this thesis. The model of colon
also provides useful constraints to extract 3-D shape from the
colon image contours. The circular or elliptical cross-sections of the
generalised cylinder at regular steps directly provide the planes
defined for the search space. Therefore a single representation for
world and search space is established, which enhances the real-
time reflexive capabilities of the endoscope navigation system.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Introduction

The task of navigating the endoscope inside the human colon is an
ambitious one and there are a number of complications involved
in achieving this objective. We have given a lead by providing a
solution for the perception problem and initiating the work on
navigation system for the endoscope. The navigation of the
endoscope is different from that of autonomous vehicles in a
number of ways. Firstly, in the current state of endoscopy there
cannot be an automatic control -on the forward, backward, and
rotational movements of the instrument. The automation of
endoscope only concerns the control of the tip movement.
Secondly, the sensor system on the endoscope is limited to a single
camera on its tip and there is only a remote possibility of having
additional sensors for depth measurement. Motion stereo is the
only other likely method for three-dimensional shape extraction
of inner body surfaces. We have not considered it in this thesis,
and have only treated the machine vision techniques based on
single monocular images.

There are a number of constraints due to the illumination
conditions and colon model which are helpful in estimating the
insertion direction for controlling the endoscope tip. During the
course of endoscopy procedures, the inner body surfaces are
illuminated by a single light source which is in fact equivalent to a
point source. In this way the surface illumination is related to its
distance from the light source at the endoscope tip. The surfaces
which are nearer to the tip are more brightly illuminated than the
further surfaces. Therefore a uniform and dark region in an
endoscope image corresponds to the deep and obstacle free area in
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the colon. Another important and useful constraint arises from the
contours formed by the inner colon muscles. The source of these
contours is mainly occluding edges. The occluding contours are
approximately circular and they provide another type of
important landmark for navigating the endoscope. A line joining
the centre of curvature of these contours gives a clear and
obstacle free path for endoscope insertion. The representation of a
colon by a generalised circular cylinder provides a useful
approach to extract the shape information from these occluding
contours.

The occluding contours and darker regions in the colon images are
to be detected for seeking an obstacle free path which avoids the
inner walls of colon. Most of the work, presented in this thesis
deals with the detection of contours and darker regions. Due to the
real-time nature of endoscope control, these machine vision
techniques are implementable in parallel on a pyramid
architecture based computer. The sequential algorithms do not
provide real-time performance. A review on the physiology and
psychology of vision has been carried out in the 2nd chapter,
before describing the contour and region extraction algorithms. It
was argued that early visual data organisation in organic vision
follows the signal to symbols paradigm. The architectural nature
of the organic visual processing is related to different parallel
processing techniques and it was concluded that the pyramid
based processing is a reasonable model of the brain architecture.
The conventional parallel processing methods cannot be used to
achieve the visual processing and recognition in real-time. The
pyramid based parallel-hierarchical processing provides a useful
means for explicitly extracting the global structure in images.
From the point of view of psychology, different perceptual
organisation and grouping principles were studied. It was argued
that these principles are very useful in developing general
purpose machine vision techniques, if implemented effectively
and intelligently. In fact we have demonstrated, in our approach
for contour extraction, that these organisational principles are
very effective in isolating the relevant contour structure from
noisy image data.
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7.2 Contour Extraction

The contour extraction method is based on the bottom-up
organisation of edge point data and it utilises the information
presented in the data itself rather than higher level heuristics. The
support for this type of early image data organisation is evident
from both neurophysiology and psychological studies. The method
employs different domain independent grouping rules from
perceptual organisation. As far as we know, this is the first time
that perceptual grouping has been utilised in a unified manner for
contour extraction.

An intermediate representation based on straight line segments is
formed from the edge point data rather than sequentially linking
edge points into contours. There is clear evidence that straight line
segments are extracted by simple and complex cells in the early
stages of animal vision. Moreover, any type of contours (curved or
straight) can be approximated by straight line segments. For line
segment extraction, the edge points are detected by using a simple
edge detector (Sobel) and all edge data, however weak, is retained
providing it is sufficiently reliable. The image is divided into
overlapping squares of a given size and line segments are
extracted in each image square. This process has been
implemented independently and in parallel for each of the image
windows. The size of image window and overlapping depends on
the details of the image contents and what is required for
recognition. In our particular implementation, the line segments
are extracted at two resolutions based on 8x8 and 4x4 image

windows.

The grouping of edge points into short line segments is an early
process and the information which is used to group edge points is
carried by edges themselves in the form of their location, contrast,
orientation, and intensity value. The laws of data organisation
which have been employed to extract useful line segments are:
proximity, connectivity, similarity in edge orientation, contrast,
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and edge pixel intensity. The problem with the use of these
perceptual organisation principles, in the past, has been the lack of
an effective implementation. We have modified the Hough
transform to implement these grouping techniques. After
proximity and connectivity, similarity in edge orientation is the
most effective way of extracting useful line structures. In another
orientation based grouping method [O'Gorman and Clowes 1976],
the edge points which are selected to support a line structure are
those whose orientation is perpendicular to the line direction
(within some tolerance). However, with this technique, most of the
weak line segments which are part of curved contours of curved
surfaces are missed as we have demonstrated by the experimental
results in chapter three. To avoid this, a slow drift in the edge
orientation is allowed from one edge point to the neighbouring
edge on the line segment. The grouping relation formed in this
way is more perceptually stable and regular for extracting weak
but significant contours. The aggregation of edge points on the
basis of similar edge orientation is also allowed whether the
intensity change is normal to the line or not. This is equivalent to
Marr's grouping principle called theta-aggregation. It has been
demonstrated that these new grouping principles for edge point
data recover those useful line structures which are generally un-
detectable. During the process of forming line segment
representation by perceptual grouping, the edges due to noise are
filtered out. The effectiveness of individual grouping processes is
analysed by using artificial images with known added noise. In
the case of random noise, connectivity grouping extracts most of
the useful line segments but for endoscopic images which contain
a variety of noise, orientation grouping based on slow drift in edge
orientation and theta-aggregation is also needed to detect most of
the useful line segments.

The next step, where we aggregate line segments into contours,
was described in the fourth chapter. A multi-resolution
representation, based on a pyramid, is employed to represent line
segments at the two lower levels while the contour segments are
represented at higher levels as groups of short line segments. The
grouping of line segments into contours is implemented using a
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4x4 overlapped quadtree to simulate the pyramidal architecture.
The aggregation process is mainly performed on 8x8 window

based line segments and lower level segments are only used for
completing the fragmented parts of contours and to resolve
ambiguities. The processing elements in the overlapped pyramid
are linked to four parents and sixteen children. Each pérent
performs grouping on the line data supplied by its sixteen
children independently and in parallel and passes on the grouped
line segments in its inner 2x2 block children to its parents. The
grouping principles used in this operation are: proximity of line
end points, theta-aggregation, curvilinearity, continuity, and
similarity in the line contrast. The grouping process starts from
the bottom level and grouped segments are passed to the higher
level processors and when the root of the pyramid is reached.
Groups of line segments emerge which are then converted into
contours. Different order polynomials can also be fitted on the
contour data at this stage.

The bottom-up and data driven processes used for contour
extraction have their roots in psychophysical and
neurophysiological studies. The transition gap between edge point
data and contours is a source of a discontinuity in the flow of
information. Our contour extraction method offers the potential for
eliminating this discontinuity. In contrast to the existing contour
extraction techniques, our approach forms contours in parallel
using the pyramid architecture in a single pass starting from the
bottom level and moving to the top of the pyramid.

7.3 Region Extraction

A new method for dark region extraction to estimate the insertion
direction of the endoscope was described in chapter five. A
pyramid structure based on the intensity mean and variance of
square blocks has been used in our method. The formulation of
variance computation recursively as one moves from the bottom
level to the top of the pyramid, has allowed us to devise a highly
parallel implementation. The average intensity of the darker
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region is estimated from the first peak of the histogram of a given
colon image. The algorithm is simulated by constructing a
quadtree in which each node stores the average intensity and
variance of its corresponding region. A dynamic link is associated
to each node of the pyramid in addition to the normal connections
to its children and parent. During the pyramid construction
process, a record is kept for the largest dark and uniform square
region in each sub-tree. This has been achieved by connecting the
dynamic link of the root of every sub-tree to its darker and
uniform region node. In this way when the pyramid is completed,
the node which corresponds to the largest dark and uniform
region in the pyramid is identified. The region itself can be used to
estimate the endoscope insertion direction or it may be used as a
seed for the region growing process to extract a complete dark
region.

As far as we know, this is the first time a variance pyramid has
been used to extract regions of given properties. The region
extraction method is very efficient and effective in terms of its
parallel implementation. We have also implemented an extended
version of this technique for general purpose segmentation. The
first step of pyramid building, which identifies the seed regions
for each node of the pyramid, is similar to the dark region
extraction. An additional top-down pass in the pyramid is
required for growing these seeds into complete uniform regions.
In addition to the colon images tested for dark region extraction,
different medical and computer generated images have also been
segmented successfully.

7.4 Discussion
Both of the image segmentation techniques, we have presented in
this thesis, do not now seem to require any basic modification or

improvements. The tuning of the algorithms, however, may be
needed when they are used in different world domains.
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In contour extraction, we have assumed the presence of a single
line structure in a pre-defined small window of the image. This is
not a bad assumption in the context of endoscopic colon images. In
other domains, where the assumption may limit the performance
of algorithm, the presence of more than one line segment can be
assumed depending on the threshold for the number of votes for a
useful line structure. Another point which may be raised concerns
the extraction of straight line segments rather than curved line
segments. We believe that the choice for straight segments is an
optimal one, in terms of further grouping processes (e.g. theta-
aggregation), efficient implementation, and the evidence from
physiological studies. There is no evidence of any loss of contours
due to straight line segments, and contour location errors are
within an acceptable level. The grouping techniques used in the
line segment and then contour extraction steps can be
strengthened by applying the well known law of common fate but
this is only possible if we first calculate the optical flow from the
sequence of images. The shape information from motion is
discussed in the future work.

The dark region extraction method is the simplest one but most
effective in determining the insertion direction. The only
uncertainty involved is due to the estimation of darker region
intensity from the image histogram. But the technique for region
extraction itself is very sound and accurate irrespective of
whether the intensity of a region is known or not. This has been
demonstrated by extending the method to general purpose
segmentation, where the technique does not use any information
about the intensities of uniform regions. During extracting dark
regions in colon images, if the first peak is un-detectable from the
image histogram, it indicates that there is no dominant dark
region in the image. This means that the chances of finding the
deepest and obstacle free area in the colon are limited. This effect,
for example, may be due to the simple fact that endoscope tip is
facing a colon wall.

The region uniformity criterion for extracting the seed region is
dependent only on a variance low-threshold. But when the regions
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are merged there are other factors which have been included in
defining the uniformity of a region. The second variance high-
threshold can be defined for the merged regions which can be
higher than the seed region threshold. Another tolerance
threshold based on the difference in average intensities of the two
regions is also employed. Ideally the average intensities of two
regions to be merged should be equal. We have adapted this
threshold depending on the uniformity of the merged regions to
avoid over merging. The uniformity of regions can also be
dynamically defined depending on the size of the region but we
have found that in most of the test images this does not provide
any more better results.

7.5 Future Work

There are a number of research areas which have to be explored
for achieving automatic control of endoscope for colonoscopy. The
endoscope can only be navigated successfully by merging and
bridging the gaps between these diverse areas which include but
are not limited to: computer vision, robotics, expert systems, 3-D
modelling, sensors, control systems, and the mechanics of the
endoscope itself. In this thesis we have only discussed the early
and intermediate visual processing. The exploitation of full
capabilities of computer vision itself requires a large amount of
effort and research.

The endoscope sensing system needs a considerable amount of
work for building an accurate world model of colon from the
visual information available. We have already proposed a model
of the colon in the form of a generalised homogeneous, circular
cylinder in chapter six. The model can be extended to a more
general elliptical generalised cylinder. The occluding contours can
also be interpreted for extracting three-dimensional information
by using the different constraints which we have described in
chapter four. In addition to that, the work on the extraction of
temporal information from a sequence of colon images has been
started. The computation of motion information will not only
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provide the colon shape information but also camera motion
parameters will be determined during this process. In particular,
the detection of camera motion will provide the information about
the movement of the endoscope tip, which is vital for the
confirmation of the execution of a tip movement command. The
main work in this regard has been undertaken to investigate some
effective methods for computing the optical flow from a sequence
of endoscopic images. This is a difficult task, particularly
considering the noise in colon images and other artefacts of the
human colon.

We have introduced an hierarchical navigation system for
endoscope control in chapter six. The navigation system consists of
three distinct modules: global expert, navigator, and pilot. The
work on the global expert will also be getting under way soon. In
this regard, different expert rules on colonoscopy will be compiled
by visiting colonoscopy sessions on a variety of patients. The
endoscope insertion and manoeuvring techniques (for example,
how to come out of a loop formed in the sigmoid colon) from
different endoscope consultants will also be gathered to overcome
the dead end encountered during the colonoscopy. In this way a
production rule based system will be built to provide expert
advice for the navigator when the visual sensing information is
not adequate to guide the endoscope. Fortunately, part of the
medical support for this project has been provided by the
endoscopy unit at St. Mark's Hospital London.

In order to test our machine vision techniques in real-time
conditions, we are implementing the dark region extraction
method using a parallel-hierarchical pyramid of transputers. In
the first instance, the algorithm will be implemented using five
transputers on a XENIX base host for an Imaging Technology
series 151 image processor. The series 151 image processor will
receive the sequence of colon images from a video tape made
during colonoscopy. The construction of an image histogram and
the estimation of the first peak in the histogram will also be
implemented on the image processor to achieve the results at
video rate. The image data will be transferred to the transputer

-195-



boards for detecting the dark region. The transfer of image data is
currently consuming most of the time in our proposed parallel-
pipeline processing. We are investigating the use of a transputer
board with the frame grabber to avoid this data transfer delay. In
addition to that, the use of twenty one transputers instead of five
is also being considered. Hopefully with the introduction of
additional processing power and parallelism, the region extraction
time will be reduced in the order of milliseconds. Therefore the
system will track the lumen from on line colon images digitised
from a video recorder. This set up provides a simulation for the
automatic insertion of endoscope. The dark region information will
be used by the navigator to generate tip control commands for
execution by the pilot.
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