
COE838: SoC Design, Lab-1 1/6

Introduction to SystemC

COE838: Systems-on-Chip Design
LAB-1

1. Objectives
The purpose of this lab is to introduce students to SystemC and demonstrate how it can be used to model
hardware/software components in an event-driven manner. SystemC is a library that may be included in C++
code, consisting of many classes and macros for system development. These classes allow one to design,
model, and simulate a system prototype using techniques similar to SystemVerilog and VHDL, but with the
programmability of a C-based language. Using this lab, students will become familiar with the SystemC
coding paradigm, and obtain an understanding of how it can be used for various different hardware/software
designs in SoC modeling.

2. SystemC Overview
Figure 1 provides a SystemC block diagram for a flip flop module and testbench. A brief explanation for
each attribute shown in the figure, along with its respective coding technique is provided in the subsequent
subsections. The code corresponding to this example can be found in your course directory at
/coe838/lab1/tutorial/flipflop. We will first try and understand the SystemC model and code provided before
actually executing the code.

Figure 1: Flip Flop SystemC Example

a. Signals/Channels
A signal is used to connect two or more modules together, providing a means for transferring and
communicating data in a system. A signal may be declared and implemented in SystemC as follows:

General Declaration: sc_signal<data_type> signal_name;
Example: sc_signal<sc_uint<3> > data_in;

COE838: SoC Design, Lab-1 2/6

This example declares a signal called data in, which is of type unsigned integer, possessing a
datawidth of three (i.e. 3 bits "000", "001" etc). Common data types also include boolean <bool>,
integer <int> etc.

Signals are used to connect two different modules using a component's ports. Therefore these signals
must be bound (or mapped) to module ports first to allow for data communication.

b. Ports
A port is an entry way (input, output, or inout) to a module. When a signal is bound to a port (as done
in sc_main.cpp), information may be read or written to the module for processing. A port may be
declared in a module as follows:

General Declaration: port_direction_type<data_type> port_name;
Example: sc_in<bool> enable; or sc_out<sc_uint<3> > dout;

Binding signals to ports in the main function (or equivalent testbench) will be described shortly.

c. Modules
A module is a SystemC object which provides various parameters and functionalities to a system. A
module declaration is similar to an ENTITY and sensitivity list in VHDL, however must additionally
include a brief outline of the module's functionality. A module is declared using a header (.h) file,
where its actual functionality is coded in its corresponding .cpp file. In the case of the flip flop, the
module declaration may be found in flipflop.h, its functionality in flipflop.cpp, and its ports bound in
sc_main.cpp.

As seen in flipflop.h, a module's declaration will often include 1) port declarations, 2) any internal
functions that should be executed by the module (SC_METHOD), and 3) a constructor giving
specifications of any event-triggered (or level-sensitive) functionality. A basic template example for
instantiating a module can be seen in the flipflop.h file as follows:

SC_MODULE(flipflop){
 //port declaration
 sc_in<bool> clk;
 sc_in<bool> enable;
 ...

 //function declaration and/or implementation
 void ff_method();

 //constructor
 SC_CTOR(flipflop){
 SC_METHOD(ff_method);
 dont_initialize();
 sensitive << clk.pos();
 }
};

As seen here, the port declarations are given first, followed by any method to be executed by the
flipflop. This is then followed by a constructor, specified with the keyword SC_CTOR(), which
states that the module should execute the function ff_method when triggered, with dont_initialize()
specifying that the constructor should not execute this method automatically. Rather, the module may
only execute ff_method() when an event indicated on its sensitivity list has been triggered. In this
case, the module will only execute ff_method when a positive clock edge has triggered, as specified

COE838: SoC Design, Lab-1 3/6

with the keywords sensitive << clk.pos(). The actual ff_method is implemented in
flipflop.cpp and is coded using standard C++ programming semantics.

d. Main Program (sc_main)
Referring back to Figure 1, we see that the main components and features of a SystemC design have
now been covered. However, how do we connect all these components and signals together, and
generate test data for execution? The main program, sc_main.cpp (or equivalent testbench file) is
used to assemble the system components, bind the system ports, and drive data in and out of the
modules. It is also possible to consider sc_main as a system's processor, executing any software
functions required, and sending/receiving the "accelerator" (modules) based data.

#include <systemc.h>
#include "flipflop.h" //include any module declaration

int sc_main(int argc, char* argv[]){
 ..
 sc_signal<sc_uint<3> > data_in, data_out; //Declare signals
 sc_signal<bool> en;

 //Create a clock signal of 10ns, with 50% duty cycle
 sc_clock clk("clk",10,SC_NS,0.5);

 //Create an instance (DUT) of the flipflop named "flipflop"
 flipflop DUT("flipflop");
 DUT.din(data_in); // Bind the signals to the flipflop module ports
 DUT.dout(data_out);
 DUT.clk(clk);
 DUT.enable(en);

 //Test the module (write) and observe output (based on flipflop.h method)
 en.write(0); //initialize
 data_in.write(0);
 sc_start(9, SC_NS);
 //run the clock for 9ns (for setup/hold time purposes)

 en.write(1); //enable and input data
 data_in.write(7);
 sc_start(20, SC_NS); //run the clock for 20ns

 return 0;
}

Note that the keywords .write() and .read() are used to communicate data between modules.

e. Tracing Signals
Aside from using the cout << statement in C++, it is extremely useful to verify and debug SystemC
designs using a tracefile for tracing signal execution. A tracefile is created as follows (see
sc_main.cpp):

sc_trace_file *tf;
tf = sc_create_vcd_file("trace_file");

The statements above creates a file pointer tf, pointing to a file called trace_file.vcd for writing.

sc_trace(tf, clk, "clk");

COE838: SoC Design, Lab-1 4/6

The statement above, sc_trace, can trace module signals and write it to the vcd file. The example
statement specifies that a trace called "clk" is to be included in the vcd, tracing the clk signal bound
to the flipflop module in sc_main.cpp. To specify a certain time unit that the trace file should abide
by, one may also use the statement:

tf->set_time_unit(1, SC_NS);

The trace file should be closed once the main program has finished as follows:

sc_close_vcd_trace_file(tf);

Once your module has finished executing, you will find a trace file generated in the same folder as
your code called "trace_file.vcd".

3. Makefiles, SystemC Execution and Simulation
3.1 Understanding Makefiles

Navigate to the course directory /coe838/lab1/tutorial/flipflop. Copy the contents of the flipflop folder into
your home/course directory. This folder contains the files sc_main.cpp, flipflop.h and flipflop.cpp. You will
also find a file called Makefile. Makefiles are used to compile a C/C++ project and are extremely useful
when it is necessary to include several source files, header files, and/or libraries to successfully create an
executable. Thus instead of typing:

 g++ -I/usr/local/SystemC-2.3.0 -L/....../ -c flipflop.cpp sc_main.cpp -o flipflop.x -lsystemc -lm

into the terminal every time you want to compile your lab, a Makefile will allow you to simply type:

make

The make command will send a command to the Makefile which will execute the g++... line above to
compile your project based on the Makefile's specifications. You may also type in

make clean

which will clean your project, deleting any executables, .o, .cpp~ and .h~ files (where ~ represents old files
that have been temporarily saved by Unix as a backup, created every time you re-save your work).

Open the Makefile in the flipflop folder and analyze its contents. For subsequent lab assignments involving
SystemC, you may simply copy and paste the contents of this Makefile to your own Makefile. However, the
following lines will be of importance:

PROGRAM = flipflop.x
SRCS = flipflop.cpp sc_main.cpp
OBJS = flipflop.o sc_main.o

You will need to change this information based on your module file names, where the last .cpp file name
(and .o) must always be sc_main.cpp or equivalent (i.e. you must compile the dependency modules first,
prior to compiling the main file). For the interested reader, a more detailed tutorial on Makfiles may be found
at: http://www.ecb.torontomu.ca/~elf/ele428/makefile-tutorial.html

COE838: SoC Design, Lab-1 5/6

3.2 Compiling, Executing, and Simulating the SystemC Modules

i) Copy the folder /coe838/lab1/tutorial/flipflop into your home/course directory.

ii) Open a terminal and cd to the directory containing the flipflop tutorial files.

iii) Type ls into the terminal. You should see the Makefile and supporting .cpp/.h files discussed in this
tutorial. If not, repeat step 2. to find the directory again.

iv) Type make in the terminal

v) This will create an executable called flipflop.x

vi) To execute the flipflop binary, type ./flipflop.x in the terminal.

vii) You will see the terminal output stdout and a message (to check the .vcd file produced).

viii) Type ls in the terminal. You should see a file called "trace_file.vcd" now present in the
folder.

ix) To view this waveform, type the command gtkwave trace_file.vcd in the terminal.

x) The program gtkwave should now open a window. On the left side, you will see a module called
"SystemC". Double click this field.

xi) This will output the signals we specified for tracing in sc_main.cpp to the bottom left window.
Double click each signal to include it in the waveform editor. You may also drag and drop the signals
in the waveform editor as necessary.

xii) Examine the waveforms and understand how each signal pertains to the data in the sc_main.cpp and
flipflop.cpp files.

4. Additional Examples
The course directory /coe838/lab1/tutorial/ also contains a folder called /barrelshifter. Copy, open, and
analyze the files and contents in your own directory. Understand how the barrel shifter works, and how this
implementation differs from the flip flop example provided above. Once you have obtained a good grasp of
the system's contents, compile, execute, and simulate the barrel shifter using the same steps as Section 3.2.

Another example is given in the folder /coe838/lab1/tutorial/barrelflop. This example amalgamates the flip
flop and barrel shifter designs. The user may choose to execute either the flipflop or barrel shifter. Examine
the files in the folder to see how they differ in implementation. To execute the flip flop example, in the
terminal execute the command:

./barrelflop 1

To execute the barrel shift example, type:

./barrelflop 2

To obtain help on the executable's usage, type:

./barrelflop - help

COE838: SoC Design, Lab-1 6/6

5. What to Hand In
Using the techniques learned throughout this tutorial, students are to design an Integer Arithmetic-based
ALU using SystemC. The ALU may add (A+B) or subtract (A-B) two numbers, where input B is connected
to a barrel shifter. Thus if enabled, input B will first be shifted to the left or right (l_r) by shift_amt before
being transferred to the ALU's B input. Figure 2 outlines the ALU architecture and respective control signals
of the system, whereas Table I dictates specifications of the unit's control signal functionality.

Table I: ALU and Barrel Shifter Functionality
ALU Barrel Shifter

Op Functionality en l_r Functionality
0 Subtract 0 X Pass Data through (shifting disabled)
1 Addition 1 0 Shift left by shift_amt
 1 1 Shift right by shift_amt

Figure 2: Integer Arithmetic ALU with Barrel Shifter

This lab is due before the start of your lab session in week 3. Please print out and hand in all SystemC code
necessary for implementing the Integer Arithmetic ALU design specified above. Test your design using
various test case scenarios to ensure that the unit abides by all the functionality outlined in Table I. Include
screenshot(s) of the waveforms generated for all test cases. The lab must be handed in with the
University cover page, dated and signed. Your lab instructor may also ask you to demo your work during
submission. Be prepared.

Note: There are many ways to implement the design of Figure 2. However, it is important that the barrel shift
occur before the ALUs computation. Thus the two components may require different sensitivity lists, or may
execute in a pipelined fashion to guarantee that the barrel shifter executes in the cycle prior to the ALU.

