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Introduction to Processes 
 

All multiprogramming operating systems are built around 

the concept of processes. 
 

 

Operating System (OS) and Processes 

• OS must interleave the execution of several processes to 

maximize CPU usage. 

    

• OS must allocate resources to processes. 

 

• OS must also support: 

▪ IPC: Inter-process communication 
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Operating System (OS) 
 

  • OS is a Computer program 

that provides a software layer 

between the application 

software and the hardware. 

• It provides three main 

functions: 

▪ Schedule task execution 

▪ Dispatch a task for 

execution. 

▪ Ensure communication 

and synchronization 

between tasks. 
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Task/Process Concept 
 

  

Serial Execution of Two Processes 

Interleaving the Execution of Process 1 and 2 
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Concurrency 
 

• Only one thread runs at a time while others are waiting. 

• Processor switches from one process to another so quickly 

that it appears all threads are running simultaneously. 

Processes run concurrently. 

• Programmer assigns priority to each process and the 

scheduler uses it to determine which process to run next. 
 

Real-Time Kernel 
• Processes call a library of run-time routines (known as the 

real-time kernel) manages resources. 

• Kernel provides mechanisms to switch between processes, 

for coordination, synchronization, communications, and 

priority.   
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Multi-Tasking and Concurrency 
 

• Most embedded systems have several inputs/outputs and multiple 

events occurring independently.  

• Separating tasks simplifies programming, but requires somehow 

switching back and forth among multiple tasks (multi-tasking). 

• Concurrency is the appearance of simultaneous execution of 

multiple tasks. 
 

Concurrent Tasks for a Thermostat 

 

 

 
  

/* Monitor Temperature */

do forever {

measure temp ;

if (temp < setting)

start furnace ;

else if (temp >

    setting + delta)

stop furnace ;

}

/* Monitor Time of Day */

do forever {

measure time ;

if (6:00am)

setting = 72oF ;

else if (11:00pm)

setting = 60oF ;

}

/* Monitor Keypad */

do forever {

check keypad ;

if (raise temp)

setting++ ;

else if (lower temp)

setting-- ;

}
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 Basic Process States 
 

There are three basic states of a process 

• The Running state 
➢ The process that gets executed. 

• The Ready state 
➢ A process is ready to be executed. 

• The Blocked state (Waiting) 
➢ When a process cannot execute until some event occurs.  
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 More Process States 
 

5-State Process Model 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

New Ready Running Exit 

Blocked 

Admit 

Event 

Occurs 

Dispatch 
Release 

Time-out 

Event 

Wait 

At parent request 

At parent request 



 

© G. Khan                                                       Embedded System Design – COE718: Processes and Multitasking                                                      Page: 9/60  

Modes of Execution 
 

Most processors support at least two execution modes: 

•  Privileged mode  

  
➢ Manipulating control registers 

➢ Memory management ... 

 

• User mode 
➢ Less-privileged mode 

➢ User programs execute in this mode  

 

Therefore, CPU provides a (or a few) mode bit, which 

may only be set by an interrupt or trap or OS call 
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UNIX Processes 
 

• 2 modes: User mode and Kernel mode. 

• System processes run in Kernel mode. 

• User processes run in user mode for user instructions and in 

kernel mode for OS/kernel instructions 

• 9 states for processes 
 

UNIX Process State 

• Two running states for user or kernel modes. 

• Pre-empted state is for processes returning from Kernel to 

user mode. 

 

• A process running in Kernel mode cannot be pre-empted. 
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UNIX Process Transition Diagram 

Two running states: User and Kernel 

Preempted State: Kernel schedules another high priority process. 

A Process running in Kernel mode cannot be preempted. That makes Unix/Linux 

unsuitable for real-time applications  
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UNIX Process Creation 
 

Every process, except process 0, is created by the fork() 

system call. 

•  fork() allocates entry in process table and assigns a unique 

PID to the child process 

•  child gets a copy of process image of parent: both child and 

parent are executing the same code following fork(). 

•  fork() returns the PID of the child to the parent process and 

returns 0 to the child process. 
 

Process 0 is created at boot time and becomes the “swapper” 

after forking process 1 (the INIT process) 

 

When a user logs in: process 1 creates a process for that user. 
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UNIX-style Process Creation 
 

int fork() 
▪ Creates an exact copy of the calling process. 

int execve(char *progName, char *argv[ ]) 
▪ Runs a new program in the calling process 

▪ Destroying the old program 

int exit(int retCode) 
▪ Exits the calling process 

int wait(int *retCode) 
▪ Waits for any exited child, returns its pid 

Blocks itself 
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UNIX Fork 
 

 

fork( ) fork( ) 
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Unix Fork Example 
 

#include <sys/types.h> 

#include <stdio.h> 

#include <unistd.h> 

int main() 

{ 

  pid_t pid; 

  pid = getpid();  /* Parent process created, get its ID */ 

  pid = fork();  /* Create a child process */ 

  if (pid == 0) 

  {  /* only the child process code should get here */ 

 while(1) { 

fprintf(stderr, “I am child process \n”); 

usleep(10000000); /* wait for 10 seconds */ 

   } 

  } 

  /* Only parent should get here  */ 

  fprintf(stderr," I am PARENT: I wait for 20 seconds\n"); 

  usleep(20000000); 

  fprintf(stderr,"I am PARENT: Kill child: %u\n",pid); 

  kill(pid,9); 

  return(0); 

} 
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 Process Context and Switching 
 

• Each process has its own stack and context.  

• A context switch from process ‘A’ to process ‘B’ first saves 

registers in context A, and then reloads all CPU registers from 

context B.    

 
  

  

    Waiting 

    Waiting 

 Executing    Waiting 

 Executing 

 Executing 

Restore 

Context-B 

Save  

Context-A 

Save Context-B Restore 

Context-A 

Process A Process B 
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Process/Task Switching 
 

How to change a process state 
• Save context of processor including PC and other registers 

• Update the PCB/TCB (process/task control block) with the 

new state and other associated information.   

• Move PCB to appropriate queue. 

• Select another process for execution.  

• Update the process (task) control block of the process (task) 

selected. 

• Update memory-management data structures  

• Restore context of the selected process by reloading previous 

PC and registers. 
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Foreground/Background System 
 

 

• Most of the actual work is performed in the "foreground" ISRs, 

with each ISR processing a particular hardware event. 

• Main program performs initialization and then enters a 

"background" loop that waits for interrupts to occur.  

• System responds to external events with a predictable amount of 

latency. 

 

Moving to Background 
• Move non-time-critical work (such as updating a display) into 

background task. 

• Foreground ISR writes data to queue, then background removes 

and processes it. 

• An alternative to ignoring one or more interrupts as the result of 

input overrun. 
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Limitations of the 

Foreground/Background Multitasking 
 

• Best possible performance requires moving as much as 

possible into the background. 

 

• Background becomes collection of queues and 

associated routines to process the data. 

 

• Optimizes latency of the individual ISRs, but 

background requires a managed allocation of processor 

time. 
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Co-operative Multitasking 
 

• Hides context switching mechanism; 

• Still relies on processes to give up CPU. 

• Each process allows a context switch at cswitch() call. 

• Separate scheduler chooses which process runs next. 
 

Context switching 

Who controls when the context is switched? 

How is the context switched? 
 

Problems with co-operative multitasking 
 

Programming errors can keep other processes out: 

• Process never gives up CPU; 

• Process waits too long to switch, missing input. 
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Preemptive Multitasking 
 

• Most powerful form of multitasking 

• OS controls when contexts switches 

• OS determines what process runs next 

• Use timer to call OS, switch contexts: 

 

 
 

Flow of control with preemption: 
 

  

 

CPU 
 

interrupt 

time 

 

P1 
 

OS 
 

P1 
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P2 
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interrupt 
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VxWorks Multitasking 
 

Modern real-time systems are based on the complementary 

concepts of multitasking and inter-task communications. 
 

In VxWorks, tasks have immediate, shared access to most 

system resources, while also maintaining separate context to 

maintain individual task control. 
 

A multitasking environment allows a real-time application to 

be constructed as a set of independent tasks, each with its own 

thread of execution and set of system resources. 

 

It is often essential to organize the real-time applications into 

independent but cooperating, programs known tasks. 
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VxWorks Task Context 
 
A task’s context includes: 

• a thread of execution; that is, the task’s program counter 

• the CPU registers and (optionally) floating-point registers 

• a stack for dynamic variables and function calls 

• I/O assignments for standard input, output, and error 

• a delay timer 

• a time-slice timer 

• kernel control structures 

• signal handlers 

• debugging and performance monitoring values 

 

In VxWorks, one important resource that is not part of a task’s 

context is memory address space. 

All code executes in a single common address space. 
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RTX - RTOS Kernel 
 

The RTX kernel is a real time operating system (RTOS) 

 

RTX: Real Time eXecutive for µcontrollers based on 

  ARM CPU cores 

 

It works with the microcontrollers: 

• ARM7™TDMI,  

• ARM9™,  

• or Cortex™-M3 CPU core 

 

Basic functionality -- to start and stop concurrent tasks (processes). 

It also has functions for Inter Process Communication (IPC) to: 

• synchronize different tasks,  

• manage common resources (peripherals or memory regions),  

• and pass complete messages between tasks. 
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RTX/RTOS Advantages 
 

The application is split up into several smaller tasks that run 

concurrently. There are many advantages of RTX/RTOS kernel: 
 

• Real world processes may consist of several concurrent activities. This 
pattern can be represented in software by using the RTX kernel.  

• Different activities occur at different times, for example, just at the 
moment when they are needed. This is possible because each activity is 
packed into a separate task, which can be executed on its own.  

• Tasks can be prioritized. 
• It is easier to understand/manage small pieces of code than one large 

software.  
• Splitting up the application software into independent parts reduces the 

system complexity, errors, and may facilitates testing.  
• The RTX kernel is scalable. Additional tasks can be added easily at a 

later time.  
• The RTX kernel offers services needed in many real-time applications, 

for example, interrupt handling, periodical activation of tasks, and time-
limits on wait functions. 
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RTX - Deterministic RTOS 
 

 
 
• Royalty-free, deterministic RTOS  

• Flexible Scheduling: round-robin, pre-emptive, and collaborative 

• High-Speed real-time operation with low interrupt latency 

• Small footprint for resource constrained systems 

• Unlimited number of tasks each with 254 priority levels 

• Unlimited number of mailboxes, semaphores, mutex, and timers 

• Support for multithreading 
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RTX Kernal – RTOS 
 

Keil's Real Time eXecutive for ARM CPUs 
 

<RTL.h> file defines the RTX functions and macros. 

We need to declare tasks and access all RTOS features: 

• Offers interrupt handling, multitasking, periodic task 

activations, scalable task creation. 

• Use RTX_Config_CM.c to specify parameters and 

configuration in the RTOS/RTX kernel  

▪ Ports the kernel to your CPU 

▪ Includes cmsis_os.h 

• Include cmsis_os.h so that your application (.c) may 

access the CMSIS RTOS API  

▪ Explicitly used in (lab3a and 3b) for thread 

management 
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RTX Multitasking 
 

RTOS enables us to create applications that simultaneously perform 

multiple functions or tasks. 
 

Flexible Scheduling of system resources like CPU and memory, and 

offers ways/supports to communicate between tasks. 
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Timing Specifications 
 

Function 
ARM7™/ARM9™ 

(cycles) 

Cortex™-M 

(cycles) 
Initialize system, (os_sys_init), start task 1721 1147 

Create task (no task switch) 679 403 

Create task (switch task) 787 461 

Delete task (os_tsk_delete) 402 218 

Task switch (by os_tsk_delete_self) 458 230 

Task switch (by os_tsk_pass) 321 192 

Set event (no task switch) 128 89 

Set event (switch task) 363 215 

Send semaphore (no task switch) 106 72 

Send semaphore (switch task) 364 217 

Send message (no task switch) 218 117 

Send message (switch task) 404 241 

Get own task identifier (os_tsk_self) 23 65 

Interrupt lockout <160 0 
 

• The table for RTX Kernel library is measured on (ARM7, Cortex-M3), code execution from 
internal flash with zero-cycle latency.  

• The RTX Kernel for the test is configured for 10 tasks, 10 user timers and stack checking 
disabled.  
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Task Creation and Execution 
 

Create the Init Task that will create the other two application tasks 1 & 2 with 

ROUND ROBIN Scheduling 
 

#include <RTL.h> /* RTX header file for RTX system calls */  

#include <LPC17xx.H> /* LPC17xx Cortex M3 board definitions */ 

long global_c1 = 0, global_c2 = 0; 

 

__task void task1(void){ 

 for(;;){ 

  global_c1 += 3; } 

} 

__task void task2(void){ 

 for(;;){ 

  global_c2 += 2; } 

} 

 

int main (void) {  

SystemInit(); /* initialize the Coretx-M3 processor */ 

os_tsk_create (task1, 1); /* Creates task1 priority 1 */  

os_tsk_create (task2, 1); /* Creates task2 priority 1 */  

os_tsk_delete_self(); /* Kill itself & task1 starts */  

  

os_sys_init(task1); /* init RTX and start task1 */  

} 
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RTX: Task States and Management 
 

Each RTX task is always in exactly one state, which tells the 

disposition of the task. 
State Description 

RUNNING:  The task that is currently running is in the RUNNING state. 

Only one task at a time can be in this state. 

 
State Description 

READY: Tasks which are ready to run are in the READY state. Once the 

running task has completed processing, RTX selects the next ready task 

with the highest priority and starts it. 
State Description 

WAIT_DLY Tasks which are waiting for a delay to expire are in the 

WAIT_DLY State. Once the delay has expired, the task is switched to the 

READY state.  

 

 

 



 

© G. Khan                                                       Embedded System Design – COE718: Processes and Multitasking                                                      Page: 33/60  

RTX: Task States and Management 
State Description 

WAIT_ITV: Tasks which are waiting for an interval to expire are in the 

WAIT_ITV State. Once the interval delay has expired, the task is switched 

back to the READY state. 

os_itv_wait() function is used to place a task in the WAIT_ITV State. 
State Description 

WAIT_SEM: Tasks which are waiting for a semaphore are in the 

WAIT_SEM state. When the token is obtained from the semaphore, the 

task is switched to the READY state. 

os_sem_wait() function is used to place a task in the WAIT_SEM state.ate 

Description 
WAIT_MUT: Tasks which are waiting for a free mutex are in the 

WAIT_MUT state. When a mutex is released, the task acquire the mutex 

and switch to the READY state. 

os_mut_wait() function is used to place a task in the WAIT_MUT state. 
State Description 

INACTIVE: Tasks which have not been started or tasks which have been 

deleted are in the INACTIVE state. os_tsk_delete() function places a task 

that has been started [with os_tsk_create()] into the INACTIVE state.  
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RTX- Task Management Routines 
Routine Attributes Description 

os_sys_init Initializes and starts RL-RTX. 
os_sys_init_prio Initializes and starts RL-RTX assigning a 
priority to the starting task. 
os_sys_init_user Initializes and starts RL-RTX assigning a 
priority and custom stack to the starting task. 
os_tsk_create Creates and starts a new task. 
os_tsk_create_ex Creates, starts, and passes an argument 
pointer to a new task. 
os_tsk_create_user Creates, starts, and assigns a custom stack 
to a new task. 
os_tsk_create_user_ex Creates, starts, assigns a custom stack, 
and passes an argument pointer to a new task. 
os_tsk_delete Stops and deletes a task. 
os_tsk_delete_self Stops/deletes the currently running task. 
os_tsk_pass Passes control to the next task of the same priority. 
os_tsk_prio Changes a task's priority. 
os_tsk_prio_self Changes the currently running task's priority. 
os_tsk_self Obtains the task ID of the currently running task. 
isr_tsk_get Obtains the task ID of the interrupted task.  
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CMSIS 
 

CMSIS: Cortex Microcontroller Software Interface Standard 
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CMSIS 
 

CMSIS is a Device Driver Library providing an independent HW 

abstraction layer for interfacing applications to the µController. 
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RTX- CMSIS Thread Management 
Routine Attributes Description 

osKernelInitialize Initialize the RTOS kernel. 
osKernelStart  Start the RTOS kernel. 
osKernelGetState Get the current RTOS Kernel state. 
osKernelGetSysTimerCount Get RTOS kernel system timer count. 

osKernelSuspend Suspend the RTOS kernel scheduler. 
osKernelResume Resume the RTOS kernel scheduler. 
osDelay Wait for Timeout (Time Delay). 

osThreadCreate Creates and starts a new thread. 
and passes an argument pointer to a new task. 
osThreadTerminate Stops and deletes a thread. 
osThreadYield Passes control to the next thread. 
osThreadSetPriority Changes a thread's priority. 
osThreadGetPriority Get the currently running thread's priority. 
osThreadGetId Obtains the thread ID of the currently running thread. 

osSemaphoreCreate Define and initialize a semaphore. 

osSemaphoreWait Obtain semaphore token or Wait until it becomes available. 

osSemaphoreRelease Release a semaphore token. 

osSemaphoreDelete Delete a semaphore. 
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Thread Creation and Execution 
ROUND ROBIN Scheduling 

 

/* CMSIS-RTOS 'main' function template */ 
 

#define osObjectsPublic                     // define objects in main module 
#include "osObjects.h"                      // RTOS object definitions 
 

#include "cmsis_os.h"                       // CMSIS RTOS header file 
unsigned int global_c1=0; 
unsigned int global_c2=0; 
 

extern int Init_Thread (void); 
 

/* main: initialize and start the system */ 
 

int main (void) { 
  osKernelInitialize ();                    // initialize CMSIS-RTOS 

  Init_Thread (); 
 

  osKernelStart ();                         // start thread execution  

 osDelay(osWaitForever); 

} 
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/* Thread.c */ 
 
void Thread1 (void const *argument); // thread function 
void Thread2 (void const *argument); // thread function 
 
osThreadId tid_Thread; // thread id 

osThreadDef (Thread1, osPriorityNormal, 1, 0);                   // thread object 

 
osThreadId tid2_Thread; // thread id 

osThreadDef (Thread2, osPriorityNormal, 1, 0);                   // thread object 

 
int Init_Thread (void) { 

  tid_Thread = osThreadCreate (osThread(Thread1), NULL); 

 tid2_Thread = osThreadCreate (osThread(Thread2), NULL); 

  if(!tid_Thread) return(-1); //  Failed to create the thread 

  if(!tid2_Thread) return(-1); //  Failed to create the thread 

 
  return(0); 
} 
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Thread Creation and Execution 
 

/* Thread.c */ 
 
    

void Thread2 (void const *argument) { 

   for(;;) { 

    global_c2 += 2;  
    

  } 

} 

 
void Thread1 (void const *argument) { 

  for(;;) { 

   global_c1 += 3;  
    

  }                                           

} 
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RTX: Cooperative Multitasking 
 

We can design and implement tasks so that they execute/work 

cooperatively. 

 

Specifically, we must call the system wait function such as 

os_dly_wait() function or the os_tsk_pass() function somewhere in 

each task. These functions signal the RTX kernel to switch. 

 

An example for Cooperative Multitasking. 

• The RTX kernel starts executing task1 that creates task2. 

• After counter1 is incremented, the kernel switches to task2. 

• After counter2 is incremented, the kernel switches back to task1. 

This process repeats indefinitely. 
 

  

http://www.keil.com/support/man/docs/rlarm/rlarm_os_dly_wait.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_tsk_pass.htm
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Cooperative Multitasking- Example 

 

#include <rtl.h> 

 

int counter1; 

int counter2; 

 

__task void task1 (void); 

__task void task2 (void); 

 

 

__task void task1 (void) { 

  os_tsk_create (task2, 0);  /* Create task 2 and   

          mark it as ready */ 

  for (;;) {             /* loop forever */ 

    counter1++;          /* update the counter */ 

    os_tsk_pass ();      /* switch to 'task2' */ 

  } 

} 
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Cooperative Multitasking- Example (cont.) 
 

__task void task2 (void) { 

  for (;;) {              /* loop forever */ 

    counter2++;           /* update the counter */ 

    os_tsk_pass ();       /* switch to 'task1' */ 

  } 

} 

 

void main (void) { 

  os_sys_init(task1);     /* Initialize RTX Kernel  

           and start task 1 */ 

  for (;;); 

} 

 

The System wait function allows your task to wait for an event, 

while os_tsk_pass () switches to another ready task immediately. 

If the next ready task has a lower priority than the currently running 

task, then calling os_tsk_pass does not cause a task switch.  
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Threads and Cooperative Multitasking 
 

 

/* CMSIS-RTOS 'main' function template */ 
 

#define osObjectsPublic                     // define objects in main module 
#include "osObjects.h"                      // RTOS object definitions 
 

#include "cmsis_os.h"                       // CMSIS RTOS header file 
unsigned int counter1, counter2; 
 

extern int Init_Thread (void); 
 

/* main: initialize and start the system */ 
 

int main (void) { 
  osKernelInitialize ();                    // initialize CMSIS-RTOS 

  Init_Thread (); 
 

  osKernelStart ();                         // start thread execution  

 osDelay(osWaitForever); 

} 
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Threads and Cooperative Multitasking 
/* Thread.c */ 
 
void Thread1 (void const *argument); // thread function 
void Thread2 (void const *argument); // thread function 
 
osThreadId tid_Thread; // thread id 

osThreadDef (Thread1, osPriorityNormal, 1, 0);                   // thread1 object 

 
osThreadId tid2_Thread; // thread id 

osThreadDef (Thread2, osPriorityNormal, 1, 0);                   // thread2 object 

 
int Init_Thread (void) { 

  tid_Thread = osThreadCreate (osThread(Thread1), NULL); 

  tid2_Thread = osThreadCreate (osThread(Thread2), NULL); 

  if(!tid_Thread) return(-1); //  Failed to create the thread 

  if(!tid2_Thread) return(-1); //  Failed to create the thread 

 
  return(0); 
} 
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Threads and Cooperative Multitasking 
/* Thread.c */ 
 

void Thread2 (void const *argument) { 
 osStatus   status;                              // status of the executed function 

while(1) { 
      counter2++;  
  status =  osThreadYield();   

if (status != osOK) {  // thread switch not occurred  

}   
} 

} 
void Thread1 (void const *argument) { 
 osStatus   status;                              // status of the executed function 

while(1) { 
     counter1++;  
  status =  osThreadYield();   

if (status != osOK) {  // thread switch not occurred  

    }  
}                                           

} 
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IPC: Interprocess Communication 
 

OS provides mechanisms so that processes can pass data. 

Two types of semantics: 

• blocking: sending process waits for response; 

• non-blocking: sending process continues. 

IPC styles 

Shared memory: 

• processes have some memory in common; 

• must cooperate to avoid destroying and/or missing any 

messages. 

Message passing: 

• processes send messages along a communication 

channel---no common address space. 
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Critical Regions 
 

Critical region: section of code that cannot be interrupted 

by another process. For example: 

• writing shared memory; 

• accessing I/O device. 
 

Semaphores and Mutex 
 

Semaphore: OS primitive for controlling access to critical 

regions. 

• Get access to semaphore with P().   
------- 

Perform critical region operations. 

 -------- 

•  Release semaphore with V(). 

  

wait(flag) 
.... 
critical section (instructions exe) 
.... 
signal(flag) 
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Embedded vs. General-Purpose Scheduling 

 

Workstations try to avoid starving processes of CPU access. 

• Fairness = access to CPU. 

Embedded systems must meet deadlines. 

• Low-priority processes may not run for a long time. 

 

Priority-driven Scheduling 

•  Each process has a priority 

•  CPU goes to highest-priority process that is ready 

•  Priorities determine the scheduling policy: 
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RTOS: Real Time Operating System 
 

RTOS is designed to serve real-time application processes 

and threads with deterministic delays 

• Often just consists of a OS kernel (nothing fancy, no user 

interface, etc.) 
 

• Provides: task scheduling, task dispatching, and inter-task 

communication 
 

• Timing behavior must be predictable - short and 

deterministic times, predictable memory accesses, etc.  

Late answer = wrong answer 
 

• Must manage timing and scheduling of task - must be 

aware of task deadlines, and provide precise time services. 
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CPU Scheduling 
 

CPU scheduling determines which process is going to 

execute next.  
 

•  CPU scheduler is also known as the dispatcher 

•  It is invoked on an event that may lead to choose 

another process for execution: 

▪ Clock interrupts 

▪ I/O interrupts 

▪ Operating system calls and traps 

▪ Signals 
 

Short-term scheduling 
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Scheduling Policies 
 

The selection function: It determines which process in 

the ready queue is selected next for execution. 
 

The decision mode: It specifies the instants in time at 

which the selection function is exercised 
Non-preemptive 
▪ Once a process is in the running state, it will continue until it 

terminates or blocks itself for I/O. 

Preemptive 
▪ Currently running process may be interrupted and moved to the 

Ready state by the OS. 

▪ Allows for better service since any one process cannot 

monopolize the processor for very long. 
 

 



 

© G. Khan                                                       Embedded System Design – COE718: Processes and Multitasking                                                      Page: 54/60  

FCFS Scheduling  
 
 

 

 

 

 

 
 

 

FCFS: First Come First Served 
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FCFS: First Come First Served 
 

• Selection function: The process that has been waiting the 

longest in the ready queue  

• Decision mode: Non-preemptive 
 

 

FCFS Drawbacks 

• Process that does not perform any I/O will monopolize the 

processor. 

• Favors CPU-bound processes: 
▪ I/O-bound processes have to wait until CPU-bound process 

completes. 

▪ I/O-bound processes have to wait even when their I/O is 

completed. 

▪ We could have kept the I/O devices busy by giving a bit more 

priority to I/O bound processes. 
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Time-Sliced Scheduling 
 

• Known as Round Robin 
 

• Each process runs for a fixed amount of time. 
 

• Processes are run in a round-robin sequence. 
 

• Appropriate for regular multi-programming 

environments. 
 

• Poor response time performance. 
 

• Need better strategy for real-time system 

applications. 
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Round Robin (RR) Scheduling 
 

 

 

 

 

 

 

 

• Selection function: FCFS 

• Decision mode: Preemptive 
▪ A process is allowed to run until the time slice period has 

expired  

 

▪ Then a clock interrupt occurs, and the running process is 

put on the ready queue.  
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Round Robin Scheduling 
 

Time quantum must be substantially larger than the time 

required to handle the clock interrupt and dispatching. 

Round Robin favors CPU-bound processes 
▪   I/O bound process uses the CPU for a time less than the time 

quantum and it is blocked waiting for I/O. 

▪   A CPU-bound process run for full time slice and put back into 

the ready queue. 
 

Solution: Use Virtual Round Robin 
▪   When an I/O completes, the blocked process is moved to an 

auxiliary queue that gets preference over the main ready 

queue. 
   



 

© G. Khan                                                       Embedded System Design – COE718: Processes and Multitasking                                                      Page: 59/60  

Problem: Consider the following processes are to be scheduled using FCFS 

and Round Robin 

Process  A B C D 

Arrival Time Ta 0 1 2 3 

Service Time Ts 1 9 1 9 
 

Perform the analysis for each scheduling algorithm. 

FCFS A B B B B B B B B B C D D D D D D D D D 

RR, q = 1 A B C B D B D B D B D B D B D B D B D D 
  

 

 

  A B C D  

FCFS Tf 1.00 10.00 11.00 20.00  

 Tr 1.00 9.00 9.00 17.00 9.00 

 Tr/Ts 1.00 1.00 9.00 1.89 3.22 
       

RR q = 1 Tf 1.00 18.00 3.00 20.00  

 Tr 1.00 17.00 1.00 17.00 9.00 

 Tr/Ts 1.00 1.89 1.00 1.89 1.44 
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Problem. Consider the following processes, A, B, C, D and E that 

are to be scheduled using, FCFS and Round Robin scheduling 

techniques with time quantum 1 and 4. 

 

 A B C D E 

Ta 0 1 3 9 12 

Ts 3 5 2 5 5 

 

Where Ta = Process Arrival Time 

   Ts = Process Service Time 

   

Show a complete schedule for both cases. 

 


