
©G. Khan

SystemC: Co-specification and
SoC Modeling

COE838: Systems-on-Chip Design
http://www.ecb.torontomu.ca/~courses/coe838/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan

Elect., Computer & Biomedical Engineering
Toronto Metropolitan University

Overview:

▪ Hardware-Software Codesign and Co-Specification

▪ SystemC and Co-specification

▪ Introduction to SystemC

▪ A SystemC Primer

Introductory Articles on Hardware-Software Codesign, part of SystemC: From the Ground Up
related documents available at the course webpage

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 1

©G. Khan

Hardware-Software Codesign

Co-design of Embedded Systems consists of the

following parts:

▪ Co-Specification

Developing system specification that describes hardware,

software modules and relationship between the hardware

and software

▪ Co-Synthesis

Automatic and semi-automatic design of hardware and

software modules to meet the specification

▪ Co-Simulation and Co-verification

Simultaneous simulation of hardware and software

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 2

©G. Khan

HW/SW Co-Specification

• Model the Embedded system functionality from

an abstract level.

• No concept of hardware or software yet.

• Common environment
SystemC: based on C++.

• Specification is analyzed to generate a task

graph representation of the system

functionality.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 3

©G. Khan

Co-Specification

• A system design language is needed to describe the

functionality of both software and hardware.

• The system is first defined without making any

assumptions about the implementation.

• A number of ways to define new specification

standards grouped in three categories:

➢ SystemC - an open-source library in C++ that provides a

modeling platform for systems with hardware and software

components.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 4

©G. Khan

SystemC for Co-specification

Open SystemC Initiative (OSCI) 1999 by EDA venders
including Synopsys, ARM, CoWare, Fujitsu, etc.

❑ A C++ based modeling environment containing a
class library and a standard ANSI C++ compiler.

❑ SystemC provides a C++ based modeling platform for
exchange and co-design of system-level intellectual
property (SoC-IP) models.

▪ SystemC is not an extension to C++

SystemC 1.0 and 2.1, 2.2 and 2.3.3 versions

It has a new C++ class library

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 5

©G. Khan

SystemC Library Classes

SystemC classes enable the user to

• Define modules and processes

• Add inter-process/module communication through

ports and signals.

Modules/processes can handle a multitude of data types:

Ranging from bits to bit-vectors, standard C++ types

to user define types like structures

Modules and processes also introduce timing,

concurrency and reactive behavior.

• Using SystemC requires knowledge of C/C++

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 6

©G. Khan

SystemC 2.0 Language Architecture

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 7

©G. Khan

SystemC 2.0 Language Architecture

• All of the SystemC builds on C++

• Upper layers are cleanly built on top of the lower layers

• The SystemC core language provides a minimal set of
modeling constructs for structural description, concurrency,
communication, and synchronization.

• Data types are separate from the core language and user-
defined data types are fully supported.

• Commonly used communication mechanisms such as
signals and FIFOs can be built on top of the core language.

The MOCs can also be built on top of the core language.

• If desired, lower layers can be used without needing the
upper layers.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 8

©G. Khan

SystemC Benefits

SystemC 2.x allows the following tasks to be

performed within a single language:
• Complex system specifications can be developed and simulated

• System specifications can be refined to mixed software and

hardware implementations

• Hardware implementations can be accurately modeled at all the

levels.

• Complex data types can be easily modeled, and a flexible fixed-

point numeric type is supported

• The extensive knowledge, infrastructure and code base built

around C and C++ can be leveraged

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 9

©G. Khan

SystemC for Co-Specification

Multiple abstraction levels:

▪ SystemC supports untimed models at different levels of

abstraction,

• ranging from high-level functional models to detailed clock

cycle accurate RTL models.

Communication protocols:

▪ SystemC provides multi-level communication semantics

that enable you to describe the system I/O protocols at

different levels of abstraction.

Waveform tracing:

▪ SystemC supports tracing of waveforms in VCD, WIF, and

ISDB formats.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 10

©G. Khan

SystemC Development Environment

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 11

file_name.x

©G. Khan

SystemC Features

Rich set of data types:

▪ to support multiple design domains and abstraction levels.
• The fixed precision data types allow for fast simulation,

• Arbitrary precision types can be used for computations with large numbers.

• the fixed-point data types can be used for DSP applications.

Variety of port and signal types:

▪ To support modeling at different levels of abstraction, from the

functional to the RTL.

Clocks, Events, Time:

▪ SystemC has the notion of clocks and time (as special signals).

▪ Multiple clocks, with arbitrary phase relationship, are supported.

Cycle-based simulation:

▪ SystemC includes an ultra light-weight cycle-based simulation

kernel that allows high-speed simulation.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 12

©G. Khan

• SystemC supports:

▪ all C/C++ native types

▪ and specific SystemC types

• SystemC types:

▪ Types for system modeling/simulation (e.g., events, time,

clock, etc.)

▪ 2 values (‘0’,’1’)

▪ 4 values (‘0’,’1’,’Z’,’X’)

▪ Arbitrary size integer (Signed/Unsigned)

▪ Fixed point data types

SystemC Data types

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 13

©G. Khan

SC_Logic, SC_int types

SC_Logic: More general than bool, 4 values :
(‘0’ (false), ‘1’ (true), ‘X’ (undefined) , ‘Z’(high-impedance))

Assignment like bool
my_logic = ‘0’;

my_logic = ‘Z’;

Operators like bool but Simulation time bigger than bool

Declaration
sc_logic my_logic;

Fixed precision Integer: Used when arithmetic operations

need fixed size arithmetic operands
• INT can be converted in UINT and vice-versa

• 1-64 bits integer in SystemC
sc_int<n> -- signed integer with n-bits

sc_uint<n> -- unsigned integer with n-bits

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 14

©G. Khan

Other SystemC types
Bit Vector

sc_bv<n>

2-valued vector (0/1)

Not used in arithmetics operations

Faster simulation than sc_lv

Logic Vector
sc_lv<n>

Vector of the 4-valued sc_logic type

Assignment operator (=)
my_vector = “XZ01”

Conversion between vector and integer (int or uint)

Assignment between sc_bv and sc_lv

Additional Operators:

Reduction -- and_reduction() or_reduction() xor_ reduction()

Conversion -- to_string()

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 15

©G. Khan

SystemC Data types

Type Description

sc_logic Simple bit with 4 values(0/1/X/Z)

sc_int Signed Integer from 1-64 bits

sc_uint Unsigned Integer from 1-64 bits

sc_bigint Arbitrary size signed integer

sc_biguint Arbitrary size unsigned integer

sc_bv Arbitrary size 2-values vector

sc_lv Arbitrary size 4-values vector

sc_fixed templated signed fixed point

sc_ufixed templated unsigned fixed point

sc_fix untemplated signed fixed point

sc_ufix untemplated unsigned fixed point

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 16

©G. Khan

SystemC types

Operators of fixed precision types

Bitwise ~ & | ^ >> <<

Arithmetics + - * / %

Assignement = += -= *= /= %= &= |= ^=

Equality == !=

Relational < <= > > =

Auto-Inc/Dec ++ --

Bit selection [x] e.g. mybit = myint[7]

Part select range() e.g. myrange = myint.range(7,4)

Concatenation (,) e.g. intc = (inta, intb);

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 17

©G. Khan

sc_bit y;

sc_bv<8> x;

y = x[6];

sc_bv<16> x;

sc_bv<8> y;

y = x.range(0,7);

sc_bv<64> databus;

sc_logic result;

result = databus.or_reduce();

sc_lv<32> bus2;

cout << “bus = “ << bus2.to_string();

Usage of SystemC types

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 18

©G. Khan

sc_fixed<WL, IWL> ; such as sc_fixed<5, 3> ;

Word Length (WL) # of bits to represent the entire fixed-point number.

Integer Word Length (IWL) represents how many bits, out of the Word

Length, are used to represent the integer part.
sc_ufixed<5, 3> a = 111.11; //a will set to 7.75

sc_fixed<5, 3> a = 011.11; //a will set to 3.75

sc_fixed<5, 3> a = 100.00; //a will set to -4

sc_fixed, sc_ufixed, sc_fixed_fast and sc_ufixed_fast

sc_fix, sc_ufix, sc_fix_fast, and sc_ufix_fast

“fixed” template classes where parameters can be set via variable

declaration.

“fix” are C++ classes & parameters are via their constructors or

parameters context.

“fast” are called limited-precision fixed-point types.

Fixed Point Data Types

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 19

©G. Khan

sc_fixed<5,3> a_fixed = 1.75;

cout << "a_fixed: " << a_fixed << endl;

// for "fix" class you can specify via its constructor WL and IWL

sc_fix a_fix(5, 3); a_fix = 1.75;

cout << "a_fix: " << a_fix << endl;

// however, for "fix" classes the parameters can be set via a context

sc_fxtype_params params(5,4);

sc_fxtype_context context(params);

// We do not specify in b_fix constructor anything

// the parameters are taken from the latest created context

sc_fix b_fix; b_fix = 1.75;

// b_fix is 1.5 because we configured the context with WL = 5 and IWL = 4

cout << "b_fix: " << b_fix << endl;

// you can use the constructor to hard code the arguments

sc_fix c_fix(5,3);

c_fix = 1.75; cout << "c_fix: " << c_fix << endl;

Fixed Point Examples

OUTPUTS

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 20

©G. Khan

Some Specific Features

• Module: A basic but most important Class
▪ A hierarchical entity that can have other modules or

processes contained in it.

• Ports and Channels:
▪ Modules have ports through which they connect to other

modules.

▪ Single-direction and bidirectional ports.

• Signals:

▪ SystemC supports resolved and unresolved signals.

• Processes:
▪ used to describe functionality.

▪ contained inside modules.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 21

Modules

©G. Khan

The basic building block in SystemC to partition a design.

• Modules are similar to „entity“ in VHDL

• Modules allow designers to hide internal data
representation and algorithms from other modules.

Declaration

▪ Using the macro SC_MODULE

SC_MODULE(modulename) {

▪ Using typical C++ struct or class declaration:

struct modulename : sc_module {

Elements:

Ports, local signals, local data, other modules,
processes, and constructors

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 22

sc_module

©G. Khan

The basic building block in SystemC to partition the SoC

design into hardware components.
• Modules are similar to “entity“ in VHDL
• To allow designers to hide internal representation

of data, and algorithms from other modules.

Module Declarations:
▪ Using the macro SC_MODULE

SC_MODULE(modulename) { }

▪ Using typical C++ struct or class declaration:

struct modulename : sc_module { }

Elements:
Ports, local signals, local data, other modules,

processes, and constructors

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 23

sc_module (cpu) { } ;

©G. Khan

CPU module class can have inside the class members: alu,

registers, and control units.

SC_MODULE(cpu) {

SC_CTOR(cpu) {

cout << "cpu::constructor()" << endl; // confirming constructor

} };

alu: module registers:

module

control : module

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 24

©G. Khan

Constructor: can use a macro SC_CTOR() where each
module has a constructor using the method or thread macros.

SC_METHOD (funct) ; // Identifies the function or process ‘funct’

Methods or Threads are called similar to C++ as:

SC_CTOR(cpu) {

cout << "cpu::constructor()" << endl; //confirming constructor

// register the method/thread that will be called when sc_start() is called

SC_METHOD(funct);
};

• SC_METHOD process is triggered by events and executes all the
statements in it before returning control to the SystemC kernel.

• A Method needs to be made sensitive to some internal or external
signals. e.g., sensitive_pos << clock or sensitive_neg << clock

• Process and threads get executed automatically in the constructor,
even if an event in sensitivity list does not occur. To prevent this
un-intentional execution, dont_initialize() function is used.

Module Constructor

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 25

SystemC Module

©G. Khan

process

module

module

module

process

SC_MODULE(module_name) {
// Ports declaration
// Signals declaration
// Module constructor : SC_CTOR
// Process constructors and sensibility list
// SC_METHOD // or (SC_THREAD)
// Sub-Modules creation and port mappings
// Signals initialization
}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 26

©G. Khan

Ports of a module are the external interfaces that pass information to
and from a module.

sc_inout<data_type> port_name;

• Create an input-output port of ‘data_type’ with name
‘port_name’.

• sc_in and sc_out create input and output ports respectively.

Signals are used to connect module ports allowing modules to
communicate.

sc_signal<data_type> sig_name ;
• Create a signal of type ‘data_type’ and name it ‘sig_name’.
• hardware module has its own input and output ports to which

these signals are mapped or bound.

For example:
in_tmp = in.read(); //reads the port in to in_tmp
out.write(out_temp); //writes out_temp to the out port

Signals and Ports

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 27

2-to-1 Mux Modules

©G. Khan

Module constructor – SC_CTOR is Similar to an

“architecture“ in VHDL
SC_MODULE(Mux21) {

sc_in< sc_uint<8> > in1;

sc_in< sc_uint<8> > in2;

sc_in< bool > selection;

sc_out< sc_uint<8> > out;

void MuxImplement(void);

SC_CTOR(Mux21) {

SC_METHOD(MuxImplement);

sensitive << selection;

sensitive << in1;

sensitive << in2;

}

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 28

©G. Khan

sc_main()

The top level is a special function called sc_main.

• It is in a file named main.cpp or main.c

• sc_main() is called by SystemC and is the entry point for

your code.

• The execution of sc_main() until the sc_start()

function is called.

• sc_start(arg) has an optional argument:

It specifies the number of time units to simulate.

If it is a null argument the simulation will run forever.

int sc_main (int argc, char *argv []) {

// body of function

sc_start(arg) ;

return 0 ;

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 29

Lab1: Flip-Flop Module

©G. Khan

#include <systemc.h>

SC_MODULE(flipflop) {

sc_in<bool > clk;

sc_in<bool> enable;

sc_in<sc_uint<3> > din;

sc_out<sc_uint<3> > dout;

void ff_method();

SC_CTOR(flipflop) {

SC_METHOD(ff_method);

dont_initialize();

sensitive << clk.pos(); // +ve edge sensitive

}

};

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 30

Lab1: Flip-Flop

©G. Khan

sc_int<3> data;

void flipflop :: ff_method() {

//after every rising edge, check if enabled

cout << "Enable = " << enable.read() <<", output = ";

if(enable.read() == 1){

data = din.read();

dout.write(din.read()); }

cout << data.to_string(SC_BIN) << endl;

}

From the sc_main() shown earlier, we can identify 3 phases:

Elaboration Phase: everything before the call of sc_start() function.

This phase is used to declare modules, clocks, make connections etc.

Simulation Phase: Execution of the sc_start() function

Post-processing Phase: The code after sc_start(). Handle the results of

simulation (determine if a test passed or not), close any stimuli files, etc.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 31

Lab1: Flip-Flop Testing

©G. Khan

#include <systemc.h>

int sc_main(int argc, char* argv[]){

sc_trace_file *tf; // Create VCD file for tracing

sc_signal<sc_uint<3> > data_in, data_out; //Declare signals

sc_signal<bool> en;

sc_clock clk("clk",10,SC_NS,0.5); //Create a clock signal flipflop

DUT("flipflop"); //Create Device Under Test (DUT)

DUT.din(data_in); // Connect/map the ports to testbench signals

DUT.dout(data_out); DUT.clk(clk);

DUT.enable(en);

// Create wave file and trace the signals executing

tf = sc_create_vcd_trace_file("trace_file");

tf->set_time_unit(1, SC_NS);

sc_trace(tf, clk, "clk"); sc_trace(tf, en, "enable");

sc_trace(tf, data_in, "data_in"); sc_trace(tf, data_out, "data_out");

cout << "\nExecuting flip flop example... check .vcd produced"<<endl;

//start the testbench

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 32

Lab1: Flip-Flop Testing --cont.

©G. Khan

//start the testbench

en.write(0); //initialize

data_in.write(0); sc_start(9, SC_NS);

en.write(1); //enable and input

data_in.write(7); sc_start(10, SC_NS);

data_in.write(6); sc_start(10, SC_NS);

data_in.write(5); sc_start(10, SC_NS);

en.write(0); //not enabled and input scenario

data_in.write(6); sc_start(10, SC_NS);

en.write(1); //enabled

data_in.write(1); sc_start(10, SC_NS);

data_in.write(0); sc_start(10, SC_NS);

sc_close_vcd_trace_file(tf);

return 0;

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 33

©G. Khan

#include "systemc.h"

#define COUNTER

struct counter : sc_module { // the counter module

sc_inout<int> cnt_val; // the input/output port of int type

sc_in<bool> clk; // Boolean input port for clock

void counter_fn(); // counter module function

SC_CTOR(counter) { // counter constructor

SC_METHOD(counter_fn); // declare the counter_fn as method

dont_initialize(); // don’t run it at first execution

sensitive_pos << clk; // make it sensitive to +ve clock edge

}

} ;

void counter :: counter_fn() {

cnt.write(cnt.read() + 1);

cout << "cnt =%d\n" << cnt.read() <<endl;

}

SystemC Counter Module

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 34

©G. Khan

void check_for_10 (int *counted);

int sc_main(int argc, char *argv[]) {

sc_signal<int> counting; // the signal for the counting variable

sc_clock clock("clock",20, 0.5); // clock period = 20 duty cycle = 50%

int counted; // internal variable, to store the value in counting signal

counting.write(0); // reset the counting signal to zero at start

counter COUNT("counter"); // call counter module

COUNT.cnt(counting); // map the ports by name

COUNT.clk(clock); // map the ports by name

for (unsigned char i = 0; i < 21; i++) {

counted = counting.read(); // copy the signal onto the variable

check_for_10(&counted); // call the software block & check for 10

counting.write(counted); // copy the variable onto the signal

sc_start(20); // run the clock for one period

} return 0;

}

BCD Counter Example Main Code

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 35

©G. Khan

SystemC BCD Counter

// software block that check/reset the counter value, part of sc_main

void check_for_10(int *counted) {

if (*counted == 10) {

cout << “Max count (10) reached ... Reset count to Zero" <<endl;

*counted = 0; }

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 36

©G. Khan

int sc_main(int argc, char *argv[]) {

sc_signal<int> counting; // the signal for the counting variable

sc_clock clock("clock", 20, 0.5); // clock; time period = 20 duty cycle = 50%

int counted; // internal variable, to stores the value in counting signal

// create the trace- file by the name of "counter_tracefile.vcd“

sc_trace_file *tf = sc_create_vcd_trace_file("counter_tracefile");

// trace the clock and the counting signals

sc_trace(tf, clock.signal(), "clock");

sc_trace(tf, counting, "counting");

counting.write(0); // reset the counting signal to zero at start

counter COUNT("counter"); // call counter module. COUNT is just a temp var

COUNT.cnt(counting); // map the ports by name

COUNT.clk(clock); // map the ports by name

for (unsigned char i = 0; i < 21; i++) {

…..

}

sc_close_vcd_trace_file(tf); // close the tracefile

return 0;

}

Counter Main Code with Tracing

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 37

Connecting SystemC sub-modules

of a FILTER module

©G. Khan

Signals

sc_signal<type > q, s, c;

▪ Positional Connection

▪ Named Connection

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 38

Named and Positional Connections

©G. Khan

SC_MODULE(filter) {

// Sub-modules: “components”

sample *s1;

coeff *c1;

mult *m1;

sc_signal<sc_uint <32> > q,s,c;

// Constructor :“architecture”

SC_CTOR(filter) {

//Sub-modules instantiation/mapping

s1 = new sample (“s1”);

s1->din(q); // named mapping

s1->dout(s);

c1 = new coeff(“c1”);

c1->out(c); // named mapping

m1 = new mult (“m1”);

(*m1)(s, c, q)//positional mapping

}

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 39

©G. Khan

• SystemC 2.0 and higher Support:

• Channel
▪ A mechanism for communication and synchronization

▪ They implement one or more interfaces

• Interface
▪ Specify a set of access methods to the channel

But it does not implement those methods

• Event
▪ Flexible, low-level synchronization primitive

▪ Used to construct other forms of synchronization

Communication and

Synchronization

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 40

©G. Khan

Communication and

Synchronization

Channel

Module1 Module2

Events

Interfaces

Ports to Interfaces

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 41

©G. Khan

Interfaces

▪ Interface is purely functional and does not provide the

implementation of the methods.
• Interface only provides the method's signature.

▪ Interfaces are bound to ports.
• They define what can be done through a particular port.

▪ The implementation is done

inside a channel.
COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 42

©G. Khan

Channels
▪ Channel implements an interface

It must implement all of its defined methods.

▪ Channel are used for communication between processes inside

of modules and between modules.

▪ Inside of a module a process may directly access a channel.

▪ If a channel is connected to a port of a module, the process

accesses the channel through the port.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 43

©G. Khan

SoC (or a System) in SystemC

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 44

©G. Khan

Channels

Two types of Channels: Primitive and Hierarchical

▪ Primitive Channels:

• They have no visible structure and no processes

• They cannot directly access other primitive channels.
o sc_signal

o sc_signal_rv

o sc_fifo

o sc_mutex

o sc_semaphore

o sc_buffer

▪ Hierarchical Channels:

• These are modules themselves,

• may contain processes, other modules etc.

• may directly access other hierarchical channels.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 45

©G. Khan

Channel Usage

Use Primitive Channels:
• when you need to use the request-update semantics.
• when channels are atomic and cannot reasonably be

chopped into smaller pieces.
• when speed is absolutely crucial.
➢ Using primitive channels can often reduce the number of delta

cycles.

• when it doesn't make any sense i.e. trying to build a
channel out of processes and other channels such as a
semaphore or a mutex.

Use Hierarchical Channels:
• when you would want to be able to explore the underlying

structure,
• when channels contain processes or ports,
• when channels contain other channels.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 46

©G. Khan

Processes are functions identified to the SystemC kernel
and called if a signal of the sensitivity list changes.
• Processes implement the funcionality of modules.

• Similar to C++ functions or methods

Three types of Processes: Methods, Threads and Cthreads

▪ Methods : When activated, executes and returns

SC_METHOD(process_name)

▪ Threads: can be suspended and reactivated
- wait() -> suspends

- one sensitivity list event -> activates

SC_THREAD(process_name)

▪ Cthreads: are activated by the clock pulse

SC_CTHREAD(process_name, clock value);

Processes: method, thread or cthread

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 47

©G. Khan

Type SC_METHOD SC_THREAD SC_CTHREAD

Activates Exec. Event in sensit.
list

Event in sensit.
List

Clock pulse

Suspends
Exec.

NO YES YES

Infinite Loop NO YES YES

suspended/
reactivated by

N/A
Has embedded

wait()

wait() wait()
wait_until()

Constructor

and

Sensibility

definition

SC_METHOD

(call_back);

sensitive (signals);

sensitive_pos(signals);

sensitive_neg(signals);

SC_THREAD

(call_back);

sensitive(signals);

sensitive_pos(signals);

sensitive_neg(signals);

SC_CTHREAD

(call_back,

clock.pos());

SC_CTHREAD

(call_back,

clock.neg());

Processes

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 48

©G. Khan

Sensitivity List of a Process

• sensitive with the () operator
Takes a single port or signal as argument
sensitive(s1);sensitive(s2);sensitive(s3)

• sensitive with the stream notation
Takes an arbitrary number of arguments

sensitive << s1 << s2 << s3;

• sensitive_pos with either () or << operator
Defines sensitivity to positive edge of Boolean signal or clock

sensitive_pos << clk;

• sensitive_neg with either () or << operator
Defines sensitivity to negative edge of Boolean signal or clock

sensitive_neg << clk;

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 49

©G. Khan

Multiple Process Example

SC_MODULE(ram) {

sc_in<int> addr;

sc_in<int> datain;

sc_in<bool> rwb;

sc_out<int> dout;

int memdata[64];

// local memory storage

int i;

void ramread(); // process-1

void ramwrite();// process-2

SC_CTOR(ram){

SC_METHOD(ramread);

sensitive << addr << rwb;

SC_METHOD(ramwrite);

sensitive << addr << datain << rwb;

for (i=0; i++; i<64) {

memdata[i] = 0;

} }

};

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 50

©G. Khan

Thread Process and wait() function

▪ wait() may be used in both SC_THREAD and SC_CTHREAD
processes but not in SC_METHOD.

▪ wait() suspends execution of the process until the process is
invoked again

▪ wait(<pos_int>) may be used to wait for a certain number of
cycles (SC_CTHREAD only)

In Synchronous process (SC_CTHREAD)

• Statements before the wait() are executed in one cycle

• Statements after the wait() executed in the next cycle

In Asynchronous process (SC_THREAD)

• Statements before the wait() are executed in the last event

• Statements after the wait() are executed in the next event

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 51

©G. Khan

Thread Process and wait() function

void do_count() {

while(1) {

if(reset) {

value = 0;

}

else if (count) {

value++;

q.write(value);

}

wait(); // wait till next event !

}

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 52

©G. Khan

Example Code

void wait_example:: my_thread_process(void)

{

wait(10, SC_NS);

cout << "Now at " << sc_time_stamp() << endl;

sc_time t_DELAY(2, SC_MS);

t_DELAY *= 2;

cout << "Delaying " << t_DELAY<< endl;

wait(t_DELAY);

cout << "Now at " << sc_time_stamp()<< endl;

}

OUTPUT

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 53

©G. Khan

Thread Example
SC_MODULE(my_module) {

sc_in<bool> id;

sc_in<bool> clock;

sc_in<sc_uint<3> > in_a;

sc_in<sc_uint<3> > in_b;

sc_out<sc_uint<3> >

out_c;

void my_thread();

SC_CTOR(my_module){

SC_THREAD(my_thread);

sensitive << clock.pos();

}

};

//my_module.cpp

void my_module::

my_thread(){

while(true){

if (id.read())

out_c.write(in_a.read());

else

out_c.write(in_b.read());

wait();

}

};

Thread Implementation

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 54

©G. Khan

CThread

▪ Almost identical to SC_THREAD, but implements
“clocked threads”

▪ Sensitive only to one edge of one and only one
clock

▪ It is not triggered if inputs other than the clock
change

• Models the behavior of unregistered inputs and
registered outputs

• Useful for high level simulations, where the clock is
used as the only synchronization device

• Adds wait_until() and watching() semantics for easy
deployment.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 55

©G. Khan

Opposite Example

SC_MODULE(countsub)

{

sc_in<double> in1;

sc_in<double> in2;

sc_out<double> sum;

sc_out<double> diff;

sc_in<bool> clk;

void addsub();

// Constructor:

SC_CTOR(countsub)

{

// declare addsub as SC_METHOD

SC_METHOD(addsub);

// make it sensitive to

// positive clock

sensitive_pos << clk;

}

};

// addsub method

void countsub::addsub()

{

double a;

double b;

a = in1.read();

b = in2.read();

sum.write(a+b);

diff.write(a-b);

};

adder

subtractor

in1

in2

clk

sum

diff

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 56

©G. Khan

• Special object

• How to create ?

sc_clock clock_name (“clock_label”, period,
duty_ratio, offset, initial_value);

• Clock connection

f1.clk(clk_signal); //where f1 is a module

• Clock example:

Clocks

2 12 22 32 42

sc_clock clock1 ("clock1", 20, 0.5, 2, true);

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 57

©G. Khan

sc_time data type to measure time. Time is expressed in two parts:

a numeric magnitude and a time unit e.g. SC_MS, SC_NS,

SC_PS, SC_SEC, etc.

sc_time t(20, SC_NS);

// var t of type sc_time with value of 20ns

More Examples:

sc_time t_PERIOD(5, SC_NS) ;

sc_time t_TIMEOUT (100, SC_MS) ;

sc_time t_MEASURE, t_CURRENT, t_LAST_CLOCK;

t_MEASURE = (t_CURRENT-t_LAST_CLOCK) ;

if (t_MEASURE > t_HOLD) { error ("Setup violated") }

sc_time

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 58

©G. Khan

Set Time Resolution:

sc_set_time_resolution (10, SC_PS) ;

▪ Any time value smaller than this is rounded off

▪ default; 1 Peco-Second

sc_time t2(3.1416, SC_NS); // t2 gets 3140 PSEC

To Control Simulation:

sc_start() ;

sc_stop() ;

To Report Time Information:

sc_time_stamp() // returns the current simulation time

cout << sc_time_stamp() << endl ;

sc_simulation_time()

Returns a value of type double with the current simulation
time in the current default time unit

Time representation in SystemC

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 59

©G. Khan

Event
▪ Something that happens at a specific point in time.

▪ Has no value or duration

sc_event:
▪ A class to model an event

• Can be triggered and caught.

Important (the source of a few coding errors):
▪ Events have no duration → you must be watching to

catch it

• If an event occurs, and no processes are waiting to

catch it, the event goes unnoticed.

sc_event
for Simulation to model Concurrency

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 60

©G. Khan

You can perform only two actions with an
sc_event:

▪ wait for it
• wait(ev1)

• SC_THREAD(my_thread_proc);

• sensitive << ev_1; // or

• sensitive(ev_1)

▪ cause it to occur
notify(ev1)

Common misunderstanding:
▪ if (event1) do_something

• Events have no value
• You can test a Boolean that is set by the process that caused an

event;
• However, it is problematic to clear it properly.

sc_event

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 61

©G. Khan

To Trigger an Event:
event_name.notify(args);

event_name.notify_delayed(args);

notify(args, event_name);

Immediate Notification:
causes processes which are sensitive to the event to be made

ready to run in the current evaluate phase of the current
delta-cycle.

Delayed Notification:

causes processes which are sensitive to the event to be made
ready to run in the evaluate phase of the next delta-cycle.

Timed Notification:

causes processes which are sensitive to the event to be made
ready to run at a specified time in the future.

notify()

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 62

©G. Khan

sc_event my_event ; // event

sc_time t_zero (0, SC_NS) ; // variable t_zero of type sc_time

sc_time t(10, SC_MS) ; // variable t of type sc_time

Immediate
my_event.notify();

notify(my_event); // current delta cycle

Delayed
my_event.notify_delayed();

my_event.notify(t_zero);

notify(t_zero, my_event); // next delta cycle

Timed
my_event.notify(t);

notify(t, my_event);

my_event.notify_delayed(t); // 10 ms delay

notify() Examples

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 63

©G. Khan

Cancels pending notifications for an event.
• It is supported for delayed and timed notifications.

• not supported for immediate notifications.

Given:
sc_event a, b, c; // events
sc_time t_zero (0,SC_NS); // variable t_zero of type sc_time
sc_time t(10, SC_MS); // variable t of type sc_time
…
a.notify(); // current delta cycle
notify(t_zero, b); // next delta cycle
notify(t, c); // 10 ms delay

Cancel of Event Notification:

a.cancel(); // Error! Can't cancel immediate notification

b.cancel(); // cancel notification on event b

c.cancel(); // cancel notification on event c

cancel ()

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 64

©G. Khan

SC_MODULE(missing_event) {

SC_CTOR(missing_event) {

SC_THREAD(B_thread); // ordered

SC_THREAD(A_thread); // to cause

SC_THREAD(C_thread); // problems

}

void A_thread() {

a_event.notify() ; // immediate!

cout << "A sent a_event!" << endl;

}

void B_thread() {

wait(a_event) ;

cout << "B got a_event!" << endl;

}

void C_thread() {

wait(a_event) ;

cout << "C got a_event!" << endl;

}

sc_event a_event;

}

Problem with

events

If wait(a_event) is issued after

the immediate notification

a_event.notify()
Then B_thread and C_thread

can wait for ever.

Unless a_avent is issued again.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 65

©G. Khan

SC_MODULE(ordered_events) {
SC_CTOR(ordered_events) {

SC_THREAD(B_thread);

SC_THREAD(A_thread);

SC_THREAD(C_thread);

// ordered to cause problems

}

void A_thread() {

while (true) {

a_event.notify(SC_ZERO_TIME);

cout << "A sent a_event!" << endl;

wait(c_event);

cout << "A got c_event!" << endl;

} // endwhile

}

Properly Ordered Events

void B_thread() {

while (true) {

b_event.notify(SC_ZERO_TIME);

cout << "B sent b_event!" << endl;

wait(a_event);

cout << "B got a_event!" << endl;

} // endwhile

}

void C_thread() {

while (true) {

c_event.notify(SC_ZERO_TIME);

cout << "C sent c_event!" << endl;

wait(b_event);

cout << "C got b_event!" << endl;

} // endwhile

}

sc_event a_event, b_event, c_event;

} ;
COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 66

©G. Khan

Time & Execution Interaction

Simulated

Execution

Activity

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 67

©G. Khan

Legacy SystemC code for Clocked Thread

wait(N); // delay N clock edges

wait_until (delay_expr); // until expr true @ clock

Same as

For (i=0; i!=N; i++)

wait() ; //similar as wait(N)

do wait () while (!expr) ; // same as

// wait_until(delay_expr)

Previous versions of SystemC also included other

constructs to watch signals such as watching(),

wait() and watching()

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 68

©G. Khan

Highway

▪ Normally has a green light.

Sensor:

▪ A car on the East-West side road triggers

the sensor

• The highway light: green => yellow => red,

• Side road light: red => green.

SystemC Model:

▪ Uses two different time delays:

• green to yellow delay >= yellow to red delay

(to represent the way that a real traffic light works).

Traffic Light Controller

N

S

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 69

©G. Khan

Traffic Controller Example

// traff.h

#include "systemc.h“

SC_MODULE(traff) {

// input ports

sc_in<bool> roadsensor;

sc_in<bool> clock;

// output ports

sc_out<bool> NSred;

sc_out<bool> NSyellow;

sc_out<bool> NSgreen;

sc_out<bool> EWred;

sc_out<bool> EWyellow;

sc_out<bool> EWgreen;

void control_lights();

int i;

// Constructor

SC_CTOR(traff) {

SC_THREAD(control_lights);

// Thread

sensitive << roadsensor;

sensitive << clock.pos();

}

};

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 70

©G. Khan

Traffic Controller Example
// traff.cpp

#include "traff.h"

void traff::control_lights() {

NSred = false;

NSyellow = false;

NSgreen = true;

EWred = true;

EWyellow = false;

EWgreen = false;

while (true) {

while (roadsensor == false)

wait();

NSgreen = false;// road sensor triggered

NSyellow = true; // set NS to yellow

NSred = false;

for (i=0; i<5; i++)

wait();

NSgreen = false; // yellow interval over

NSyellow = false; // set NS to red

NSred = true; // set EW to green

EWgreen = true;

EWyellow = false;

EWred = false;

for (i= 0; i<50; i++)

wait();

NSgreen = false; // times up for EW green

NSyellow = false; // set EW to yellow

NSred = true;

EWgreen = false;

EWyellow = true;

EWred = false;

for (i=0; i<5; i++)

// times up for EW yellow

wait();

NSgreen = true; // set EW to red

NSyellow = false; // set NS to green

NSred = false;

EWgreen = false;

EWyellow = false;

EWred = true;

for (i=0; i<50; i++) // wait one more long

wait(); // interval before allowing

// a sensor again

}

}

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 71

©G. Khan

References

• System Design with SystemC, by T. Grotker, S.

Liao, G. Martin and S. Swan, Kluwer Academic

2002.

• A SystemC Primer, by J. Bhasker Second Edition

2004, 2002 PDF exists.

• SystemC: From the Ground Up, by D.C. Black, J.

Donovan, B. Bunton and A. Keist, 2nd edition 2010.

COE838: Systems on Chip Design, SystemC & SoC Modelling and Co-design Page: 72

	Slide 1: SystemC: Co-specification and SoC Modeling
	Slide 2: Hardware-Software Codesign
	Slide 3: HW/SW Co-Specification
	Slide 4: Co-Specification
	Slide 5: SystemC for Co-specification
	Slide 6: SystemC Library Classes
	Slide 7: SystemC 2.0 Language Architecture
	Slide 8
	Slide 9: SystemC Benefits
	Slide 10: SystemC for Co-Specification
	Slide 11: SystemC Development Environment
	Slide 12: SystemC Features
	Slide 13: SystemC Data types
	Slide 14: SC_Logic, SC_int types
	Slide 15: Other SystemC types
	Slide 16: SystemC Data types
	Slide 17: SystemC types
	Slide 18: Usage of SystemC types
	Slide 19: Fixed Point Data Types
	Slide 20: Fixed Point Examples
	Slide 21: Some Specific Features
	Slide 22: Modules
	Slide 23: sc_module
	Slide 24: sc_module (cpu) { } ;
	Slide 25: Module Constructor
	Slide 26: SystemC Module
	Slide 27: Signals and Ports
	Slide 28: 2-to-1 Mux Modules
	Slide 29: sc_main()
	Slide 30: Lab1: Flip-Flop Module
	Slide 31: Lab1: Flip-Flop
	Slide 32: Lab1: Flip-Flop Testing
	Slide 33: Lab1: Flip-Flop Testing --cont.
	Slide 34: SystemC Counter Module
	Slide 35: BCD Counter Example Main Code
	Slide 36: SystemC BCD Counter
	Slide 37: Counter Main Code with Tracing
	Slide 38: Connecting SystemC sub-modules of a FILTER module
	Slide 39: Named and Positional Connections
	Slide 40: Communication and Synchronization
	Slide 41: Communication and Synchronization
	Slide 42: Interfaces
	Slide 43: Channels
	Slide 44: SoC (or a System) in SystemC
	Slide 45: Channels
	Slide 46: Channel Usage
	Slide 47: Processes: method, thread or cthread
	Slide 48: Processes
	Slide 49: Sensitivity List of a Process
	Slide 50: Multiple Process Example
	Slide 51: Thread Process and wait() function
	Slide 52: Thread Process and wait() function
	Slide 53: Example Code
	Slide 54: Thread Example
	Slide 55: CThread
	Slide 56: Opposite Example
	Slide 57: Clocks
	Slide 58: sc_time
	Slide 59: Time representation in SystemC
	Slide 60: sc_event for Simulation to model Concurrency
	Slide 61: sc_event
	Slide 62: notify()
	Slide 63: notify() Examples
	Slide 64: cancel ()
	Slide 65: Problem with events
	Slide 66: Properly Ordered Events
	Slide 67: Time & Execution Interaction
	Slide 68: wait() and watching()
	Slide 69: Traffic Light Controller
	Slide 70: Traffic Controller Example
	Slide 71: Traffic Controller Example
	Slide 72: References

