
HPS/FPGA Interconnection

COE838: System-on-Chip
Design

Lab 3 and 4, Project manual
DE1-SoC Datasheets [online]
Flynn and Luk book – Chapter 3

• Open Quartus,
include top level
files which
represent your
SoC system

• Use Qsys to
integrate an
HPS, IPs, and
their respective
connections to
the lw axi bus

• Generate .h files – obtain addresses for
components, to be used for memory
mapping in C application

• Port map top
level with
soc_system
created in
QSys

• Pin assts, tcl
scripts etc for
IO and porting
HPS and FPGA

• Compile/
Synthesize

• Start a C

project

• Create C
application
(memory map)
using
addresses
generated by
Qsys and NIOS

• Compile &
copy binary

• Start Minicom

or DS-5

terminal

• Access Yocto

linux, copy .x

• Program .sof
on board (i.e.
Bitstream)

• Execute the
binary using
host terminal

Memory-Mapped IO
void *virtual_base;

#define LWHPS2FPGA_BASE 0xff200000

volatile uint32_t *h2p_lw_led_addr = NULL;

....

//open the /dev/mem to access the FPGA space for reading and writing

 if((fd = open("/dev/mem", (O_RDWR | O_SYNC))) == -1) {

 printf("ERROR: could not open \"/dev/mem\"...\n");

 return(1);

 }

 //map the virtual memory space to virtual_base, that is 2MB in size

//(0x00200000), at address LWHPS2FPGA_BASE

 virtual_base = mmap(NULL, LW_SIZE, (PROT_READ | PROT_WRITE),

MAP_SHARED, fd, LWHPS2FPGA_BASE);

 // map the address space for the LED and HEX registers into user space so

//we can interact with them.. virtual_base + the offset of your IP

component

 h2p_lw_led_addr= virtual_base + ((uint32_t)(LED_PIO_BASE));

Memory-Mapped IO
volatile uint32_t *h2p_lw_led_addr = NULL;

....

 // map the address space for the LED and HEX registers into user space so

//we can interact with them.. virtual_base + the offset of your IP

component

 h2p_lw_led_addr= virtual_base + ((uint32_t)(LED_PIO_BASE));

.....

 alt_write_word(h2p_lw_led_addr, 0x3FF);

HPS/FPGA - ARM Cortex-A9

Source: Altera

Avalon Bus
• Interconnect fabric inside

FPGA (Altera)

• Used to connect master-
slaves as required

• Generates the necessary
“busses” using the fabric
to make these
connections

• Separates data in from
data out

– Uses multiplexers

Avalon Bus
• Follows a protocol

• You have an IP, however
it does not necessarily
know how to communicate
with the FPGA fabric

• Need an Avalon-MM Slave
(or Master) for controlling
and w/r data

• Components we used in
Lab3 were provided with
Avalon-MM interfaces

Avalon Bus
• Follows a protocol

• You have an IP, however
it does not necessarily
know how to communicate
with the FPGA fabric

• Need an Avalon-MM Slave
(or Master) for controlling
and w/r data

Avalon Bus – Custom IPs

• Need to create an Avalon-
MM interface for your IP
with the Avalon fabric

• Can also create a “wrapper”
for integrating additional
signals, not necessarily
provided by your IP

Custom IP in HPS/FPGA

• Use IP Cores in
Quartus to
generate a custom
multiplier (lab4)

• How do we
determine when
multiplication is
complete from HPS
side?

WRAPPERS FOR CUSTOM IPS

HPS/FPGA CUSTOM IPS

Let’s convert lab2a (multiplier) ->

U0 : soc_system

PORT MAP(

...

mult_data_0_mult_data_m_result => mult_output_result,

mult_control_0_mult_control_m_done => "0000000000000000000000000000000" & done,

mult_data_0_mult_data_m_in1 => in1,

mult_data_0_mult_data_m_in2 => in2,

mult_control_0_mult_control_m_start => mult_input_start,

 mult_control_0_mult_control_m_reset => mult_input_reset);

m0 : mult_unit

PORT MAP(clk => CLOCK_50, reset => mult_input_reset(0), enable => mult_input_start(0), mult_a =>

in1(15 DOWNTO 0), mult_b => in2(15 DOWNTO 0), mult_done => done, mult_result => mult_output_result);

Conduits drive signals off-chip

Lab4 - Avalon MM Slave I/F

Lab4 - Avalon MM Slave I/F

READING & WRITING DATA

Common Timing Diagrams

Avalon MM Slave Interface

Avalon MM Slave Interface

Qsys: Create Interfaces

Conduits drive signals off-chip

Qsys: Create Interfaces

Use Qsys to create the Avalon-MM i/f so that your IP
core may communicate through the FPGA fabric to the
HPS (i.e. IP – MM I/F – Avalon bus - bridge – axi
protocol) and vice versa

Avalon MM Slave Interface

On the SW Side...

HPS: ARM Cortex-A9

HPS - FPGA

HPS – FPGA Bridges

Source: Altera

-Modifies data and clock
signals to support
transportation (protocols,
clocking etc) between
components

-Connect your slaves to
the required bus

-Qsys will make the
necessary connections
to the bridges for
Avalon/AXI compatibility

Top-Level VHDL: Putting it all
together

HPS Software: Putting it all
together

Lab4 - Avalon MM Slave I/F

Lab 4 – Your Assignment

• Create a custom functioned SoC of your
choice

– Obviously, DO NOT use the multiplier as
your design

• Points awarded for creativity

• Divide custom IP is obviously not that
creative – just doing the opposite!

Project :
MD5 Decryption SoC Design

MD5 Algorithm

MD5 Standard Project

MD5 Timing Characteristics

MD5 Project
• Analyze the MD5 Core – Obtain a thorough understanding

– VHDL RTL analysis
– Test bench => 1 core vs 32 cores
– Timing properties in ModelSim & lab manual

• Design Avalon MM Interface
• Design HPS Software Application

– Generate Messages
– Send constant data, send message
– Receive digest when complete
– Calculate hash time, # of hashes, hash rate, correct answer etc

• Parallel vs Sequential
• Formal report must follow specifications

• Bonus projects = 2-5% bonus on final COE838 grade

Some Bonus Projects ...

DE1-SoC MTL

• Develop an SoC
that can be
controlled by
an Android app
running on the
DE1-SoC

– Special report

Some Bonus Projects ...

Parallella – making heterogeneous high performance parallel platforms
attainable to general public (16 – 64 cores on a board)

• Create a MM application (i.e video
processing, bitcoin etc) for the Parallella,
determining statistics and providing
comparisons to another platform (i.e. X86)

https://www.youtube.com/watch?v=hFWIC3RF0f8

Some Bonus Projects ...
• DE1-SoC – video processing SoC design,

inputs a graphic and displays an altered
graphic on VGA (or screen)

– Picture or video filtering using SoCs

• HLS – LegUp vs custom design (or IP) to
develop same hardware for an SoC on
DE1-SoC. Compare various stats of
performance, power, area etc

Mini Bonus

• +1-2% on project mark - .c application
equivalent which performs MD5
decryption. Use pure HPS vs HPS/FPGA
vs x86 (compare stats)

– +2-5% Implement above + Use h2f bus
(64b, 128b) & compare statistics

	COE838-Lec7.pdf

