
SystemC: A Hardware-Software Co-specification,
Codesign and Modeling Language: A Tutorial

EE8205: Embedded Computer Systems

1 Objectives

Software This lab/tutorial introduces the SystemC modeling language and provides an
insight to employ SystemC for hardware-software codesign of embedded computer
systems. It is also demonstrated that SystemC is useful for embedded system co-
specification and modeling.

2 Overview

SystemC is a new system modeling language based on C/C++ that can support system
level design. The emergence of hardware-software codesign and system-on-chip (SoC)
era is creating many new challenges at all the stages of an embedded system design
process. At the system level, engineers are dealing with how designs are specified,
partitioned into hardware-software modules and then verified. Today, with embedded
software engineers programming in assembly and C while their hardware counterparts
working in hardware description languages such as VHDL or Verilog, problems arising
from the use of different design languages, incompatible tools and fragmented design
flows are becoming common.

Momentum is building for the SystemC language and modeling platform as the solution
for representing functionality, inter-task communication, software and hardware at
various system levels of abstraction. Increasing design complexity that demands very fast
executable specifications to validate system concepts, and only C/C++ delivers adequate
levels of abstraction, hardware-software integration and performance. Embedded system
design also demands a single common language and modeling foundation in order to
make a market for interoperable system-level design tools, services and IP (Intellectual
Property) a reality. In response to these needs, SystemC has been developed as a
standardized modeling language intended to enable system level design and IP exchange
at multiple abstraction levels for systems containing both hardware and software
components. SystemC is entirely based on C++ and it can also be installed on Windows-
XP environment as outlined in the Appendix.

3 Introduction to SystemC

SystemC allows engineers to program software and hardware modules of the same
project quite easily. SystemC Libraries are based upon C language and their syntax is
similar to C/C++ language we are familiar with. Hence the only things touched upon in

__
EE8205: Embedded Computer System SystemC Tutorial Page:1/7

this section are the difference and the new features of SystemC. You must consult the
SystemC documentation available at https://www.accellera.org/downloads/standards/systemc/
and course web-pages http://www.ee.ryerson.ca/~courses/ee8205/ and documents (doc)
available at the department linux system.

(i) Signals

Instead of using variables, signals are used when programming hardware modules very
close to VHDL or Verilog.

Declaring signals is similar to normal C language as given below.

sc_signal<data_type> sig_name;
• The above line would create a signal of type ‘data_type’ and name it

‘sig_name’.
• The ‘data_type’ could be any valid C++ type, SystemC type or user defined

structure type.

Each hardware module has its own input and output ports to which these signals must
be mapped or bound.

(ii) Ports

Ports declaration is similar to declaring signals.
The following line would create a ‘port_type’ port of type ‘data_type’ with name
‘prt_name’.

port_type<data_type> prt_name;
• ‘port_type’ defines the port as an input, output, or inout as sc_in, sc_out, or

sc_inout respectively.
• The ‘data_type’ could be any valid C++ type, SystemC type or user defined

structure type.

There are two types of port binding: named and positional.

• Named binding: It binds each port to a signal (one to one) by using their
name. e.g. block.input(signal01);
where ‘block’ is the name of the module, ‘input’ is the name of one of the
ports of ‘block’, and it is being bound to ‘signal01’, which is a signal.

• Positional binding: It binds the ports by their position. This is quite unsafe
as one change in the order might result in unforeseeable effects, and the
engineer might not even know where the problem is?
e.g. block(signal01, signal02);
where ‘block’ is the name of the module and ‘signal01’ and ‘signal02’ are
two signals, which are being bound to the first two ports of the module.

Vector ports and signals are used for arrays and they must be bound by name.
Reading and writing to ports and signals is performed by using read() and write()
functions e.g. “signal01.read()” would read the signal ‘signal01’, while
“signal01.write(1)” would write ‘1’ onto ‘signal01’. Similarly, “port01.read()” and
“port01.write(1)” will read from ‘port01’ and write a ‘1’ onto ‘port01’ respectively.

(iii) Modules

A module is the basic object in SystemC that includes ports, constructors, data
members, function members and maybe internal memory storage and internal
functions. A module can be thought of as a process or a box in the hardware block
diagram. It has two types of syntax. Firstly, “SC_MODULE(module)” declares the
‘module’ as a SystemC module. Secondly, “struct module : sc_module { … };” that
performs the same function.

Modular instantiations follows the following syntax:

module_name module_shortname(“module_name”);
The module_shortname could be any undeclared name, which is used to bind the ports
to the signals later on.
Once the modules are instantiated, the ports must be bound.

(iv) Constructors

Each module should include a constructor. Constructors identify processes as methods
using the SC_METHOD macro as explained here.
SC_METHOD(function) identifies the function or process ‘function’ as a SystemC
method.

In SystemC, methods are all called at initialization and thus all initializations that need
to be performed must be defined inside the constructor. If one does not need
initialization then use the “dont_initialize()” command after each method that is to be
skipped for initialization. Methods are called similar to normal C implementation and
their protocols follow the following syntax:

Function_type module_name::function_name(data_type var_name) { … }

Methods have to be made sensitive to some internal or external signal. Normally, they
are made sensitive to the positive or negative clock edge as shown below respectively.
 sensitive_pos << clock

sensitive_neg << clock,

(v) The Main Program Function

The main function must include all the modules in the project and their ports must be
connected to the signals. The argument to the main function is as following.

int sc_main(int argc, char *argv[])

(vi) Creating the Clock Signal

There are two ways of creating clock signals. A clock is declared using the sc_clock
type, i.e. sc_clock clk(“clock”, 20); and then one must “start” the clock with the
sc_start(sc_time) macro. This would create a clock signal of name ‘clk’ of period 40 (a
default time) and ‘sc_time’ is the total time. It means that the clock would stay low for
20 time periods and high for 20 time periods, and this would continue for ‘sc_time’
length.

EE8205: Embedded Computer Syste SystemC Tutorial Page: 3/7

The clock can also be declared using the sc_signal type, i.e. sc_signal<bool> clk; then
we must manually create the clock signal using a loop and the sc_cycle macro, as given
below.

for (j = 0; j < sc_time; j++) {
 clk.write(0);
 sc_cycle(20 e –9);
 clk.write(1);
 sc_cycle(20 e –9);
}

This would create a clock signal of period 40 nanoseconds of length sc_time.

(vii) Tracing Signals

Tracing is useful to verify that the design of system is working according to the
specification and this is done by creating a trace file and then using the built-in signal
tracing method to trace signals. A trace file is created by using the following procedure
and command.

sc_trace_file *tf = sc_create_vcd_file(“trace_file”);

This creates a trace file of extension .vcd, and points it to the file pointer ‘tf’.

• The syntax is similar to C decleration but instead of FILE*, a
sc_trace_file* is used.

• Other valid file types are .wif and .isdb, which can be created by using the
same command and replacing the .vcd by an appropriate file extension.

To trace a signal, one needs to follow a syntax given below

sc_trace(sc_trace_file*, sc_signal, “signal_name”);
For example, sc_trace(tf, clk.signal(), “clock”);

A trace file must also be closed by using the sc_close_vcd_trace_file(my_trace_file);
Command that will close the trace file named “my_trace_file.vcd”
Similarly, we can use ‘sc_close_isdb_trace_file’ or ‘sc_close_wif_trace_file’ to close
.isdb and .wif extension trace files.

(viii) Viewing Trace Files

The trace file with extension .vcd can be viewed using the simvision program available
on the department linux systems as explained below.

- Execute simvision or 'gtkwave' program
- Once the program has loaded; under the File menu, click on Open Database and

then select the *.vcd file created by your SystemC simulation code.
- Select your *.vcd file and open it. Confirm OK for translation to SST database.
- Under the ‘Scope Tree’ frame should be the name of your trace file, click on it to

open the ‘SystemC’ checkbox.

__
EE8205: Embedded Computer Systems SystemC Tutorial Page: 4/7

- Click on ‘SystemC’ to open the available traced signals in the ‘Signals/Variables’
frame.

- Right click on the signal name and choose the ‘Send to target Waveform
Window’ option. A new window should appear, with the waveform displayed.

- If the waveform does not look as it should be, try to magnify out by clicking the
appropriate button on the top right corner of the waveform window.

4 Simulating a BCD Counter: An Example

The example hardware implemented to introduce the working of SystemC is a BCD
up-counter, which counts from zero (0) to nine (9) in ten (10) clock cycles. The
counter is reset to zero (0) after it reaches nine (9). The example runs for twenty-one
(21) clock cycles. To explain the hardware-software co-design of the BCD counter,
the counter is implemented in hardware, while a software block checks whether the
counter has reached ten (10), and then resets it to zero. You can follow the following
steps to model and simulate the counter example using SystemC.
• Copy all of the files from the course directory /ee8205/labs/counter/*.*

There should be five files namely: main.cpp, counter.cpp, counter.h, makefile.sun,
makefile.defs as explained below:
� counter.cpp is the counter block, which is completely modeled in

hardware.
� counter.h defines the ports and the internal variables and functions used in

the counter hardware block.
� main.cpp is the main routine and it also contains the software block, where

the program checks the count for ten, and resets it to zero when it reaches
ten.

• Compile the program using the make command as given below.

• This will create the executable counter file. To run this executable, type the name
of the executable file.

• You should see the counter moving from 0 Æ 9 and then a message being
displayed showing the counter was reset to 0. There should be two separate
cycles, corresponding to 21 clock cycles

• Lines 12 to 19 of the main.cpp are the commands used to declare a trace-file,
creating a trace-file and defining the signals to be traced. For more details on
tracing, consult the Tracing Signals sub-section described earlier.

• The counter example creates “counter_tracefile.vcd” which can be viewed using
the simvision software installed on the department Sun-Unix workstations.

__
E8205: Embedded Computer Systems SystemC Tutorial Page: 5/7

Appendix

MS-Windows Installation of SystemC

- You need both the Cygwin and SystemC packages to work in a Windows-XP
environment as SystemC will be running everything under Cygwin.

- Download the Cygwin setup program from www.cygwin.org
Recommendation: Select "Download from Internet" to save the files to a local
directory. You can then put this directory to a CD to install on other systems, or
simply to archive them for later installation.
- Open up the devel section and make sure to add the following packages:

• Autoconf
• Automake
• gcc
• gcc-g++
• gdb
• make

- Open up the Doc section and add cygwin-doc package.
- Open up the Web section and add wget package.
- When you want to install, run the setup program again and select the "Install from

Local Directory" to install from the archives you saved earlier
- Don't forget to add the packages above. They have been downloaded but are still

not part of the base installation
Recommendation: Do not install Cygwin to the same directory that contains your
downloaded files.
- Download the SystemC sources from

https://www.accellera.org/downloads/standards/systemc/.
- Unzip the install file into a folder of your choice e.g. 'C:\Temp'
- Read carefully the instructions found in the file called "INSTALL" to compile the

SystemC libraries. You can open this file in notepad or wordpad.
- Make a directory 'objdir' (e.g. C:\Temp\SystemC-2.0.1\objdir)
- Change to the ‘objdir’ directory, in Cygwin, and configure SystemC as following:

../configure --prefix=/usr/local/systemc
or

../configure --prefix=/usr/local/systemc --host=i386-pc-cygwin
- This will place the installed files (once you install SystemC) into the directory

'/usr/local/systemc'
- The configure command should not return any errors. If you encounter any error,

please double check and try again. There could be errors in your cygwin
installation, for example files you forgot to add gcc or g++.

- Compile the library using 'make'
- Then install the library and examples using 'make install'
- The compiled library and examples should now be sitting in the directory that you

specified earlier (e.g. /usr/local/systemc/)

__
EE8205: Embedded Computer Systems SystemC Tutorial Page: 6/7

http://www.cygwin.org/
http://www.systemc.org/

Configuring SystemC for MS-Windows System
- Each example and application of SystemC must include the two files namely:

Makefile and Makefile.defs
- Makefile.defs can be copied from the SystemC folder/examples
- Makefile can be copied from the SystemC folder/examples/any of the folders
- It will be named with an extension of .gcc, .linux, .hp, .sun
- All of these are similar but customized for different systems
- Copy appropriate file for your system and rename it Makefile
- In your SystemC project directory (you should make one for every system design

you are working on), you will need, Makefile, Makefile.defs and your source files
(*.cpp or *.c) and source libraries (*.h)

- Modify Makefile.defs as:
SYSTEMC = …/.../...
This line should point to the location of compiled SystemC libraries

- The rest of the file can be left as unchanged
- Modify Makefile as follows:

• TARGET_ARCH = gccsparc05
� This line will be different depending for which of the Makefile

sample you have copied
� Modify the string to correspond to the host architecture you are

running on, and should point correspond to the
'/usr/local/systemc/lib-xxx' folder, where xxx is the host system

� Under cygwin it will be '/usr/local/systemc/lib-cygwin'. Make sure
that a ~1.9MB library file 'libsystemc.a' should exist there

� therefore the line should look like … TARGET_ARCH = cygwin
� Not all architectures are supported. If you are running on a non-

supported architecture, simply use 'linux' or other compatible
architecture. This string is used to differentiate a few tools and will
not have a big effect on the system.

• MODULE = run
� This line reflects the name of the compiled executable
� It can be left as-is or modified. Left as-is, the compiled executable

will have a name of 'run.x'
• SRCS = main.cpp display.cpp

� This line must include the names of all the files in the project, not
including the custom libraries, which were included from
elsewhere

• Do not remove the ‘include ../Makefile.defs’ line
• Change it to ‘include Makefile.defs’ if the Makefile.defs is in the same

folder as Makefile file
- The Makefile must be in the same folder as the rest of the project files
- Now, you can compile and run the examples as follows:

make –f makefile
• This will compile the executable file (*.x), which is ready to be executed

by typing ./*.x or *.x. This is your SystemC simulator.

__
EE8205: Embedded Computer Systems SystemC Tutorial Page: 7/7

	2 Overview
	3 Introduction to SystemC
	(i) Signals
	(ii) Ports
	(iii) Modules
	(iv) Constructors
	(v) The Main Program Function
	(vi) Creating the Clock Signal
	4 Simulating a BCD Counter: An Example

	Appendix
	MS-Windows Installation of SystemC
	Configuring SystemC for MS-Windows System

