SoC Design Verification

COE 838: Systems-on-Chip Design

What is SoC Design Verification?

- Design Verification is the process of checking that a given design correctly implements the specification.
- The largest task in SoC development that has the biggest impact on the key business drivers:
 - quality, schedule, design to market and cost.
- Verification team to Design team ratio ranges from 2:1 to 3:1
- > 70% development cycle is dedicated to verification.
- A diverse domain/field with endless strategies/techniques to sign-off (finalize) the chip.
- Every design needs verification need for highly skilled design verification engineers to meet the challenges of the state-of-the-art technological innovations.

Verification Development Cycle Time

ASIC/IC Verification Project Time

SoC Design/Verification in Industry

- For Example: Advanced Micro Devices and Qualcomm are "Chip and SoC Makers"
- They make SoCs for living.
- Their SoCs are ranging in all computational applications.
- CPU, GPU, and all SoC elements that we can observe in:
 - Enterprise servers, Google, Facebook, Amazon, etc.
 - Smart Phones, Laptops, Desktops, Gaming Desktops.
 - Game consoles such as Xbox and Play-station.
 - Discrete Graphics Cards.

Verification Group in the SoC Developer - AMD

- RTG "Radeon Technologies Group" design and verify the AMD dGPU...
- dGPU : Discrete Graphics Processing Units
- Graphics in advanced applications of daily usage:
 - Virtual Reality, Augmented Reality, Gaming consoles/stations, Artificial Intelligence, Machine Learning..
- Compute graphics a parallel processing computational engine convenient for certain applications than a typical sequential CPU....

What is an SoC

* A system on a chip or system on chip (SoC or SOC) is an integrated circuit (also known as an "IC" or "chip") that integrates all components of a computer or other electronic systems.

* It may contain <u>digital</u>, <u>analog</u>, <u>mixed</u>, and often <u>radio-frequency</u> functions all on a single <u>chip</u>.

* SoCs are very common in <u>mobile</u> <u>computing</u> market due to low power consumption.

* Main applications are the area of embedded systems.

SoC is too complex!

Design Sizes

Industry Always Look for Verification Engineers

An SoC Architecture

Verification Strategies

- Functional Verification, Power Verification, Performance Verification
- Stimulus Generation
- Simulation based verification
- Directed testing
- Random and Constraint-Random Verification
- Formal Verification
- Verification Methodologies: UVM
 - FPGA-based Verification
 - Emulation
 - Verification tools and Infrastructure.

Verification Engineers and their Time Consumption?

2016 Where ASIC/IC Verification Engineers Spend Their Time

Test Planning

Testbench Development

Creating Test and Running Simulation

Debug

Other

Mix & Match Verification Efforts and Trends!

12

Acceleration is the Key Emulation & FPGA Verification

Verification Languages

* Multiple answers possible

Verification Methodologies Evolution....

SoC Design Projects Typical Schedules

How many times would it take to launch a product? Spins Headache...

