
©G. Khan COE718: Embedded Systems Design: Hardware Software Co-design Page: 1

Hardware-Software Co-Design
System Partitioning

COE718: Embedded Systems Design
 http://www.ecb.torontomu.ca/~courses/coe718/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan

Electrical and Computer Engineering
________Toronto Metropolitan University__________

Overview
• Embedded System Co-design
• Co-specification
• Hardware-Software Co-synthesis and Partitioning
• Co-simulation and Co-verification

 Introductory Articles on Hardware-Software Co-design available at the course web-page

©G. Khan

• Real-time Embedded System Design Involves:

▪ Performance analysis

▪ Scheduling and allocation

• Accelerated systems
 Use additional computational unit(s)

dedicated to some functions ?

▪ Hardwired Logic (e.g., FPGA)

▪ Multiple processing elements (PEs) including extra CPUs

Hardware/software Co-design:

 Joint design of hardware and software architectures.

Real-time Embedded System

COE718: Embedded Systems Design: Hardware Software Co-design Page: 2

©G. Khan

Why use Microprocessors?

COE718: Embedded Systems Design: Hardware Software Co-design Page: 3

• Alternatives: field-programmable gate arrays (FPGAs),

custom logic, etc.

• Microprocessors are often very efficient: can use same

logic to perform many different functions.

• Microprocessors simplify the design of products.

• Microprocessors use much more logic to implement a

function than does a custom logic.

• But microprocessors are often at least as fast:
▪ heavily pipelined;

▪ large design teams;

▪ Agressive VLSI technology.

SoPC? FPGA with soft CPU cores

©G. Khan

Challenges in Embedded System Design

COE718: Embedded Systems Design: Hardware Software Co-design Page: 4

• How much hardware do we need?
▪ How big is the CPU? Memory?

• How do we meet our deadlines?
▪ Faster hardware or cleverer software?

• How do we minimize power?
▪ Turn off unnecessary logic? Reduce memory accesses?

Design methodologies
• A procedure for designing a system.

• Understanding your methodology helps you ensure you didn’t

skip anything.

• Compilers, software engineering tools, computer-aided design

(CAD) tools, etc., can be used to:
▪ Help automate methodology steps;

▪ Keep track of the methodology itself.

©G. Khan

Design goals

• Performance.
Overall speed, deadlines.

• Functionality and user interface.

• Manufacturing cost.

• Power consumption.

• Other requirements

 (physical size, etc.)

COE718: Embedded Systems Design: Hardware Software Co-design Page: 5

©G. Khan

Traditional Embedded System Design

• HW/SW Partitioning

performed at an early

stage.

• Design mistakes have

huge negative effect

• Inability to correct

mistakes performed at

the partitioning phase

COE718: Embedded Systems Design: Hardware Software Co-design Page: 6

©G. Khan

HW/SW Co-Design

• Codesign is divided into:

▪ Co-specification

▪ Co-synthesis

▪ Co-simulation/Co-verification

• Key is the design

refinement at hardware-

software integration stage

COE718: Embedded Systems Design: Hardware Software Co-design Page: 7

©G. Khan

Hardware-Software Codesign

• Functional exploration: Define a

desired product's requirements and

produce a specification of the system

behavior.

• Map this specification

• Partition the functions between

silicon and code, and map them

• Integrate system

System (Embedded)

Functional Exploration

Architectural Mapping

Hardware-Software

Partitioning

System Integration

Hardware

Implementation

Software

Implementation

COE718: Embedded Systems Design: Hardware Software Co-design Page: 8

©G. Khan

Hardware-Software Codesign

Co-design of (embedded) computer systems

encompassing the following parts:

▪ Co-Specification

 Developing system specification that describes hardware,

software modules and relationship between the hardware

and software

▪ Co-Synthesis

 Automatic and semi-automatic design of hardware and

software modules to meet the specification

▪ Co-Simulation and Co-verification

 Simultaneous simulation of hardware and software

COE718: Embedded Systems Design: Hardware Software Co-design Page: 9

©G. Khan

HW/SW Co-Specification

• Model the (embedded) system functionality

from an abstract level.

• No concept of hardware or software

• Common environment
SystemC: based on C++.

• Specification is analyzed to generate a task

graph representation of the system

functionality.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 10

©G. Khan

Co-Specification

• A system design language is needed to describe the

functionality of both software & hardware.

• The system is first defined without making any

assumptions about the implementation

• A number of ways to define new specification

standards grouped in three categories:

➢ SystemC An open-source library in C++ that provides a modeling

platform for systems with hardware and software components

COE718: Embedded Systems Design: Hardware Software Co-design Page: 11

©G. Khan

SystemC for Co-specification

Open SystemC Initiative (OSCI) 1999 by EDA venders
including Synopsys, ARM, CoWare, Fujitsu, etc.

• A C++ based modeling environment containing a class
library and a standard ANSI C++ compiler.

• SystemC provides a C++ based modeling platform for
exchange and codesign of system-level intellectual
property (IP) models.

▪ SystemC is not an extension to C++

 SystemC 2 has various versions

 It has a new C++ class library

 User needs to learn the use of new classes to model
hardware design

COE718: Embedded Systems Design: Hardware Software Co-design Page: 12

©G. Khan

SystemC Library Classes

SystemC classes enable the user to

• Define modules and processes

• Add inter-process/module communication

Modules and processes can handle a multitude of data
types: Ranging from bits to bit-vectors, standard C++
types to user define types like structures

Modules also introduce timing, concurrency and reactive
behavior.

• Using SystemC requires knowledge of C and very little
of C++ and the approach is similar to VHDL/Verilog.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 13

©G. Khan

SystemC 2.0 Language Architecture

COE718: Embedded Systems Design: Hardware Software Co-design Page: 14

©G. Khan

SystemC 2.0 Language Architecture

• All of SystemC builds on C++

• Upper layers are cleanly built on top of the lower layers

• The SystemC core language provides a minimal set of
modeling constructs for structural description, concurrency,
communication, and synchronization.

• Data types are separate from the core language and user-
defined data types are fully supported.

• Commonly used communication mechanisms such as signals
and FIFOs can be built on top of the core language.

 The MOCs can also be built on top of the core language.

• If desired, lower layers can be used without needing
 the upper layers.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 15

©G. Khan

SystemC Benefits

SystemC 2.0 allows the following tasks to be

performed within a single language:
• Complex system specifications can be developed and simulated

• System specifications can be refined to mixed software and

hardware implementations

• Hardware implementations can be accurately modeled at all the

levels.

• Complex data types can be easily modeled, and a flexible fixed-

point numeric type is supported

• The extensive knowledge, infrastructure and code base built

around C and C++ can be leveraged

COE718: Embedded Systems Design: Hardware Software Co-design Page: 16

©G. Khan

Other Co-Specification Languages
UML

– Commonly used for modeling software systems.

– Supports many modeling specifications and profiles.

 e.g. UML Profile for real-time systems

ESTEREL

– To model reactive real-time systems where events trigger

actions and vice versa.

– http://www-sop.inria.fr/meije/esterel/esterel-eng.html

SDL (systems, blocks, channels etc.)

– Formal Specification and Description Language.

– Often used to model real-time embedded systems.

– http://www.sdl-forum.org/

COE718: Embedded Systems Design: Hardware Software Co-design Page: 17

http://www.sdl-forum.org/

©G. Khan

Hardware-Software Co-Synthesis

Four Principal Phases of Co-synthesis:

▪ Partitioning
 Dividing the functionality of an embedded system into units

of computation.

▪ Scheduling
 Choosing time at which various computation units will

occur.

▪ Allocation
 Determining the processing elements (PEs) on which

computations will occur.

▪ Mapping

 Choosing component types for the allocated units (of
computations).

COE718: Embedded Systems Design: Hardware Software Co-design Page: 18

©G. Khan

HW/SW Co-Synthesis

Automatically derive the system architecture

Tightly coupled with HW/SW Partitioning

Consists of three other stages:

• Allocation: select the number and type of

communication links and processing elements for the

target system.

• Assignment (Mapping): Mapping tasks to processing

elements.

• Scheduling: Timing of task execution and

communications.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 19

©G. Khan

Common Co-Synthesis Structure

COE718: Embedded Systems Design: Hardware Software Co-design Page: 20

©G. Khan

System Partitioning

Introduces a design methodology that uses several

techniques:
▪ Partition the system specification into processes/tasks
 The best way to partition a specification depends on the

characteristics of the underlying hardware platform

▪ Determine the performance of the function when
executed on the hardware platform

 We usually rely on approximating

▪ Allocate processes onto various processing elements

COE718: Embedded Systems Design: Hardware Software Co-design Page: 21

©G. Khan

HW/SW Partitioning

• An area of significant research

• Analyzes task graph to determine each
task’s placement (HW or SW)

• Many algorithms have been developed.

• Major problem involves the computation
time of partitioning algorithm

COE718: Embedded Systems Design: Hardware Software Co-design Page: 22

©G. Khan

Hardware-Software Partitioning

Hardware/Software System Design involve:

Modeling, Validation and Implementation

▪ System implementation involves:

 Hardware-Software Partitioning

 Finding those parts of the model best implemented

in hardware & those best implemented in software.

▪ Such partitions can be decided by the designer

 with successive refinements

 or determined by the CAD tools

COE718: Embedded Systems Design: Hardware Software Co-design Page: 23

©G. Khan

Hardware-Software Partitioning

For embedded systems, such partitioning represents a
physical partition of the system functionality into:

▪ Hardware

▪ Software executing on one or more CPUs

Various formation of the Partitioning Problem that
are based on:

▪ Architectural Assumptions

▪ Partitioning Goals

▪ Solution Strategies

COWARE: A design environment for application specific
architectures targets telecom applications

COE718: Embedded Systems Design: Hardware Software Co-design Page: 24

©G. Khan

Partitioning Techniques

Hardware-Software Homogeneous System Model =>
Task Graph

For each node of the task graph, determine implementation
choices (HW or SW):

▪ Keep the scheduling of nodes at the same time

▪ Meet real-time constraints

• There is intimate relationship between partitioning and
scheduling.

• Wide variation in timing properties of the hardware and
software implementation of a task.

That effects the overall latency significantly

COE718: Embedded Systems Design: Hardware Software Co-design Page: 25

©G. Khan

HW/SW Partitioning

• Both textual and graphical representation like
DAG are used to describe system.

• Analyzes task graph to determine each
task’s placement

• Many partitioning algorithms being
developed

• Major problem involves the computation
time of the algorithm.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 26

©G. Khan

System Design Patterns

Design Pattern: A generalized description of the

design of a certain type of program that can also

be used for system representation and hardware-

software partitioning.

• State Diagram

• Data Flow Graph

• Control Data Flow Graph (CDFG)

• Directed Acyclic Graph (DAG) similar to DFG

COE718: Embedded Systems Design: Hardware Software Co-design Page: 27

©G. Khan

State Machine: Seat-belt System

switch (state) {

 case IDLE: if (seat) { state = SEATED; timer_on = TRUE; } break;

 case SEATED: if (belt) state = BELTED;

 else if (timer) state = BUZZER; break;
 … … …

}

idle

buzzer seated

belted

no seat/-

seat/timer on

no belt

and no

timer/-

no belt/timer on

belt/-
belt/

buzzer off

Belt/buzzer on

no seat/-

no seat/

buzzer off

COE718: Embedded Systems Design: Hardware Software Co-design Page: 28

©G. Khan

Data Flow Graph

DFG: Data Flow Graph

• DFG does not represent control

• It models the Basic Block: code or a

system block with one entry and exit

• Describes the minimal ordering

requirements on operations

COE718: Embedded Systems Design: Hardware Software Co-design Page: 29

©G. Khan

DAG: Directed Acyclic Graph

• Arrow represents dependence

relationship

• Arc values represent communication

time.

• Precedence dependency captures the

order of execution between nodes and

such nodes can be executed in parallel.

• Only necessary parallelism is exposed

A

B

C

D

1

3

10

5

COE718: Embedded Systems Design: Hardware Software Co-design Page: 30

©G. Khan

Relevant Partitioning Research

• HW-SW Partitioning is a difficult.

• To find optimal partitioning set, it is very difficult

due to many factors affecting the partitioning

decision.

• A new partitioning Heuristics are being researched.

• HW/SW Partitioning based on DADGP, Directed

Acyclic Data Dependency Graph with Precedence.

• Specified a new task-graph format with less

restrictive types of communication links.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 31

©G. Khan

DAG-based Partitioning Structure

Specification

Profiling

LD Path Search

Mapping

Scheduling

Finish
Yes Yes

No

No

COE718: Embedded Systems Design: Hardware Software Co-design Page: 32

©G. Khan

DAG-based Partitioning

i. Profiling and building an initial DAG

ii. Find the LD_path in DAG

iii. Mapping of LD-path nodes to hardware

iv. Schedule and if invalid mapping then goto

Step iii

v. Update DAG and calculate the total

execution time of target system.

vi. If system constraints are not met then goto

Step ii, otherwise quit.
COE718: Embedded Systems Design: Hardware Software Co-design Page: 33

©G. Khan

Profiling

Profiler collects the following data for

each task node (module)

• Hardware/Software execution time

• Hardware Area

• Amount of data transfer

• Execution order

• Data dependencies between nodes

COE718: Embedded Systems Design: Hardware Software Co-design Page: 34

©G. Khan

Longest Delay Path Search

Longest Delay path means, longest execution-

time path

• Finding the longest delay path (LD-path) in

DAG is equivalent to finding a bottleneck

of the system.

• Minimizes search space for mapping

COE718: Embedded Systems Design: Hardware Software Co-design Page: 35

©G. Khan

Mapping

• Maps a node/task to be implemented as a

dedicated hardware unit

• Mapping can change the Longest Delay path,

as well as DAG

• Mapping of a node/task is valid if

implementing the node/task to Hardware gives

the shortest LD-path in the modified DAG

COE718: Embedded Systems Design: Hardware Software Co-design Page: 36

©G. Khan

Scheduling

• Very simple List-based scheduling approach.

• Schedules the earliest node (task) first without

violating the resource limit.

• Exposes parallelism and changes the DAG

accordingly.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 37

©G. Khan

DAG-based Scheduling

• Start scheduling from the root node of DAG.

• Traverse down the LD-path tree and schedule
the earliest starting time node.

• If the node/task is not connected, check
whether exposing parallelism is possible.
Roots of the two DAGs are combined to form
a single DAG with a dummy root node.

• In case of multiple descendants, schedule them
forcibly by adding PEs.

• Update the PE resource (HW-SW) library.
COE718: Embedded Systems Design: Hardware Software Co-design Page: 38

©G. Khan

Constraints

• Constraints of deadline and cost is given by the
system designer.

• Hardware cost is calculated by the gate or
transistor count.

• Different granularity level should be explored
if no solution is found.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 39

©G. Khan

Edge Detection Example

Pair of masks are convolved to estimate

gradients, Gx and Gy

Overall G2 = (Gx
2 + Gy

2)

HW-SW Library

Data

dependency

Gx

Gy
2

Gy

Gx
2

Add

Operation SW

EXE

(ms)

HW

EXE

(ms)

HW Area

(gates)

Gradient

(Gx or Gy)

9.4 1.4 1200

Square 5.2 0.9 500

Add 3.88 0.3 100

COE718: Embedded Systems Design: Hardware Software Co-design Page: 40

©G. Khan

Embedded System Hardware Structure

Various Hardware Options

CPU

ASIC

Memory

I/O

FPGA

Coprocessor

PEs

C
a
ch

e

COE718: Embedded Systems Design: Hardware Software Co-design Page: 41

©G. Khan

SOBEL Edge Detection

SOBEL masks
-1 0 +1

-2 0 +2

-1 0 +1

+1 +2 +1

0 0 0

-1 -2 -1

Gx Gy

a11 a12 a13

a21 a22 a23

a31 a32 a33

m11 m12 m13

m21 m22 m23

m31 m32 m33

b11 b12 b13

b21 b22 b23

b31 b32 b33

Input Image Mask Output Image

b22=(a11*m11)+(a12*m12)+(a13*m13)+(a21*m21)+(a22*m22)+(a23*m23)+(a31*m31)+(a32*m32)+(a33*m33)

COE718: Embedded Systems Design: Hardware Software Co-design Page: 42

©G. Khan

Sobel Edge Detection
main() {

unsigned char image_in[ROWS][COLS];

unsigned char image_out[ROWS][COLS];

int r, c; /* row and column array counters */

int pixel; /* temporary value of pixel */

/*filter the image and store result in output array */

for (r=1; r<ROWS-1; r++)

for (c=1; c<COLS-1; c++) { /* Apply Sobel operator. */

pixel = image_in[r-1][c+1]–image_in[r-1][c-1]

+ 2*image_in[r][c+1] - 2*image_in[r][c-1]

+ image_in[r+1][c+1] - image_in[r+1][c-1];

/* Normalize and take absolute value */

pixel = abs(pixel/4);

/* Check magnitude */

if (pixel > Threshold)

pixel= 255; /*EDGE_VALUE;*/

/* Store in output array */

image_out[r][c] = (unsigned char) pixel;

}

}

COE718: Embedded Systems Design: Hardware Software Co-design Page: 43

©G. Khan

Edge Detection Solutions

0.1

0.1

0.1

0.1

0.1

Gx

Gy
2

Gy

Gx
2

Add

Gx

Gy
2

Gy

Gx
2

Add

0.1

0.1

0.1

0.1

Gx

Gy2

Gy

Gx2

Add

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Gx

Gy
2

Gy

Gx
2

Add

Gx

Gy
2

Gy

Gx
2

Add

0.1

0.1

0.1

0.1

COE718: Embedded Systems Design: Hardware Software Co-design Page: 44

©G. Khan COE718: Hardware-Software Codesign of Embedded Systems; HW-SW Partitioning Page: 45

Performance Improvement vs. HW area

2.8

6.38

10.68

15.88

23.68

33.8

HW area

S
ec

on
ds

©G. Khan

HW/SW Co-Simulation

• Arguably the most important stage of Co-Design

(prevent building faulty and expensive prototype)

• Can simulate entire system (Hardware and

Software modules) before building the target

system.

• Common co-simulation tool: Seamless, Coware,

Eaglei, etc.

• Seamless allows various HW and SW debuggers

to interact (respond to each other’s events)

COE718: Embedded Systems Design: Hardware Software Co-design Page: 46

©G. Khan

HW/SW Co-Verification

• Embedded system complexity prevents from

relying on traditional validation techniques.

• Common approach involves Petri-net

representation of system (PRES).

• PRES proves system correctness by determining

truth of the computation tree logic.

• Other approaches exist – Seamless and other

codesign tools are used for co-verification.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 47

©G. Khan

Conclusions

• Co-Design is getting mature

• Lot of research has been conducted recently
and much more is to come in future.

• Research is being performed in all areas –
specific attention is being addressed to
system co-specification and co-synthesis.

• Used in SoC design and verification.

COE718: Embedded Systems Design: Hardware Software Co-design Page: 48

	Slide 1: Hardware-Software Co-Design System Partitioning
	Slide 2: Real-time Embedded System
	Slide 3: Why use Microprocessors?
	Slide 4: Challenges in Embedded System Design
	Slide 5
	Slide 6: Traditional Embedded System Design
	Slide 7: HW/SW Co-Design
	Slide 8: Hardware-Software Codesign
	Slide 9: Hardware-Software Codesign
	Slide 10: HW/SW Co-Specification
	Slide 11: Co-Specification
	Slide 12: SystemC for Co-specification
	Slide 13: SystemC Library Classes
	Slide 14: SystemC 2.0 Language Architecture
	Slide 15
	Slide 16: SystemC Benefits
	Slide 17: Other Co-Specification Languages
	Slide 18: Hardware-Software Co-Synthesis
	Slide 19: HW/SW Co-Synthesis
	Slide 20: Common Co-Synthesis Structure
	Slide 21: System Partitioning
	Slide 22: HW/SW Partitioning
	Slide 23: Hardware-Software Partitioning
	Slide 24: Hardware-Software Partitioning
	Slide 25: Partitioning Techniques
	Slide 26: HW/SW Partitioning
	Slide 27: System Design Patterns
	Slide 28: State Machine: Seat-belt System
	Slide 29: Data Flow Graph
	Slide 30: DAG: Directed Acyclic Graph
	Slide 31: Relevant Partitioning Research
	Slide 32: DAG-based Partitioning Structure
	Slide 33: DAG-based Partitioning
	Slide 34: Profiling
	Slide 35: Longest Delay Path Search
	Slide 36: Mapping
	Slide 37: Scheduling
	Slide 38: DAG-based Scheduling
	Slide 39: Constraints
	Slide 40: Edge Detection Example
	Slide 41: Embedded System Hardware Structure Various Hardware Options
	Slide 42: SOBEL Edge Detection
	Slide 43: Sobel Edge Detection
	Slide 44: Edge Detection Solutions
	Slide 45: Performance Improvement vs. HW area
	Slide 46: HW/SW Co-Simulation
	Slide 47: HW/SW Co-Verification
	Slide 48: Conclusions

