SoC Architecture and Codesign

COE838: Systems-on-Chip Design
http://www.ecb.torontomu.ca/~courses/coe838/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan
Elect., Computer & Biomedical Engineering

Toronto Metropolitan University

Overview
* Introduction to Hardware-Software Co-design
* Hardware Options for System-on-Chip
» Accelerator based SoC Architectures
* CPU-Accelerator Co-design Process

Some Material from Chapter 8 of the Text by M. Wolf

SoC Architecture Design
Real-time System Design
= Performance analysis
= Scheduling and allocation

Accelerated systems
Use additional computational unit dedicated to
some functions?

" Hardwired Logic e.g. FPGA

Hardware/software co-design: a joint design of
hardware and software architectures of SoC.

SoC Architecture Codesign Page:

Traditional Design Practices

* Performance Requirements make it
impossible to execute the entire application in

software.

 Computationally intensive parts are to be
extracted and realized as custom hardware.

* Early Design Cycle Partitioning Problems:
= Design Space is not fully Explored
= High Cost Design
= |[nefficient

Traditional Design Practice

Requirements Definition

¢ 6-12 Months
Architecture Definition
/
v ! v
Hardware Design \ 4 Software Design
—> «
Interface
Design
25-49 Months
Hardware
Manufacture and > Software Code and
Test Test
<€
\ 4

Hardware Software
Implementation and Test

Deliverables

Documentation |«

6-12 Months

Deployment < Field Test

Advancements

VLSI Technology advances has led to:
« Smaller and Faster IP Cores
» Reconfigurable Logic

Matured Hardware Design
Methodology

Matured Software Design Methodology

Joint design — Still in progress and very
popular!

Hardware-Software SoC Codesign

* An approach utilizing the maximum

efficiency of Hardware and Software is
nheeded

* Recent developments in CAD Tools

* Result -- Hardware Software Co-design

= Large Design Space Exploration
= [mproved Time to Market

G. Khan

Codesign Methodology

Specification

System
analysis
Software/hardware | . _ Performance, power
partitioning analysis
Hardware Architect Software
specification chutecture specification
e 3
Hardware Hardware . Software Software
modules implementation On (Chip | jmplementation modules

Ny

Integration
and debugging

SoC Architecture Codesign

Page: 7

Hardware-Software Codesign

Study of the design of (SoC-based) computer
systems encompassing the following parts:
= Co-Specification
Developing system specification that describes
hardware and software modules and relationship
among them
= Co- Synthesis
Automatic and semi-automatic design of hardware
and software elements to meet the specification.

= Co-Simulation
Simultaneous simulation of hardware and software.

HW/SW Co-Specification

Consider System functionality at an Abstract Level
* No Concept of Hardware or Software

* Must Capture SoC functionality precisely

* Common Specification Approaches

Using High Level Languages
* C/C++
— Inclined to Software description

* VHDL/Verilog
— Inclined to Hardware description

* System(C

— Combined features for Hardware and Software
Representation

G. Khan SoC Architecture Codesign

Page: 9

Hardware-Software Co-Specification

« Common Specification Approaches
Using Task Graphs

* Grey Area

" High Level descriptions are usually
translated to some form of a task graph

= Common Forms
= Data flow graphs
= Control flow Graphs
= Control-Data Flow Graphs

G. Khan SoC Architecture Codesign

age: 10

Hardware-Software Partitioning

Assignment of System parts to implementation
units (Hardware and Software)

Goals of Partitioning Algorithm
= Meeting the constraints
* Minimize the system/SoC cost

Directly affects the cost and performance of final
system

Main Problems

Significant Research Area

Hardware-Software Partitioning

* Granularity: System Components’ Size i.e.
assigned to Hardware or Software

* Coarse Grain Approaches

Assign Complete Function or Processes to
hardware or software

" A single task is a large block of system
functionality

= Prevent Excess Communications

= Example tasks: MPEG decode, JPEG-2000
encode, FFT, DCT, etc.

G. Khan SoC Architecture Codesign

age: 12

Hardware-Software Partitioning

* Fine Grain Approaches: Operate on basic
operations (add, subtract, multiply, etc.)

Avoid the problem of dealing with poorly
defined functional specifications

= Useful when dealing with partially re-
configurable processors (IP cores that can be
modified during the design process)

= Here tasks are often referred as base blocks.

G. Khan SoC Architecture Codesign Page:

13

Hardware Software Partitioning

Flexible Granularity: Computationally intensive
parts are small loops which are hidden inside a

function or process.

= Coarse grain approaches lead to costly designs,
some redundant parts may be moved to hardware

®" Fine Grain approaches make up such a large
design space which is usually very hard to explore

* Perform HW/SW partitioning handling decisions at
both high and low levels.

G. Khan SoC Architecture Codesign Page: 14

Partitioning Approaches

Optimal Partitioning Approaches

Exhaustive
 Computationally very Intensive
* Limited to small task graphs

Branch and Bound
. Start from a good Initial Condition
. ¥]pre -sorted combinations
. austive in limiting case

Heuristic Approaches

Heuristic Optimization Techniques
Simulated Annealing, Tabu Search and (GA) Genetic Algorithm
Greedy Approaches:

Stasr\tA}‘rom all SW or HW architectures and move parts to HW
or

http://www. ecb torontomu ca/~courses/coe718/lectures/HS-Codesign-
verview.pdf

G. Khan SoC Architecture Codesign Page: 15

Hardware-Software Co-Synthesis

Four Principle Phases of Co-synthesis:

— Partitioning
Dividing the functionality of a specific system or SoC into
units of computation.

— Scheduling - Pipelining
Task Start Timing: Choosing time at which various
computation units will occur.

— Allocation

Determining the processing elements (PEs) on which
computations will occur.

Selection, type of Processing Elements and
Communication Structure (System Architecture)
— Assignment

Task Mapping: Choosing particular component types for
the allocated units (of computations).

Hardware Software
Co-Synthesis

» Automatic System/SoC Architecture
definition (e.g., bus, tree, ...)

* Tightly coupled with HW/SW
Partitioning

* Must schedule system to determine

feasibility of each solution being
evaluated

Hardware Software Co-Synthesis

Approaches

Optimal
* Try all possible combinations
* Limited use due to Large Design Space
e Examples

Heuristic
* Avoid large Execution times

e Usually give ‘Good’ results

Hardware Software Co-Synthesis

* lterative Heuristic Approaches

= Start with an initial solution

" With each iteration of the algorithm
improve the solution somewhat.

" As the algorithm progresses the
solution is refined.

G. Khan SoC Architecture Codesign Page: 19

SoC Hardware Structure
Various Hardware Options:

ASIC
CPU
FPGA
e
1/0
Other PEs

G. Khan SoC Architecture Codesign Page: 20

System Partitioning

Introduces a design methodology that uses several

techniques:

= Partition system specification into tasks (processes).
The best way to partition a specification depends on the
characteristics of the underlying hardware platform.

= Determine the performance of the function when
executed on the hardware platform.

We usually rely on approximating. Exact performance
depends on hardware-software details.

= Allocate processes onto various processing elements.

G. Khan SoC Architecture Codesign Page: 21

Hardware-Software Partitioning

 Hardware/software system design involve:
Modeling, Validation and Implementation
— System Implementation involves:
Hardware-software partitioning (Cosynthesis)

— Hardware-Software Partitioning
Identifying parts of the system model best
implemented in hardware and software modules

— Such partitions can be decided by the designer

or determined by the codesign (CAD) tools

Hardware-Software Partitioning

* For embedded systems, such partitioning
represents a physical partition of the system

functionality into:
— Hardware (CPU), accelerators, GPU, etc.
— Software executing on one or more CPUs

Various formation of the Partitioning Problem that are
based on:
* Architectural Assumptions
e Partitioning Goals
* Solution Strategies

COWARE: A design environment for application specific
architectures targeting telecom applications.

Partitioning Techniques

Hardware-Software Homogeneous System Model =>
task graph

* For each node of the task graph, determine the

implementation choices (HW or SW)
— Keep the scheduling of nodes at the same time
Meeting the real-time constraints (deadline, Exe time)

" There is an intimate relationship between
partitioning and scheduling.

* Wide variation in timing properties of the
hardware and software implementation of a task.

Accelerator (ASIC, FPGA, etc.)
System Architectures

Accelerator

— 1/0

v

SoC Architecture Codesign

Page: 25

SoC-HPS
Cyclone-V Hard Processor System

Single- or Dual-Core Processor

HPS 11O
Hard Processor System (HPS)
ARM Cortex-A9 Ethernet
FPGA NEON/FPU UsB '{:]1TG errkg
L1 Cache (x2) ™ (x2) ™
2 Gache GPIO e
(x2)
JTAG o4 KB Timers SP CAN
Debug/Trace ! RAM (x11) (x2) (x2)
NANDFlash QSPI Flash SDISDIOV DMA UART
Hard Memory M Confroller MMG (x2)
Confroller®
Shared Muitiport DDR HPSto FPGA to FPGA
Transceivers® SDRAM Controller @ FPGA HPS Configuration
Hard PCle*

*Optional Configuration ™ Integrated DMA Integrated ECC

G. Khan SoC Architecture Codesign Page: 26

G. Khan

DE1-SoC

cyeiopafy

SCSEMASFINTCEN

-
USE M-8
—— —

24T LTC Header
x7

User LED
111111111
LED xi10
Y ¥ ¥ Y VY ¥
8886888
T-Segrnent Dispiay a6

SoC Architecture Codesign

x10 [s2 |x10 nﬁ iﬂ T T

Page: 27

Accelerator vs Coprocessor

* A co-processor executes instructions
— Instructions are dispatched by the CPU

* Accelerator appears as a device on the bus
— Accelerator is mainly controlled by registers

Accelerator Implementations
= Application-specific integrated circuit
= Field-programmable gate array

= Standard component
Example

G. Khan SoC Architecture Codesign

age: 28

SoC Architecture Design Tasks

* Design Heterogeneous PEs
Multiprocessor SoC architecture.

—Processing Elements (PEs)
CPU, accelerator, etc.
* Program the system

Why Accelerators?

Better Cost/Performance

" Custom logic may be able to performthe
operation faster than a CPU of equivalent cost

= CPU cost is a non-linear function of
performance

cost

performance

CPU and Accelerators

Better Real-time Performance

* Put (schedule) time-critical functions on lightly-
loaded processing elements.

= Remember RMS utilization (<100%) --- extra CPU
cycles must be reserved to meet deadlines.

Rate Monotonic Scheduling
cost

deadline with

RMS overhead
deadline .
Required Application cheduling
Performance
performance

G. Khan SoC Architecture Codesign Page: 31

Why Accelerators?

Good for processing 1/0 in real-time.
May consume less energy.
May be better at streaming data.

May not be able to do all the work
on even the largest single CPU.

Accelerated System Design

* First, determine that the system really

needs to be accelerated.

= How much faster is the accelerator on the
core function?

" The data transfer overhead?
* Design the accelerator itself
* Design CPU interface to the accelerator

G. Khan SoC Architecture Codesign

age: 33

Performance Analysis

* Critical parameter --

How much faster is the system with the
accelerator?

* Must take into account:
= Accelerator execution time
" Data transfer time
(in-between CPU and Accelerator
= Synchronization with the (master) CPU

G. Khan SoC Architecture Codesign

age: 34

Accelerator Execution Time

Total accelerator execution time:

t = 1:in + tx + tout

RN

accel

Data Input/Output Times

 For Bus-based SoCs - bus transactions
include:

* Flushing register/cache values to main
memory

" Time required for CPU to set up the
transaction

= Overhead of data transfers by bus packets,
handshaking, etc.

G. Khan SoC Architecture Codesign Page:

36

Accelerator Speedup

 Assume loop is executed for n times.

 Compare accelerated system to
non-accelerated system:

* Speedup =
= r'(tCPU B taccel)

= rII:tCPU - (tin T tx T tout)]

N

Single-threaded vs Multi-threading

* One critical factor is the available parallelism in the
application:
= Single-threaded/blocking:
CPU waits for the accelerator
= Multithreaded/non-blocking:
CPU continues to execute along with accelerator.

* For multithread, CPU must have some useful work

to do while accelerators perform some tasks.

= Software environment must also support multi-
threading.

Total Execution Time

Single-threaded: Multi-threaded:
Count execution time of all Find longest path through
component processes. execution.

Accelerator

Sources of Parallelism

* Overlap I/0 and the Accelerator
Computation.

=" Perform operations in batches, read in
second batch of data while computing on
first batch.

* Find other work to do on the CPU.

= May reschedule operations to move work
after accelerator initiation.

G. Khan SoC Architecture Codesign

age: 40

Accelerator/CPU Interface

* Accelerator registers provide control registers
for CPU.

* Data registers can be used for small data
objects.

* Accelerator may include special-purpose
read/write logic.

= Valuable for large data transfers

Bus-based SoC

An Earlier Slide

e Bus transactions include:

* flushing register/cache values to main
memory

" time required for CPU to set up transaction

= overhead of data transfers by bus packets,
handshaking, etc.

G. Khan SoC Architecture Codesign Page:

42

Memory Caching Problems

* Main memory provides the primary data
transfer mechanism to the accelerator.

* Programs must ensure that caching does not
invalidate main memory data.

= CPU reads location S
= Accelerator writes location S
= CPU writes location S

SoC Architecture Codesign

Partitioning

* Divide functional specification into units.
" Map units (e.g., SystemC Modules) onto PEs
= Units can become processes (tasks)

* Determine proper level of parallelism.

()
BAOL)) | e /
B30)

SoC Architecture Codesign Page:

Scheduling and Allocation

Scheduling for calculating TOTAL execution time

* We must:
" Schedule operations in time
" Allocate computations to processing elements

* Scheduling and allocation interact among each
other. However, separating them will be helpful.

= Alternatively allocate, then schedule.

G. Khan SoC Architecture Codesign Page: 45

Scheduling and Allocation
An Example

Hardware Modules

Pl P2

dl d2

e 4

Hardware platform
Task graph

Process Execution Times

Time to perform F1, F2 & F3 on P1 and P2 hardware
HW (Library)

P1(Accelerator) P2(CPU)
F1 5 5
F2 5 6

F3 : 4

G. Khan SoC Architecture Codesign Page:

47

First design

 Allocate F1, F2 -> P1; F3 -> P2.

P1

P2

F1

F1C

F2

F2C

F3

time

Communication Model

Example

e Assume communication within PE is free

 Cost of communication from F1 to F3
dl =2;

 Cost of F2 to F3 communication d2=4

P1

P2

Second design

 Allocate F1->P1;F2, F3->P2

time

Pl

F1

F2

P2

Interconne
network

ction

Allocate F1, F2 -> P1; F3 -> P2

3rd Design Option

F3

d2

time

20

Example: Adjusting Data Size to

Reduce Delay

* Task graph: * Processor Network:

execution time
3 3 allocation

P3

Transmission time = 4

P1

P2

P3

F1

F2

network

Initial schedule

F3

dl

d2

P
™

0

An Efficient Schedule

P1 F1
P2 F2
P3
F3| |F3| |F3| |F3
network d1|d2|d1|d2|d1|d2|d1|d2
| | | time

Buffering and performance

* Buffering can sequentialize
operations.

" Next process must wait for data to
enter buffer before it can continue.

* Buffer policy (queue, RAM) can affect
the available parallelism.

G. Khan SoC Architecture Codesign

age: 55

Buffers and latency

* Three processes D, E and F separated by buffers
B1, B2 and B3:

Bl | | D | | B2 E B3 F

Buffers and Latency Schedules

D[O] D[O]
D[1] E[O]
ese F[O]
E[O] D[1]
E[1] E[1]

F[1]
FI0]

F[1]

System Integration
and Debugging

* Try to debug the CPU/accelerator
interface separately from the accelerator
core.

* Build scaffolding to test the accelerator.

 Hardware/software co-simulation can
be useful.

* Seamless: Mentor Graphics

Accelerator Case Study

An Example:
* Video accelerator

for MPEG-4

Basics - Concept

* Build accelerator for block motion
estimation, a major step in video
compression.

e Perform two-dimensional correlation:

D)

Frame 2

G. Khan SoC Architecture Codesign Page: 60

Block Motion Estimation

 MPEG divides frame into 16 X 16
macroblocks for motion estimation.

 Search for best match within a search
range.

 Measure similarity with sum-of-
absolute-differences (SAD):

2 | M(i,j) - S(i-o,, j-0,) |

Best Match

Best match produces motion vector for
the motion of an image block

SoC Architecture Codesign

Page: 62

Full Search Algorithm

bestx = 0; besty = 0;
bestsad = MAXSAD;
for (ox = - SEARCHSIZE; ox < SEARCHSIZE; ox++) {
for (oy = -SEARCHSIZE; oy < SEARCHSIZE; oy++) {
int result = 0;
for (i=0; i<MBSIZE; i++) {
for (j=0; j<MBSIZE; j++) {
result += iabs(mb][i][j] -
search[i-ox+XCENTER][j-oy-YCENTER]);

}
}

if (result <= bestsad) { bestsad = result;
bestx = ox; besty = oy; }

H

Computational Requirements

Let MBSIZE = 16, SEARCHSIZE = 8.
Search area is 8+8+1 in each dimension
Must perform:

Nyos = (16 X 16) X (17 X 17) = 73984 ops

For an image of 512 X 512 pixels =>
32 X 32 macroblocks

	Slide 1: SoC Architecture and Codesign
	Slide 2: SoC Architecture Design
	Slide 3: Traditional Design Practices
	Slide 4: Traditional Design Practice
	Slide 5: Advancements
	Slide 6: Hardware-Software SoC Codesign
	Slide 7: Codesign Methodology
	Slide 8: Hardware-Software Codesign
	Slide 9: HW/SW Co-Specification
	Slide 10: Hardware-Software Co-Specification
	Slide 11: Hardware-Software Partitioning
	Slide 12: Hardware-Software Partitioning
	Slide 13: Hardware-Software Partitioning
	Slide 14: Hardware Software Partitioning
	Slide 15: Partitioning Approaches
	Slide 16: Hardware-Software Co-Synthesis
	Slide 17: Hardware Software Co-Synthesis
	Slide 18: Hardware Software Co-Synthesis
	Slide 19: Hardware Software Co-Synthesis
	Slide 20: SoC Hardware Structure Various Hardware Options:
	Slide 21: System Partitioning
	Slide 22: Hardware-Software Partitioning
	Slide 23: Hardware-Software Partitioning
	Slide 24: Partitioning Techniques
	Slide 25: Accelerator (ASIC, FPGA, etc.) System Architectures
	Slide 26: SoC-HPS Cyclone-V Hard Processor System
	Slide 27: DE1-SoC
	Slide 28: Accelerator vs Coprocessor
	Slide 29: SoC Architecture Design Tasks
	Slide 30: Why Accelerators?
	Slide 31: CPU and Accelerators
	Slide 32: Why Accelerators?
	Slide 33: Accelerated System Design
	Slide 34: Performance Analysis
	Slide 35: Accelerator Execution Time
	Slide 36: Data Input/Output Times
	Slide 37: Accelerator Speedup
	Slide 38: Single-threaded vs Multi-threading
	Slide 39: Total Execution Time
	Slide 40: Sources of Parallelism
	Slide 41: Accelerator/CPU Interface
	Slide 42: Bus-based SoC An Earlier Slide
	Slide 43: Memory Caching Problems
	Slide 44: Partitioning
	Slide 45: Scheduling and Allocation
	Slide 46: Scheduling and Allocation An Example
	Slide 47: Process Execution Times Time to perform F1, F2 & F3 on P1 and P2 hardware HW (Library)
	Slide 48: First design
	Slide 49: Communication Model Example
	Slide 50: Second design
	Slide 51: 3rd Design Option
	Slide 52: Example: Adjusting Data Size to Reduce Delay
	Slide 53: Initial schedule
	Slide 54: An Efficient Schedule
	Slide 55: Buffering and performance
	Slide 56: Buffers and latency
	Slide 57: Buffers and Latency Schedules
	Slide 58: System Integration and Debugging
	Slide 59: Accelerator Case Study
	Slide 60: Basics - Concept
	Slide 61: Block Motion Estimation
	Slide 62: Best Match
	Slide 63: Full Search Algorithm
	Slide 64: Computational Requirements

