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Overview
•  Introduction to Hardware-Software Co-design
•  Hardware Options for System-on-Chip
•  Accelerator based SoC Architectures
•  CPU-Accelerator Co-design Process



SoC Architecture Design
• Real-time System Design

▪ Performance analysis

▪ Scheduling and allocation

• Accelerated systems
• Use additional computational unit dedicated to 

some functions?
▪ Hardwired Logic e.g. FPGA

• Hardware/software co-design: a joint design of 
hardware and software architectures of SoC.
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Traditional Design Practices

• Performance Requirements make it 
impossible to execute the entire application in 
software.

• Computationally intensive parts are to be
extracted and realized as custom hardware.

• Early Design Cycle Partitioning Problems:
▪ Design Space is not fully Explored
▪ High Cost Design
▪ Inefficient
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Traditional Design Practice

Hardware Design Software Design

Interface

Design

Hardware

Manufacture and

Test

Software Code and

Test

Hardware Software

Implementation and Test

Field Test

Deliverables

Documentation

Deployment

Requirements Definition

Architecture Definition

6-12 Months

25-49 Months

6-12 Months
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Advancements

• VLSI Technology advances has led to:

▪ Smaller and Faster IP Cores

▪ Reconfigurable Logic

• Matured Hardware Design 

Methodology

• Matured Software Design Methodology

• Joint design – Still in progress and very 

popular!
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Hardware-Software SoC Codesign

• An approach utilizing the maximum 
efficiency of Hardware and Software is 
needed

• Recent developments in CAD Tools

• Result -- Hardware Software Co-design
▪ Large Design Space Exploration
▪ Improved Time to Market
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Codesign Methodology
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Hardware-Software Codesign

Study of the design of (SoC-based) computer 
systems encompassing the following parts:

▪ Co-Specification
Developing system specification that describes 
hardware and software modules and relationship 
among them

▪ Co- Synthesis
Automatic and semi-automatic design of hardware 
and software elements to meet the specification.

▪ Co-Simulation
Simultaneous simulation of hardware and software.
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HW/SW Co-Specification

• Consider System functionality at an Abstract Level

• No Concept of Hardware or Software

• Must Capture SoC functionality precisely

• Common Specification Approaches

Using High Level Languages
• C/C++

– Inclined to Software description
• VHDL/Verilog

– Inclined to Hardware description
• SystemC

– Combined features for Hardware and Software 
Representation
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Hardware-Software Co-Specification

• Common Specification Approaches

Using Task Graphs

• Grey Area
▪ High Level descriptions are usually 

translated to some form of a task graph

▪Common Forms
▪ Data flow graphs

▪ Control flow Graphs

▪ Control-Data Flow Graphs
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Hardware-Software Partitioning

• Assignment of System parts to implementation 
units (Hardware and Software)

• Goals of Partitioning Algorithm

▪ Meeting the constraints

▪ Minimize the system/SoC cost

• Directly affects the cost and performance of final 
system

Main Problems

• Significant Research Area
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Hardware-Software Partitioning

• Granularity: System Components’ Size i.e.
assigned to Hardware or Software

• Coarse Grain Approaches
Assign Complete Function or Processes to 

hardware or software

▪ A single task is a large block of system 
functionality

▪ Prevent Excess Communications
▪ Example tasks:  MPEG decode, JPEG-2000 

encode,  FFT, DCT, etc.
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Hardware-Software Partitioning

• Fine Grain Approaches:  Operate on basic 
operations (add, subtract, multiply, etc.)

Avoid the problem of dealing with poorly 
defined functional specifications

▪ Useful when dealing with partially re-
configurable processors (IP cores that can be 
modified during the design process)

▪ Here tasks are often referred as base blocks.
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Hardware Software Partitioning

Flexible Granularity: Computationally intensive 
parts are small loops which are hidden inside a 
function or process.
▪ Coarse grain approaches lead to costly designs, 

some redundant parts may be moved to hardware 
▪ Fine Grain approaches make up such a large  

design space which is usually very hard to explore

• Perform HW/SW partitioning handling decisions at 
both high and low levels.
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Partitioning Approaches

Optimal Partitioning Approaches
Exhaustive

• Computationally very Intensive
• Limited to small task graphs

Branch and Bound
• Start from a good Initial Condition
• Try pre-sorted combinations
• Exhaustive in limiting case

Heuristic Approaches
Heuristic Optimization Techniques

Simulated Annealing, Tabu Search and (GA) Genetic Algorithm
Greedy Approaches:

Start from all SW or HW architectures and move parts to HW 
or SW.

http://www.ecb.torontomu.ca/~courses/coe718/lectures/HS-Codesign-
Overview.pdf
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Hardware-Software Co-Synthesis
Four Principle Phases of Co-synthesis:

– Partitioning
Dividing the functionality of a specific system or SoC into 
units of computation.  

– Scheduling  - Pipelining
Task Start Timing: Choosing time at which various 
computation units will occur.

– Allocation
Determining the processing elements (PEs) on which 
computations will occur.
Selection, type of Processing Elements and 
Communication Structure (System Architecture) 

– Assignment
Task Mapping: Choosing particular component types for 
the allocated units (of computations). 
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Hardware Software
Co-Synthesis

• Automatic System/SoC Architecture 
definition (e.g., bus, tree, …)

• Tightly coupled with HW/SW 
Partitioning

• Must schedule system to determine 
feasibility of each solution being 
evaluated
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Hardware Software Co-Synthesis

Approaches

Optimal
• Try all possible combinations
• Limited use due to Large Design Space
• Examples

Heuristic
• Avoid large Execution times
• Usually give ‘Good’ results
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Hardware Software Co-Synthesis

• Iterative Heuristic Approaches
▪ Start with an initial solution

▪With each iteration of the algorithm 
improve the solution somewhat.

▪As the algorithm progresses the 
solution is refined.
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SoC Hardware Structure
Various Hardware Options:

CPU

ASIC

Memory

I/O

FPGA

Coprocessor

Other PEs
C

a
ch

e
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System Partitioning

Introduces a design methodology that uses several 
techniques:
▪ Partition system specification into tasks (processes).

The best way to partition a specification depends on the 
characteristics of the underlying hardware platform. 

▪ Determine the performance of the function  when 
executed on the hardware platform.
We usually rely on approximating. Exact performance 
depends on hardware-software details.

▪ Allocate processes onto various processing elements.
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Hardware-Software Partitioning

• Hardware/software system design involve: 
Modeling, Validation and Implementation

– System Implementation involves:
Hardware-software partitioning (Cosynthesis) 

– Hardware-Software Partitioning
Identifying parts of the system model best 
implemented in hardware and software modules

– Such partitions can be decided by the designer

or determined by the codesign (CAD) tools
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Hardware-Software Partitioning
• For embedded systems, such partitioning 

represents a physical partition of the system 
functionality into:
– Hardware (CPU), accelerators, GPU, etc.
– Software executing on one or more CPUs 

Various formation of the Partitioning Problem that are 
based on:
• Architectural Assumptions
• Partitioning Goals
• Solution Strategies

COWARE: A design environment for application specific 
architectures targeting telecom applications.
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Partitioning Techniques

Hardware-Software Homogeneous System Model => 
task graph

• For each node of the task graph, determine the 
implementation choices (HW or SW)
– Keep the scheduling of nodes at the same time

Meeting the real-time constraints (deadline, Exe time)

▪ There is an intimate relationship between 
partitioning and scheduling.

▪ Wide variation in timing properties of the 
hardware and software implementation of a task.
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Accelerator (ASIC, FPGA, etc.)
System Architectures

CPU

Accelerator

Memory

I/O

request

data
result
data
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SoC-HPS
Cyclone-V Hard Processor System
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DE1-SoC
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Accelerator vs Coprocessor

• A co-processor executes instructions

– Instructions are dispatched by the CPU

• Accelerator appears as a device on the bus

– Accelerator is mainly controlled by registers

▪ Application-specific integrated circuit

▪ Field-programmable gate array

▪ Standard component
                  Example

Accelerator Implementations
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SoC Architecture Design Tasks

• Design Heterogeneous PEs
Multiprocessor SoC architecture.

–Processing Elements (PEs) 

CPU, accelerator, etc.

• Program the system
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Why Accelerators?

Better Cost/Performance
▪ Custom logic may be able to performthe

operation faster than a CPU of equivalent cost

▪ CPU cost is a non-linear function of 
performance

cost

performance
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CPU and Accelerators
Better Real-time Performance

▪ Put (schedule) time-critical functions on lightly-
loaded  processing elements.

▪ Remember RMS utilization (<100%) --- extra CPU 
cycles must be reserved to meet deadlines.

cost

performance

deadline

deadline with

RMS overhead

Required Application 

Performance

Scheduling

Rate Monotonic Scheduling
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Why Accelerators?

• Good for processing I/O in real-time.

• May consume less energy.

• May be better at streaming data.

• May not be able to do all the work           
on even the largest single CPU.
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Accelerated System Design

• First, determine that the system really 
needs to be accelerated.
▪ How much faster is the accelerator on the 

core function?

▪ The data transfer overhead?

• Design the accelerator itself

• Design CPU interface to the accelerator
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Performance Analysis

• Critical parameter --

How much faster is the system with the 
accelerator?

• Must take into account:

▪ Accelerator execution time

▪ Data transfer time

(in-between CPU and Accelerator

▪ Synchronization with the (master) CPU
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Accelerator Execution Time

Total accelerator execution time:

taccel = tin + tx + tout
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Data Input/Output Times

• For Bus-based SoCs - bus transactions 
include:
▪ Flushing register/cache values to main 

memory
▪ Time required for CPU to set up the 

transaction
▪ Overhead of data transfers by bus packets,   

handshaking, etc.
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Accelerator Speedup

• Assume loop is executed for n times.

• Compare accelerated system to                      
non-accelerated system:

• Speedup =

= n(tCPU - taccel)

= n[tCPU - (tin + tx + tout)]
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Single-threaded vs Multi-threading

• One critical factor is the available parallelism in the 
application:
▪ Single-threaded/blocking: 

CPU waits for the accelerator
▪ Multithreaded/non-blocking: 

CPU continues to execute along with accelerator.

• For multithread, CPU must have some useful work 
to do while accelerators perform some tasks.
▪ Software environment must also support multi-

threading.
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Total Execution Time

Single-threaded:
Count execution time of all 

component processes.

Multi-threaded:
Find longest path through 

execution.

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

Accelerator
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Sources of Parallelism

• Overlap I/O and the Accelerator 
Computation.
▪ Perform operations in batches, read in 

second batch of data while computing on 
first batch.

• Find other work to do on the CPU.
▪ May reschedule operations to move work 

after accelerator initiation.
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Accelerator/CPU Interface

• Accelerator registers provide control registers 
for CPU.

• Data registers can be used for small data 
objects.

• Accelerator may include special-purpose 
read/write logic.

▪ Valuable for large data transfers
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Bus-based SoC

An Earlier Slide

• Bus transactions include:

▪ flushing register/cache values to main 
memory

▪ time required for CPU to set up transaction

▪ overhead of data transfers by bus packets, 
handshaking, etc.
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Memory Caching Problems

• Main memory provides the primary data 
transfer mechanism to the accelerator.

• Programs must ensure that caching does not 
invalidate main memory data.

▪ CPU reads location S

▪ Accelerator writes location S

▪ CPU writes location S
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Partitioning

• Divide functional specification into units.

▪ Map units (e.g., SystemC Modules) onto PEs

▪ Units can become processes (tasks)

• Determine proper level of parallelism.

f3(f1( ),f2( ))

f1( ) f2( )

f3( )

vs.
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Scheduling and Allocation

Scheduling for calculating TOTAL execution time

• We must:

▪ Schedule operations in time

▪ Allocate computations to processing elements

• Scheduling and allocation interact among each 
other. However, separating them will be helpful.

▪ Alternatively allocate, then schedule.
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Scheduling and Allocation
An Example

F1 F2

F3

d1 d2

Task graph
Hardware platform

P1 P2

Hardware Modules
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Process Execution Times

Time  to perform F1, F2 & F3 on P1 and P2 hardware 

HW (Library)

 P1(Accelerator) P2(CPU) 

F1 5 5 

F2 5 6 

F3 - 4 
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First design

• Allocate F1, F2 -> P1; F3 -> P2.

time

P1

P2

F1 F2

F3

F1C F2C
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Communication Model

Example

• Assume communication within PE is free

• Cost of communication from F1 to F3                  
d1 =2; 

• Cost of F2 to F3 communication d2 = 4
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Second design

• Allocate F1 -> P1; F2, F3 -> P2

P1

P2

d

time
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3rd Design Option

• Allocate F1, F2 -> P1; F3 -> P2

time

P1

P2

5 10 15 20

F1 F2

d2

F3

Interconnection 

network
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Example: Adjusting Data Size to 
Reduce Delay

• Task graph: • Processor Network:

F1 F2

F3

d1 d2

P1 P2 P3

allocation3

4

3

execution time

Transmission time = 4
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Initial schedule

time

P1

P2

P3

network

0 20105 15

F1

F2

d1 d2

F3
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An Efficient Schedule

time

P1

P2

P3

network

0 105 15

F1

F2

d1

F3

d2 d1

F3

d2 d1

F3

d2 d1

F3

d2
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Buffering and performance

• Buffering can sequentialize
operations.

▪Next process must wait for data to 
enter buffer before it can continue.

• Buffer policy (queue, RAM) can affect 
the available parallelism.
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Buffers and latency

• Three processes D, E and F separated by buffers 
B1, B2 and B3:

B1 D B2 E B3 F
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Buffers and Latency Schedules

D[0]

D[1]

…

E[0]

E[1]

…

F[0]

F[1]

…

D[0]

E[0]

F[0]

D[1]

E[1]

F[1]

…
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System Integration 
and Debugging

• Try to debug the CPU/accelerator 
interface separately from the accelerator 
core.

• Build scaffolding to test the accelerator.

• Hardware/software co-simulation can 
be useful.

•  Seamless: Mentor Graphics
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Accelerator Case Study

An Example: 

• Video accelerator

for MPEG-4
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Basics - Concept

• Build accelerator for block motion 
estimation, a major step in video 
compression.

• Perform two-dimensional correlation:

Frame 1

Frame 2
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Block Motion Estimation

• MPEG divides frame into 16 x 16 
macroblocks for motion estimation.

• Search for best match within a search 
range.

• Measure similarity with sum-of-
absolute-differences (SAD):

 | M(i,j) - S(i-ox, j-oy) |
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Best Match

Best match produces motion vector for 
the motion of an image block
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Full Search Algorithm
bestx = 0; besty = 0;
bestsad = MAXSAD;
for (ox = - SEARCHSIZE; ox < SEARCHSIZE; ox++) {

for (oy = -SEARCHSIZE; oy < SEARCHSIZE; oy++) {
int result = 0;
for (i=0; i<MBSIZE; i++) { 

for (j=0; j<MBSIZE; j++) {
result += iabs(mb[i][j] -

search[i-ox+XCENTER][j-oy-YCENTER]);
}

}
if (result <= bestsad) { bestsad = result;                    

bestx = ox; besty = oy;   }
}}
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Computational Requirements

• Let MBSIZE = 16, SEARCHSIZE = 8.

• Search area is 8+8+1 in each dimension

• Must perform:

nops = (16 x 16) x (17 x 17) = 73984 ops

• For an image of 512 X 512 pixels =>                       
32 X 32 macroblocks
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