
SoC Architecture and Codesign

Some Material from Chapter 8 of the Text by M. Wolf

COE838: Systems-on-Chip Design
http://www.ecb.torontomu.ca/~courses/coe838/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan

Elect., Computer & Biomedical Engineering
Toronto Metropolitan University

Overview
• Introduction to Hardware-Software Co-design
• Hardware Options for System-on-Chip
• Accelerator based SoC Architectures
• CPU-Accelerator Co-design Process

SoC Architecture Design
• Real-time System Design

▪ Performance analysis

▪ Scheduling and allocation

• Accelerated systems
• Use additional computational unit dedicated to

some functions?
▪ Hardwired Logic e.g. FPGA

• Hardware/software co-design: a joint design of
hardware and software architectures of SoC.

G. Khan SoC Architecture Codesign Page: 2

Traditional Design Practices

• Performance Requirements make it
impossible to execute the entire application in
software.

• Computationally intensive parts are to be
extracted and realized as custom hardware.

• Early Design Cycle Partitioning Problems:
▪ Design Space is not fully Explored
▪ High Cost Design
▪ Inefficient

G. Khan SoC Architecture Codesign Page: 3

Traditional Design Practice

Hardware Design Software Design

Interface

Design

Hardware

Manufacture and

Test

Software Code and

Test

Hardware Software

Implementation and Test

Field Test

Deliverables

Documentation

Deployment

Requirements Definition

Architecture Definition

6-12 Months

25-49 Months

6-12 Months

G. Khan SoC Architecture Codesign Page: 4

Advancements

• VLSI Technology advances has led to:

▪ Smaller and Faster IP Cores

▪ Reconfigurable Logic

• Matured Hardware Design

Methodology

• Matured Software Design Methodology

• Joint design – Still in progress and very

popular!

G. Khan SoC Architecture Codesign Page: 5

Hardware-Software SoC Codesign

• An approach utilizing the maximum
efficiency of Hardware and Software is
needed

• Recent developments in CAD Tools

• Result -- Hardware Software Co-design
▪ Large Design Space Exploration
▪ Improved Time to Market

G. Khan SoC Architecture Codesign Page: 6

Codesign Methodology

G. Khan SoC Architecture Codesign Page: 7

On Chip

Hardware-Software Codesign

Study of the design of (SoC-based) computer
systems encompassing the following parts:

▪ Co-Specification
Developing system specification that describes
hardware and software modules and relationship
among them

▪ Co- Synthesis
Automatic and semi-automatic design of hardware
and software elements to meet the specification.

▪ Co-Simulation
Simultaneous simulation of hardware and software.

G. Khan SoC Architecture Codesign Page: 8

HW/SW Co-Specification

• Consider System functionality at an Abstract Level

• No Concept of Hardware or Software

• Must Capture SoC functionality precisely

• Common Specification Approaches

Using High Level Languages
• C/C++

– Inclined to Software description
• VHDL/Verilog

– Inclined to Hardware description
• SystemC

– Combined features for Hardware and Software
Representation

G. Khan SoC Architecture Codesign Page: 9

Hardware-Software Co-Specification

• Common Specification Approaches

Using Task Graphs

• Grey Area
▪ High Level descriptions are usually

translated to some form of a task graph

▪Common Forms
▪ Data flow graphs

▪ Control flow Graphs

▪ Control-Data Flow Graphs

G. Khan SoC Architecture Codesign Page: 10

Hardware-Software Partitioning

• Assignment of System parts to implementation
units (Hardware and Software)

• Goals of Partitioning Algorithm

▪ Meeting the constraints

▪ Minimize the system/SoC cost

• Directly affects the cost and performance of final
system

Main Problems

• Significant Research Area

G. Khan SoC Architecture Codesign Page: 11

Hardware-Software Partitioning

• Granularity: System Components’ Size i.e.
assigned to Hardware or Software

• Coarse Grain Approaches
Assign Complete Function or Processes to

hardware or software

▪ A single task is a large block of system
functionality

▪ Prevent Excess Communications
▪ Example tasks: MPEG decode, JPEG-2000

encode, FFT, DCT, etc.

G. Khan SoC Architecture Codesign Page: 12

Hardware-Software Partitioning

• Fine Grain Approaches: Operate on basic
operations (add, subtract, multiply, etc.)

Avoid the problem of dealing with poorly
defined functional specifications

▪ Useful when dealing with partially re-
configurable processors (IP cores that can be
modified during the design process)

▪ Here tasks are often referred as base blocks.

G. Khan SoC Architecture Codesign Page: 13

Hardware Software Partitioning

Flexible Granularity: Computationally intensive
parts are small loops which are hidden inside a
function or process.
▪ Coarse grain approaches lead to costly designs,

some redundant parts may be moved to hardware
▪ Fine Grain approaches make up such a large

design space which is usually very hard to explore

• Perform HW/SW partitioning handling decisions at
both high and low levels.

G. Khan SoC Architecture Codesign Page: 14

Partitioning Approaches

Optimal Partitioning Approaches
Exhaustive

• Computationally very Intensive
• Limited to small task graphs

Branch and Bound
• Start from a good Initial Condition
• Try pre-sorted combinations
• Exhaustive in limiting case

Heuristic Approaches
Heuristic Optimization Techniques

Simulated Annealing, Tabu Search and (GA) Genetic Algorithm
Greedy Approaches:

Start from all SW or HW architectures and move parts to HW
or SW.

http://www.ecb.torontomu.ca/~courses/coe718/lectures/HS-Codesign-
Overview.pdf

G. Khan SoC Architecture Codesign Page: 15

Hardware-Software Co-Synthesis
Four Principle Phases of Co-synthesis:

– Partitioning
Dividing the functionality of a specific system or SoC into
units of computation.

– Scheduling - Pipelining
Task Start Timing: Choosing time at which various
computation units will occur.

– Allocation
Determining the processing elements (PEs) on which
computations will occur.
Selection, type of Processing Elements and
Communication Structure (System Architecture)

– Assignment
Task Mapping: Choosing particular component types for
the allocated units (of computations).

G. Khan SoC Architecture Codesign Page: 16

Hardware Software
Co-Synthesis

• Automatic System/SoC Architecture
definition (e.g., bus, tree, …)

• Tightly coupled with HW/SW
Partitioning

• Must schedule system to determine
feasibility of each solution being
evaluated

G. Khan SoC Architecture Codesign Page: 17

Hardware Software Co-Synthesis

Approaches

Optimal
• Try all possible combinations
• Limited use due to Large Design Space
• Examples

Heuristic
• Avoid large Execution times
• Usually give ‘Good’ results

G. Khan SoC Architecture Codesign Page: 18

Hardware Software Co-Synthesis

• Iterative Heuristic Approaches
▪ Start with an initial solution

▪With each iteration of the algorithm
improve the solution somewhat.

▪As the algorithm progresses the
solution is refined.

G. Khan SoC Architecture Codesign Page: 19

SoC Hardware Structure
Various Hardware Options:

CPU

ASIC

Memory

I/O

FPGA

Coprocessor

Other PEs
C

a
ch

e

G. Khan SoC Architecture Codesign Page: 20

System Partitioning

Introduces a design methodology that uses several
techniques:
▪ Partition system specification into tasks (processes).

The best way to partition a specification depends on the
characteristics of the underlying hardware platform.

▪ Determine the performance of the function when
executed on the hardware platform.
We usually rely on approximating. Exact performance
depends on hardware-software details.

▪ Allocate processes onto various processing elements.

G. Khan SoC Architecture Codesign Page: 21

Hardware-Software Partitioning

• Hardware/software system design involve:
Modeling, Validation and Implementation

– System Implementation involves:
Hardware-software partitioning (Cosynthesis)

– Hardware-Software Partitioning
Identifying parts of the system model best
implemented in hardware and software modules

– Such partitions can be decided by the designer

or determined by the codesign (CAD) tools

G. Khan SoC Architecture Codesign Page: 22

Hardware-Software Partitioning
• For embedded systems, such partitioning

represents a physical partition of the system
functionality into:
– Hardware (CPU), accelerators, GPU, etc.
– Software executing on one or more CPUs

Various formation of the Partitioning Problem that are
based on:
• Architectural Assumptions
• Partitioning Goals
• Solution Strategies

COWARE: A design environment for application specific
architectures targeting telecom applications.

G. Khan SoC Architecture Codesign Page: 23

Partitioning Techniques

Hardware-Software Homogeneous System Model =>
task graph

• For each node of the task graph, determine the
implementation choices (HW or SW)
– Keep the scheduling of nodes at the same time

Meeting the real-time constraints (deadline, Exe time)

▪ There is an intimate relationship between
partitioning and scheduling.

▪ Wide variation in timing properties of the
hardware and software implementation of a task.

G. Khan SoC Architecture Codesign Page: 24

Accelerator (ASIC, FPGA, etc.)
System Architectures

CPU

Accelerator

Memory

I/O

request

data
result
data

G. Khan SoC Architecture Codesign Page: 25

SoC-HPS
Cyclone-V Hard Processor System

G. Khan SoC Architecture Codesign Page: 26

DE1-SoC

G. Khan SoC Architecture Codesign Page: 27

Accelerator vs Coprocessor

• A co-processor executes instructions

– Instructions are dispatched by the CPU

• Accelerator appears as a device on the bus

– Accelerator is mainly controlled by registers

▪ Application-specific integrated circuit

▪ Field-programmable gate array

▪ Standard component
 Example

Accelerator Implementations

G. Khan SoC Architecture Codesign Page: 28

SoC Architecture Design Tasks

• Design Heterogeneous PEs
Multiprocessor SoC architecture.

–Processing Elements (PEs)

CPU, accelerator, etc.

• Program the system

G. Khan SoC Architecture Codesign Page: 29

Why Accelerators?

Better Cost/Performance
▪ Custom logic may be able to performthe

operation faster than a CPU of equivalent cost

▪ CPU cost is a non-linear function of
performance

cost

performance

G. Khan SoC Architecture Codesign Page: 30

CPU and Accelerators
Better Real-time Performance

▪ Put (schedule) time-critical functions on lightly-
loaded processing elements.

▪ Remember RMS utilization (<100%) --- extra CPU
cycles must be reserved to meet deadlines.

cost

performance

deadline

deadline with

RMS overhead

Required Application

Performance

Scheduling

Rate Monotonic Scheduling

G. Khan SoC Architecture Codesign Page: 31

Why Accelerators?

• Good for processing I/O in real-time.

• May consume less energy.

• May be better at streaming data.

• May not be able to do all the work
on even the largest single CPU.

G. Khan SoC Architecture Codesign Page: 32

Accelerated System Design

• First, determine that the system really
needs to be accelerated.
▪ How much faster is the accelerator on the

core function?

▪ The data transfer overhead?

• Design the accelerator itself

• Design CPU interface to the accelerator

G. Khan SoC Architecture Codesign Page: 33

Performance Analysis

• Critical parameter --

How much faster is the system with the
accelerator?

• Must take into account:

▪ Accelerator execution time

▪ Data transfer time

(in-between CPU and Accelerator

▪ Synchronization with the (master) CPU

G. Khan SoC Architecture Codesign Page: 34

Accelerator Execution Time

Total accelerator execution time:

taccel = tin + tx + tout

G. Khan SoC Architecture Codesign Page: 35

Data Input/Output Times

• For Bus-based SoCs - bus transactions
include:
▪ Flushing register/cache values to main

memory
▪ Time required for CPU to set up the

transaction
▪ Overhead of data transfers by bus packets,

handshaking, etc.

G. Khan SoC Architecture Codesign Page: 36

Accelerator Speedup

• Assume loop is executed for n times.

• Compare accelerated system to
non-accelerated system:

• Speedup =

= n(tCPU - taccel)

= n[tCPU - (tin + tx + tout)]

G. Khan SoC Architecture Codesign Page: 37

Single-threaded vs Multi-threading

• One critical factor is the available parallelism in the
application:
▪ Single-threaded/blocking:

CPU waits for the accelerator
▪ Multithreaded/non-blocking:

CPU continues to execute along with accelerator.

• For multithread, CPU must have some useful work
to do while accelerators perform some tasks.
▪ Software environment must also support multi-

threading.

G. Khan SoC Architecture Codesign Page: 38

Total Execution Time

Single-threaded:
Count execution time of all

component processes.

Multi-threaded:
Find longest path through

execution.

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

Accelerator

G. Khan SoC Architecture Codesign Page: 39

Sources of Parallelism

• Overlap I/O and the Accelerator
Computation.
▪ Perform operations in batches, read in

second batch of data while computing on
first batch.

• Find other work to do on the CPU.
▪ May reschedule operations to move work

after accelerator initiation.

G. Khan SoC Architecture Codesign Page: 40

Accelerator/CPU Interface

• Accelerator registers provide control registers
for CPU.

• Data registers can be used for small data
objects.

• Accelerator may include special-purpose
read/write logic.

▪ Valuable for large data transfers

G. Khan SoC Architecture Codesign Page: 41

Bus-based SoC

An Earlier Slide

• Bus transactions include:

▪ flushing register/cache values to main
memory

▪ time required for CPU to set up transaction

▪ overhead of data transfers by bus packets,
handshaking, etc.

G. Khan SoC Architecture Codesign Page: 42

Memory Caching Problems

• Main memory provides the primary data
transfer mechanism to the accelerator.

• Programs must ensure that caching does not
invalidate main memory data.

▪ CPU reads location S

▪ Accelerator writes location S

▪ CPU writes location S

G. Khan SoC Architecture Codesign Page: 43

Partitioning

• Divide functional specification into units.

▪ Map units (e.g., SystemC Modules) onto PEs

▪ Units can become processes (tasks)

• Determine proper level of parallelism.

f3(f1(),f2())

f1() f2()

f3()

vs.

G. Khan SoC Architecture Codesign Page: 44

Scheduling and Allocation

Scheduling for calculating TOTAL execution time

• We must:

▪ Schedule operations in time

▪ Allocate computations to processing elements

• Scheduling and allocation interact among each
other. However, separating them will be helpful.

▪ Alternatively allocate, then schedule.

G. Khan SoC Architecture Codesign Page: 45

Scheduling and Allocation
An Example

F1 F2

F3

d1 d2

Task graph
Hardware platform

P1 P2

Hardware Modules

G. Khan SoC Architecture Codesign Page: 46

Process Execution Times

Time to perform F1, F2 & F3 on P1 and P2 hardware

HW (Library)

 P1(Accelerator) P2(CPU)

F1 5 5

F2 5 6

F3 - 4

G. Khan SoC Architecture Codesign Page: 47

First design

• Allocate F1, F2 -> P1; F3 -> P2.

time

P1

P2

F1 F2

F3

F1C F2C

G. Khan SoC Architecture Codesign Page: 48

Communication Model

Example

• Assume communication within PE is free

• Cost of communication from F1 to F3
d1 =2;

• Cost of F2 to F3 communication d2 = 4

G. Khan SoC Architecture Codesign Page: 49

Second design

• Allocate F1 -> P1; F2, F3 -> P2

P1

P2

d

time

G. Khan SoC Architecture Codesign Page: 50

3rd Design Option

• Allocate F1, F2 -> P1; F3 -> P2

time

P1

P2

5 10 15 20

F1 F2

d2

F3

Interconnection

network

G. Khan SoC Architecture Codesign Page: 51

Example: Adjusting Data Size to
Reduce Delay

• Task graph: • Processor Network:

F1 F2

F3

d1 d2

P1 P2 P3

allocation3

4

3

execution time

Transmission time = 4

G. Khan SoC Architecture Codesign Page: 52

Initial schedule

time

P1

P2

P3

network

0 20105 15

F1

F2

d1 d2

F3

G. Khan SoC Architecture Codesign Page: 53

An Efficient Schedule

time

P1

P2

P3

network

0 105 15

F1

F2

d1

F3

d2 d1

F3

d2 d1

F3

d2 d1

F3

d2

G. Khan SoC Architecture Codesign Page: 54

Buffering and performance

• Buffering can sequentialize
operations.

▪Next process must wait for data to
enter buffer before it can continue.

• Buffer policy (queue, RAM) can affect
the available parallelism.

G. Khan SoC Architecture Codesign Page: 55

Buffers and latency

• Three processes D, E and F separated by buffers
B1, B2 and B3:

B1 D B2 E B3 F

G. Khan SoC Architecture Codesign Page: 56

Buffers and Latency Schedules

D[0]

D[1]

…

E[0]

E[1]

…

F[0]

F[1]

…

D[0]

E[0]

F[0]

D[1]

E[1]

F[1]

…

G. Khan SoC Architecture Codesign Page: 57

System Integration
and Debugging

• Try to debug the CPU/accelerator
interface separately from the accelerator
core.

• Build scaffolding to test the accelerator.

• Hardware/software co-simulation can
be useful.

• Seamless: Mentor Graphics

G. Khan SoC Architecture Codesign Page: 58

Accelerator Case Study

An Example:

• Video accelerator

for MPEG-4

G. Khan SoC Architecture Codesign Page: 59

Basics - Concept

• Build accelerator for block motion
estimation, a major step in video
compression.

• Perform two-dimensional correlation:

Frame 1

Frame 2

G. Khan SoC Architecture Codesign Page: 60

Block Motion Estimation

• MPEG divides frame into 16 x 16
macroblocks for motion estimation.

• Search for best match within a search
range.

• Measure similarity with sum-of-
absolute-differences (SAD):

 | M(i,j) - S(i-ox, j-oy) |

G. Khan SoC Architecture Codesign Page: 61

Best Match

Best match produces motion vector for
the motion of an image block

G. Khan SoC Architecture Codesign Page: 62

Full Search Algorithm
bestx = 0; besty = 0;
bestsad = MAXSAD;
for (ox = - SEARCHSIZE; ox < SEARCHSIZE; ox++) {

for (oy = -SEARCHSIZE; oy < SEARCHSIZE; oy++) {
int result = 0;
for (i=0; i<MBSIZE; i++) {

for (j=0; j<MBSIZE; j++) {
result += iabs(mb[i][j] -

search[i-ox+XCENTER][j-oy-YCENTER]);
}

}
if (result <= bestsad) { bestsad = result;

bestx = ox; besty = oy; }
}}

G. Khan SoC Architecture Codesign Page: 63

Computational Requirements

• Let MBSIZE = 16, SEARCHSIZE = 8.

• Search area is 8+8+1 in each dimension

• Must perform:

nops = (16 x 16) x (17 x 17) = 73984 ops

• For an image of 512 X 512 pixels =>
32 X 32 macroblocks

G. Khan SoC Architecture Codesign Page: 64

	Slide 1: SoC Architecture and Codesign
	Slide 2: SoC Architecture Design
	Slide 3: Traditional Design Practices
	Slide 4: Traditional Design Practice
	Slide 5: Advancements
	Slide 6: Hardware-Software SoC Codesign
	Slide 7: Codesign Methodology
	Slide 8: Hardware-Software Codesign
	Slide 9: HW/SW Co-Specification
	Slide 10: Hardware-Software Co-Specification
	Slide 11: Hardware-Software Partitioning
	Slide 12: Hardware-Software Partitioning
	Slide 13: Hardware-Software Partitioning
	Slide 14: Hardware Software Partitioning
	Slide 15: Partitioning Approaches
	Slide 16: Hardware-Software Co-Synthesis
	Slide 17: Hardware Software Co-Synthesis
	Slide 18: Hardware Software Co-Synthesis
	Slide 19: Hardware Software Co-Synthesis
	Slide 20: SoC Hardware Structure Various Hardware Options:
	Slide 21: System Partitioning
	Slide 22: Hardware-Software Partitioning
	Slide 23: Hardware-Software Partitioning
	Slide 24: Partitioning Techniques
	Slide 25: Accelerator (ASIC, FPGA, etc.) System Architectures
	Slide 26: SoC-HPS Cyclone-V Hard Processor System
	Slide 27: DE1-SoC
	Slide 28: Accelerator vs Coprocessor
	Slide 29: SoC Architecture Design Tasks
	Slide 30: Why Accelerators?
	Slide 31: CPU and Accelerators
	Slide 32: Why Accelerators?
	Slide 33: Accelerated System Design
	Slide 34: Performance Analysis
	Slide 35: Accelerator Execution Time
	Slide 36: Data Input/Output Times
	Slide 37: Accelerator Speedup
	Slide 38: Single-threaded vs Multi-threading
	Slide 39: Total Execution Time
	Slide 40: Sources of Parallelism
	Slide 41: Accelerator/CPU Interface
	Slide 42: Bus-based SoC An Earlier Slide
	Slide 43: Memory Caching Problems
	Slide 44: Partitioning
	Slide 45: Scheduling and Allocation
	Slide 46: Scheduling and Allocation An Example
	Slide 47: Process Execution Times Time to perform F1, F2 & F3 on P1 and P2 hardware HW (Library)
	Slide 48: First design
	Slide 49: Communication Model Example
	Slide 50: Second design
	Slide 51: 3rd Design Option
	Slide 52: Example: Adjusting Data Size to Reduce Delay
	Slide 53: Initial schedule
	Slide 54: An Efficient Schedule
	Slide 55: Buffering and performance
	Slide 56: Buffers and latency
	Slide 57: Buffers and Latency Schedules
	Slide 58: System Integration and Debugging
	Slide 59: Accelerator Case Study
	Slide 60: Basics - Concept
	Slide 61: Block Motion Estimation
	Slide 62: Best Match
	Slide 63: Full Search Algorithm
	Slide 64: Computational Requirements

