

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 1/60

Processes and Multitasking

COE718: Embedded Systems Design
http://www. ecb.torontomu.ca/~courses/coe718/

Dr. Gul N. Khan

http://www.ecb.torontomu.ca/~gnkhan
Electrical, Computer and Biomedical Engineering

Toronto Metropolitan University

Overview
• Processes and Tasks

• Concurrency

• Scheduling Priorities and Policies

• Multitasking Techniques

• CPU Scheduling

Chapters 9 and 10 of Text by D. W. Lewis, Chapter 6 of Text by M. Wolf and ARM/RTX Documents

http://www.ecb.torontomu.ca/~gnkhan
http://www.ee.ryerson.ca/

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 2/60

Introduction to Processes

All multiprogramming operating systems are built around

the concept of processes.

Operating System (OS) and Processes

• OS must interleave the execution of several processes to

maximize CPU usage.

• OS must allocate resources to processes.

• OS must also support:

▪ IPC: Inter-process communication

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 3/60

Operating System (OS)

 • OS is a Computer program

that provides a software layer

between the application

software and the hardware.

• It provides three main

functions:

▪ Schedule task execution

▪ Dispatch a task for

execution.

▪ Ensure communication

and synchronization

between tasks.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 4/60

Task/Process Concept

Serial Execution of Two Processes

Interleaving the Execution of Process 1 and 2

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 5/60

Concurrency

• Only one thread runs at a time while others are waiting.

• Processor switches from one process to another so quickly

that it appears all threads are running simultaneously.

Processes run concurrently.

• Programmer assigns priority to each process and the

scheduler uses it to determine which process to run next.

Real-Time Kernel
• Processes call a library of run-time routines (known as the

real-time kernel) manages resources.

• Kernel provides mechanisms to switch between processes,

for coordination, synchronization, communications, and

priority.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 6/60

Multi-Tasking and Concurrency

• Most embedded systems have several inputs/outputs and multiple

events occurring independently.

• Separating tasks simplifies programming, but requires somehow

switching back and forth among multiple tasks (multi-tasking).

• Concurrency is the appearance of simultaneous execution of

multiple tasks.

Concurrent Tasks for a Thermostat

/* Monitor Temperature */

do forever {

measure temp ;

if (temp < setting)

start furnace ;

else if (temp >

 setting + delta)

stop furnace ;

}

/* Monitor Time of Day */

do forever {

measure time ;

if (6:00am)

setting = 72oF ;

else if (11:00pm)

setting = 60oF ;

}

/* Monitor Keypad */

do forever {

check keypad ;

if (raise temp)

setting++ ;

else if (lower temp)

setting-- ;

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 7/60

 Basic Process States

There are three basic states of a process

• The Running state
➢ The process that gets executed.

• The Ready state
➢ A process is ready to be executed.

• The Blocked state (Waiting)
➢ When a process cannot execute until some event occurs.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 8/60

 More Process States

5-State Process Model

New Ready Running Exit

Blocked

Admit

Event

Occurs

Dispatch
Release

Time-out

Event

Wait

At parent request

At parent request

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 9/60

Modes of Execution

Most processors support at least two execution modes:

• Privileged mode

➢ Manipulating control registers

➢ Memory management ...

• User mode
➢ Less-privileged mode

➢ User programs execute in this mode

Therefore, CPU provides a (or a few) mode bit, which

may only be set by an interrupt or trap or OS call

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 10/60

UNIX Processes

• 2 modes: User mode and Kernel mode.

• System processes run in Kernel mode.

• User processes run in user mode for user instructions and in

kernel mode for OS/kernel instructions

• 9 states for processes

UNIX Process State

• Two running states for user or kernel modes.

• Pre-empted state is for processes returning from Kernel to

user mode.

• A process running in Kernel mode cannot be pre-empted.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 11/60

UNIX Process Transition Diagram

Two running states: User and Kernel

Preempted State: Kernel schedules another high priority process.

A Process running in Kernel mode cannot be preempted. That makes Unix/Linux

unsuitable for real-time applications

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 12/60

UNIX Process Creation

Every process, except process 0, is created by the fork()

system call.

• fork() allocates entry in process table and assigns a unique

PID to the child process

• child gets a copy of process image of parent: both child and

parent are executing the same code following fork().

• fork() returns the PID of the child to the parent process and

returns 0 to the child process.

Process 0 is created at boot time and becomes the “swapper”

after forking process 1 (the INIT process)

When a user logs in: process 1 creates a process for that user.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 13/60

UNIX-style Process Creation

int fork()
▪ Creates an exact copy of the calling process.

int execve(char *progName, char *argv[])
▪ Runs a new program in the calling process

▪ Destroying the old program

int exit(int retCode)
▪ Exits the calling process

int wait(int *retCode)
▪ Waits for any exited child, returns its pid

Blocks itself

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 14/60

UNIX Fork

fork() fork()

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 15/60

Unix Fork Example

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

int main()

{

 pid_t pid;

 pid = getpid(); /* Parent process created, get its ID */

 pid = fork(); /* Create a child process */

 if (pid == 0)

 { /* only the child process code should get here */

 while(1) {

fprintf(stderr, “I am child process \n”);

usleep(10000000); /* wait for 10 seconds */

 }

 }

 /* Only parent should get here */

 fprintf(stderr," I am PARENT: I wait for 20 seconds\n");

 usleep(20000000);

 fprintf(stderr,"I am PARENT: Kill child: %u\n",pid);

 kill(pid,9);

 return(0);

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 16/60

 Process Context and Switching

• Each process has its own stack and context.

• A context switch from process ‘A’ to process ‘B’ first saves

registers in context A, and then reloads all CPU registers from

context B.

 Waiting

 Waiting

 Executing Waiting

 Executing

 Executing

Restore

Context-B

Save

Context-A

Save Context-B Restore

Context-A

Process A Process B

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 17/60

Process/Task Switching

How to change a process state
• Save context of processor including PC and other registers

• Update the PCB/TCB (process/task control block) with the

new state and other associated information.

• Move PCB to appropriate queue.

• Select another process for execution.

• Update the process (task) control block of the process (task)

selected.

• Update memory-management data structures

• Restore context of the selected process by reloading previous

PC and registers.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 18/60

Foreground/Background

Multitasking System

IRET

 Interrupt

 ISR for

Task #2

Start

Initialize

IRET

 Interrupt

 ISR for

Task #1

IRET

 Interrupt

 ISR for

Task #3

Wait for

Interrupts

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 19/60

Foreground/Background System

• Most of the actual work is performed in the "foreground" ISRs,

with each ISR processing a particular hardware event.

• Main program performs initialization and then enters a

"background" loop that waits for interrupts to occur.

• System responds to external events with a predictable amount of

latency.

Moving to Background
• Move non-time-critical work (such as updating a display) into

background task.

• Foreground ISR writes data to queue, then background removes

and processes it.

• An alternative to ignoring one or more interrupts as the result of

input overrun.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 20/60

Limitations of the

Foreground/Background Multitasking

• Best possible performance requires moving as much as

possible into the background.

• Background becomes collection of queues and

associated routines to process the data.

• Optimizes latency of the individual ISRs, but

background requires a managed allocation of processor

time.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 21/60

Co-operative Multitasking

• Hides context switching mechanism;

• Still relies on processes to give up CPU.

• Each process allows a context switch at cswitch() call.

• Separate scheduler chooses which process runs next.

Context switching

Who controls when the context is switched?

How is the context switched?

Problems with co-operative multitasking

Programming errors can keep other processes out:

• Process never gives up CPU;

• Process waits too long to switch, missing input.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 22/60

Preemptive Multitasking

• Most powerful form of multitasking

• OS controls when contexts switches

• OS determines what process runs next

• Use timer to call OS, switch contexts:

Flow of control with preemption:

CPU

interrupt

time

P1

OS

P1

OS

P2

interrupt

interrupt

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 23/60

VxWorks Multitasking

Modern real-time systems are based on the complementary

concepts of multitasking and inter-task communications.

In VxWorks, tasks have immediate, shared access to most

system resources, while also maintaining separate context to

maintain individual task control.

A multitasking environment allows a real-time application to

be constructed as a set of independent tasks, each with its own

thread of execution and set of system resources.

It is often essential to organize the real-time applications into

independent but cooperating, programs known tasks.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 24/60

VxWorks Task Context

A task’s context includes:

• a thread of execution; that is, the task’s program counter

• the CPU registers and (optionally) floating-point registers

• a stack for dynamic variables and function calls

• I/O assignments for standard input, output, and error

• a delay timer

• a time-slice timer

• kernel control structures

• signal handlers

• debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s

context is memory address space.

All code executes in a single common address space.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 25/60

RTX - RTOS Kernel

The RTX kernel is a real time operating system (RTOS)

RTX: Real Time eXecutive for µcontrollers based on

 ARM CPU cores

It works with the microcontrollers:

• ARM7™TDMI,

• ARM9™,

• or Cortex™-M3 CPU core

Basic functionality -- to start and stop concurrent tasks (processes).

It also has functions for Inter Process Communication (IPC) to:

• synchronize different tasks,

• manage common resources (peripherals or memory regions),

• and pass complete messages between tasks.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 26/60

RTX/RTOS Advantages

The application is split up into several smaller tasks that run

concurrently. There are many advantages of RTX/RTOS kernel:

• Real world processes may consist of several concurrent activities. This
pattern can be represented in software by using the RTX kernel.

• Different activities occur at different times, for example, just at the
moment when they are needed. This is possible because each activity is
packed into a separate task, which can be executed on its own.

• Tasks can be prioritized.
• It is easier to understand/manage small pieces of code than one large

software.
• Splitting up the application software into independent parts reduces the

system complexity, errors, and may facilitates testing.
• The RTX kernel is scalable. Additional tasks can be added easily at a

later time.
• The RTX kernel offers services needed in many real-time applications,

for example, interrupt handling, periodical activation of tasks, and time-
limits on wait functions.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 27/60

RTX - Deterministic RTOS

• Royalty-free, deterministic RTOS

• Flexible Scheduling: round-robin, pre-emptive, and collaborative

• High-Speed real-time operation with low interrupt latency

• Small footprint for resource constrained systems

• Unlimited number of tasks each with 254 priority levels

• Unlimited number of mailboxes, semaphores, mutex, and timers

• Support for multithreading

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 28/60

RTX Kernal – RTOS

Keil's Real Time eXecutive for ARM CPUs

<RTL.h> file defines the RTX functions and macros.

We need to declare tasks and access all RTOS features:

• Offers interrupt handling, multitasking, periodic task

activations, scalable task creation.

• Use RTX_Config_CM.c to specify parameters and

configuration in the RTOS/RTX kernel

▪ Ports the kernel to your CPU

▪ Includes cmsis_os.h

• Include cmsis_os.h so that your application (.c) may

access the CMSIS RTOS API

▪ Explicitly used in (lab3a and 3b) for thread

management

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 29/60

RTX Multitasking

RTOS enables us to create applications that simultaneously perform

multiple functions or tasks.

Flexible Scheduling of system resources like CPU and memory, and

offers ways/supports to communicate between tasks.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 30/60

Timing Specifications

Function
ARM7™/ARM9™

(cycles)

Cortex™-M

(cycles)
Initialize system, (os_sys_init), start task 1721 1147

Create task (no task switch) 679 403

Create task (switch task) 787 461

Delete task (os_tsk_delete) 402 218

Task switch (by os_tsk_delete_self) 458 230

Task switch (by os_tsk_pass) 321 192

Set event (no task switch) 128 89

Set event (switch task) 363 215

Send semaphore (no task switch) 106 72

Send semaphore (switch task) 364 217

Send message (no task switch) 218 117

Send message (switch task) 404 241

Get own task identifier (os_tsk_self) 23 65

Interrupt lockout <160 0

• The table for RTX Kernel library is measured on (ARM7, Cortex-M3), code execution from
internal flash with zero-cycle latency.

• The RTX Kernel for the test is configured for 10 tasks, 10 user timers and stack checking
disabled.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 31/60

Task Creation and Execution

Create the Init Task that will create the other two application tasks 1 & 2 with

ROUND ROBIN Scheduling

#include <RTL.h> /* RTX header file for RTX system calls */

#include <LPC17xx.H> /* LPC17xx Cortex M3 board definitions */

long global_c1 = 0, global_c2 = 0;

__task void task1(void){

 for(;;){

 global_c1 += 3; }

}

__task void task2(void){

 for(;;){

 global_c2 += 2; }

}

int main (void) {

SystemInit(); /* initialize the Coretx-M3 processor */

os_tsk_create (task1, 1); /* Creates task1 priority 1 */

os_tsk_create (task2, 1); /* Creates task2 priority 1 */

os_tsk_delete_self(); /* Kill itself & task1 starts */

os_sys_init(task1); /* init RTX and start task1 */

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 32/60

RTX: Task States and Management

Each RTX task is always in exactly one state, which tells the

disposition of the task.
State Description

RUNNING: The task that is currently running is in the RUNNING state.

Only one task at a time can be in this state.

State Description

READY: Tasks which are ready to run are in the READY state. Once the

running task has completed processing, RTX selects the next ready task

with the highest priority and starts it.
State Description

WAIT_DLY Tasks which are waiting for a delay to expire are in the

WAIT_DLY State. Once the delay has expired, the task is switched to the

READY state.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 33/60

RTX: Task States and Management
State Description

WAIT_ITV: Tasks which are waiting for an interval to expire are in the

WAIT_ITV State. Once the interval delay has expired, the task is switched

back to the READY state.

os_itv_wait() function is used to place a task in the WAIT_ITV State.
State Description

WAIT_SEM: Tasks which are waiting for a semaphore are in the

WAIT_SEM state. When the token is obtained from the semaphore, the

task is switched to the READY state.

os_sem_wait() function is used to place a task in the WAIT_SEM state.ate

Description
WAIT_MUT: Tasks which are waiting for a free mutex are in the

WAIT_MUT state. When a mutex is released, the task acquire the mutex

and switch to the READY state.

os_mut_wait() function is used to place a task in the WAIT_MUT state.
State Description

INACTIVE: Tasks which have not been started or tasks which have been

deleted are in the INACTIVE state. os_tsk_delete() function places a task

that has been started [with os_tsk_create()] into the INACTIVE state.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 34/60

RTX- Task Management Routines
Routine Attributes Description

os_sys_init Initializes and starts RL-RTX.
os_sys_init_prio Initializes and starts RL-RTX assigning a
priority to the starting task.
os_sys_init_user Initializes and starts RL-RTX assigning a
priority and custom stack to the starting task.
os_tsk_create Creates and starts a new task.
os_tsk_create_ex Creates, starts, and passes an argument
pointer to a new task.
os_tsk_create_user Creates, starts, and assigns a custom stack
to a new task.
os_tsk_create_user_ex Creates, starts, assigns a custom stack,
and passes an argument pointer to a new task.
os_tsk_delete Stops and deletes a task.
os_tsk_delete_self Stops/deletes the currently running task.
os_tsk_pass Passes control to the next task of the same priority.
os_tsk_prio Changes a task's priority.
os_tsk_prio_self Changes the currently running task's priority.
os_tsk_self Obtains the task ID of the currently running task.
isr_tsk_get Obtains the task ID of the interrupted task.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 35/60

CMSIS

CMSIS: Cortex Microcontroller Software Interface Standard

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 36/60

CMSIS

CMSIS is a Device Driver Library providing an independent HW

abstraction layer for interfacing applications to the µController.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 37/60

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 38/60

RTX- CMSIS Thread Management
Routine Attributes Description

osKernelInitialize Initialize the RTOS kernel.
osKernelStart Start the RTOS kernel.
osKernelGetState Get the current RTOS Kernel state.
osKernelGetSysTimerCount Get RTOS kernel system timer count.

osKernelSuspend Suspend the RTOS kernel scheduler.
osKernelResume Resume the RTOS kernel scheduler.
osDelay Wait for Timeout (Time Delay).

osThreadCreate Creates and starts a new thread.
and passes an argument pointer to a new task.
osThreadTerminate Stops and deletes a thread.
osThreadYield Passes control to the next thread.
osThreadSetPriority Changes a thread's priority.
osThreadGetPriority Get the currently running thread's priority.
osThreadGetId Obtains the thread ID of the currently running thread.

osSemaphoreCreate Define and initialize a semaphore.

osSemaphoreWait Obtain semaphore token or Wait until it becomes available.

osSemaphoreRelease Release a semaphore token.

osSemaphoreDelete Delete a semaphore.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 39/60

Thread Creation and Execution
ROUND ROBIN Scheduling

/* CMSIS-RTOS 'main' function template */

#define osObjectsPublic // define objects in main module
#include "osObjects.h" // RTOS object definitions

#include "cmsis_os.h" // CMSIS RTOS header file
unsigned int global_c1=0;
unsigned int global_c2=0;

extern int Init_Thread (void);

/* main: initialize and start the system */

int main (void) {
 osKernelInitialize (); // initialize CMSIS-RTOS

 Init_Thread ();

 osKernelStart (); // start thread execution

 osDelay(osWaitForever);

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 40/60

/* Thread.c */

void Thread1 (void const *argument); // thread function
void Thread2 (void const *argument); // thread function

osThreadId tid_Thread; // thread id

osThreadDef (Thread1, osPriorityNormal, 1, 0); // thread object

osThreadId tid2_Thread; // thread id

osThreadDef (Thread2, osPriorityNormal, 1, 0); // thread object

int Init_Thread (void) {

 tid_Thread = osThreadCreate (osThread(Thread1), NULL);

 tid2_Thread = osThreadCreate (osThread(Thread2), NULL);

 if(!tid_Thread) return(-1); // Failed to create the thread

 if(!tid2_Thread) return(-1); // Failed to create the thread

 return(0);
}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 41/60

Thread Creation and Execution

/* Thread.c */

void Thread2 (void const *argument) {

 for(;;) {

 global_c2 += 2;

 }

}

void Thread1 (void const *argument) {

 for(;;) {

 global_c1 += 3;

 }

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 42/60

RTX: Cooperative Multitasking

We can design and implement tasks so that they execute/work

cooperatively.

Specifically, we must call the system wait function such as

os_dly_wait() function or the os_tsk_pass() function somewhere in

each task. These functions signal the RTX kernel to switch.

An example for Cooperative Multitasking.

• The RTX kernel starts executing task1 that creates task2.

• After counter1 is incremented, the kernel switches to task2.

• After counter2 is incremented, the kernel switches back to task1.

This process repeats indefinitely.

http://www.keil.com/support/man/docs/rlarm/rlarm_os_dly_wait.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_tsk_pass.htm

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 43/60

Cooperative Multitasking- Example

#include <rtl.h>

int counter1;

int counter2;

__task void task1 (void);

__task void task2 (void);

__task void task1 (void) {

 os_tsk_create (task2, 0); /* Create task 2 and

 mark it as ready */

 for (;;) { /* loop forever */

 counter1++; /* update the counter */

 os_tsk_pass (); /* switch to 'task2' */

 }

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 44/60

Cooperative Multitasking- Example (cont.)

__task void task2 (void) {

 for (;;) { /* loop forever */

 counter2++; /* update the counter */

 os_tsk_pass (); /* switch to 'task1' */

 }

}

void main (void) {

 os_sys_init(task1); /* Initialize RTX Kernel

 and start task 1 */

 for (;;);

}

The System wait function allows your task to wait for an event,

while os_tsk_pass () switches to another ready task immediately.

If the next ready task has a lower priority than the currently running

task, then calling os_tsk_pass does not cause a task switch.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 45/60

Threads and Cooperative Multitasking

/* CMSIS-RTOS 'main' function template */

#define osObjectsPublic // define objects in main module
#include "osObjects.h" // RTOS object definitions

#include "cmsis_os.h" // CMSIS RTOS header file
unsigned int counter1, counter2;

extern int Init_Thread (void);

/* main: initialize and start the system */

int main (void) {
 osKernelInitialize (); // initialize CMSIS-RTOS

 Init_Thread ();

 osKernelStart (); // start thread execution

 osDelay(osWaitForever);

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 46/60

Threads and Cooperative Multitasking
/* Thread.c */

void Thread1 (void const *argument); // thread function
void Thread2 (void const *argument); // thread function

osThreadId tid_Thread; // thread id

osThreadDef (Thread1, osPriorityNormal, 1, 0); // thread1 object

osThreadId tid2_Thread; // thread id

osThreadDef (Thread2, osPriorityNormal, 1, 0); // thread2 object

int Init_Thread (void) {

 tid_Thread = osThreadCreate (osThread(Thread1), NULL);

 tid2_Thread = osThreadCreate (osThread(Thread2), NULL);

 if(!tid_Thread) return(-1); // Failed to create the thread

 if(!tid2_Thread) return(-1); // Failed to create the thread

 return(0);
}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 47/60

Threads and Cooperative Multitasking
/* Thread.c */

void Thread2 (void const *argument) {
 osStatus status; // status of the executed function

while(1) {
 counter2++;
 status = osThreadYield();

if (status != osOK) { // thread switch not occurred

}
}

}
void Thread1 (void const *argument) {
 osStatus status; // status of the executed function

while(1) {
 counter1++;
 status = osThreadYield();

if (status != osOK) { // thread switch not occurred

 }
}

}

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 48/60

IPC: Interprocess Communication

OS provides mechanisms so that processes can pass data.

Two types of semantics:

• blocking: sending process waits for response;

• non-blocking: sending process continues.

IPC styles

Shared memory:

• processes have some memory in common;

• must cooperate to avoid destroying and/or missing any

messages.

Message passing:

• processes send messages along a communication

channel---no common address space.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 49/60

Critical Regions

Critical region: section of code that cannot be interrupted

by another process. For example:

• writing shared memory;

• accessing I/O device.

Semaphores and Mutex

Semaphore: OS primitive for controlling access to critical

regions.

• Get access to semaphore with P().

Perform critical region operations.

• Release semaphore with V().

wait(flag)
....
critical section (instructions exe)
....
signal(flag)

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 50/60

Embedded vs. General-Purpose Scheduling

Workstations try to avoid starving processes of CPU access.

• Fairness = access to CPU.

Embedded systems must meet deadlines.

• Low-priority processes may not run for a long time.

Priority-driven Scheduling

• Each process has a priority

• CPU goes to highest-priority process that is ready

• Priorities determine the scheduling policy:

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 51/60

RTOS: Real Time Operating System

RTOS is designed to serve real-time application processes

and threads with deterministic delays

• Often just consists of a OS kernel (nothing fancy, no user

interface, etc.)

• Provides: task scheduling, task dispatching, and inter-task

communication

• Timing behavior must be predictable - short and

deterministic times, predictable memory accesses, etc.

Late answer = wrong answer

• Must manage timing and scheduling of task - must be

aware of task deadlines, and provide precise time services.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 52/60

CPU Scheduling

CPU scheduling determines which process is going to

execute next.

• CPU scheduler is also known as the dispatcher

• It is invoked on an event that may lead to choose

another process for execution:

▪ Clock interrupts

▪ I/O interrupts

▪ Operating system calls and traps

▪ Signals

Short-term scheduling

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 53/60

Scheduling Policies

The selection function: It determines which process in

the ready queue is selected next for execution.

The decision mode: It specifies the instants in time at

which the selection function is exercised
Non-preemptive
▪ Once a process is in the running state, it will continue until it

terminates or blocks itself for I/O.

Preemptive
▪ Currently running process may be interrupted and moved to the

Ready state by the OS.

▪ Allows for better service since any one process cannot

monopolize the processor for very long.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 54/60

FCFS Scheduling

FCFS: First Come First Served

Process Arrival

Time
Service
Time

1

2

3

4

5

0

2

4

6

8

3

6

4

5

2

Service time =

Total processor time

needed in a (CPU-I/O)

cycle

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 55/60

FCFS: First Come First Served

• Selection function: The process that has been waiting the

longest in the ready queue

• Decision mode: Non-preemptive

FCFS Drawbacks

• Process that does not perform any I/O will monopolize the

processor.

• Favors CPU-bound processes:
▪ I/O-bound processes have to wait until CPU-bound process

completes.

▪ I/O-bound processes have to wait even when their I/O is

completed.

▪ We could have kept the I/O devices busy by giving a bit more

priority to I/O bound processes.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 56/60

Time-Sliced Scheduling

• Known as Round Robin

• Each process runs for a fixed amount of time.

• Processes are run in a round-robin sequence.

• Appropriate for regular multi-programming

environments.

• Poor response time performance.

• Need better strategy for real-time system

applications.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 57/60

Round Robin (RR) Scheduling

• Selection function: FCFS

• Decision mode: Preemptive
▪ A process is allowed to run until the time slice period has

expired

▪ Then a clock interrupt occurs, and the running process is

put on the ready queue.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 58/60

Round Robin Scheduling

Time quantum must be substantially larger than the time

required to handle the clock interrupt and dispatching.

Round Robin favors CPU-bound processes
▪ I/O bound process uses the CPU for a time less than the time

quantum and it is blocked waiting for I/O.

▪ A CPU-bound process run for full time slice and put back into

the ready queue.

Solution: Use Virtual Round Robin
▪ When an I/O completes, the blocked process is moved to an

auxiliary queue that gets preference over the main ready

queue.

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 59/60

Problem: Consider the following processes are to be scheduled using FCFS

and Round Robin

Process A B C D

Arrival Time Ta 0 1 2 3

Service Time Ts 1 9 1 9

Perform the analysis for each scheduling algorithm.

FCFS A B B B B B B B B B C D D D D D D D D D

RR, q = 1 A B C B D B D B D B D B D B D B D B D D

 A B C D

FCFS Tf 1.00 10.00 11.00 20.00

 Tr 1.00 9.00 9.00 17.00 9.00

 Tr/Ts 1.00 1.00 9.00 1.89 3.22

RR q = 1 Tf 1.00 18.00 3.00 20.00

 Tr 1.00 17.00 1.00 17.00 9.00

 Tr/Ts 1.00 1.89 1.00 1.89 1.44

© G. Khan Embedded System Design – COE718: Processes and Multitasking Page: 60/60

Problem. Consider the following processes, A, B, C, D and E that

are to be scheduled using, FCFS and Round Robin scheduling

techniques with time quantum 1 and 4.

 A B C D E

Ta 0 1 3 9 12

Ts 3 5 2 5 5

Where Ta = Process Arrival Time

 Ts = Process Service Time

Show a complete schedule for both cases.

