
Fault-Tolerant Embedded System

COE718: Embedded Systems Design
http://www.ecb.torontomu.ca/~courses/coe718/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan

Electrical and Computer Engineering
________Toronto Metropolitan University__________

Overview
• Reliability Concepts
• Fault, Error and Sources of Faults
• Fault-tolerant Techniques
• Hardware and Software Fault-tolerance
• Fault Recovery

Fault-tolerant articles at the course WebPage

©G. Khan Fault-Tolerant Embedded Systems 2

High Performance
Embedded Systems

Many Safety Critical Applications Demand:

• High Performance

◆ High Speed I/O Mb  Gb/Sec

◆ Large Memory (128 MB  4 GB)

◆ Redundant Hardware and Reliable Software

• Fault-tolerance

• Tight Performance, Reliability and Availability

Deadlines

Fault Tolerant Embedded Systems

©G.Khan COE718: Embedded Systems Design 3

Reliability
RELIABILITY: Survival Probability

When function is critical during the mission time.

AVAILABILITY:

The fraction of time a system meets its specification.

Good when continuous service is important

but it can be delayed or denied

FAILSAFE: System fails to a known safe state

DEPENDABILITY:

Generalization: system does the right thing at right time.

©G. Khan Fault-Tolerant Embedded Systems 4

System Reliability: Preliminaries
The Reliability, RF(t) of a System is the probability that no fault

of the class F occurs (i.e. system survives) during time t.

RF(t) = Pr[tinit  t  tf for all f  F]

where tinit is time of introduction of the system to service

tf is time of occurrence of the first failure f drawn from F

Failure Probability, QF(t) is complementary to RF(t)

RF(t) + QF(t) = 1

We can take off the F subscript from RF(t) and QF(t)

When the lifetime of a system is exponentially distributed, the

reliability of the system is:

The parameter  is called the failure rate

tetR −=)(

©G. Khan Fault-Tolerant Embedded Systems 5

Component Reliability Model

It is not so straight forward.

During useful life, components exhibit a constant failure rate .

Reliability of a device can be modeled using an exponential

distribution.
 is the failure rate

tetR −=)(

©G. Khan Fault-Tolerant Embedded Systems 6

Component Failure Rate

Failure rates often expressed in failures / million

operating hours

Automotive Embedded
System Component

Failure

Rate, 
Military Microprocessor

Typical Automotive Microprocessor

Electric Motor Lead/Acid battery

Oil Pump

Automotive Wiring Harness (luxury)

0.022

0.12

16.9

37.3

775

©G. Khan Fault-Tolerant Embedded Systems 7

MTTF: Mean Time To Failure
MTTF: Mean Time to Failure or Expected Life

MTTF: Mean Time To (first) Failure is defined as the

expected value of tf

where  is the failure rate.

MTTF of a system is the expected time of the first failure in a

sample of identical initially perfect systems.

MTTR: Mean Time To Repair is defined as the expected time

for repair.

MTBF: Mean Time Between Failure

MTBF is approximated as MTTF for systems that do not

permit repair.

MTBF, MTTR are applicable to repairable systems.



1
)(][

0

=== 


dttRtEMTTF
f

8

MTTF-MTTD-MTTR
Availability = MTBF/(MTBF + MTTR)

©G.Khan COE718: Embedded Systems Design

©G. Khan Fault-Tolerant Embedded Systems 9

Serial System Reliability

Serially Connected Components
Let Rk(t) is the reliability of a single component k is given

Rk(t) = e-kt where k is constant failure rate

Assuming the failure rates of components are statistically

independent. The overall system reliability Rser(t)

Rser(t) = R1(t)  R2(t)  R3(t)  ….  Rn(t)

where  is a product operator

No redundancy: Overall system reliability depends on the

proper working of each component

Serial Failure rate,


=

=
n

i

iser tRtR
1

)()(


=

=
n

i

iser

1














− 

= =

n

i

it

ser etR 1)(


©G. Khan Fault-Tolerant Embedded Systems 10

System Reliability

Building a reliable serial system is extraordinarily

difficult and expensive.

For example: if one is to build a serial system with 100

components each of which had a reliability of 0.999, the

overall system reliability would be (0.999)100 = 0.905

Reliability of System

of Components

Minimal Path Set:

Minimal set of components whose functioning

ensures the functioning of the system

{1,3,4} {2,3,4} {1,5} {2,5}

©G. Khan Fault-Tolerant Embedded Systems 11

Parallel System Reliability
Parallel Connected Components
Qk(t) is equal to 1 - Rk(t) where Rk(t) is the reliability of a

single component k

Qk(t) = 1 - e-kt where k is a constant failure rate

Assuming the failure rates of components are statistically

independent.

Overall system reliability,

Consider 4 identical modules are connected in parallel

System will operate correctly provided at least one module is

operational. If the reliability of each module is 0.95.

The overall system reliability = 1-[1-0.95]4 = 0.99999375


=

=
n

i

ipar tQtQ
1

)()(

])(1[1)(
1


=

−−=
n

i

ipar tRtR

©G. Khan Fault-Tolerant Embedded Systems 12

Parallel-Serial Reliability
Parallel and Serial Connected Components

Total reliability is the reliability of the first half, in

serial with the second half.

Given R1=0.9, R2=0.9, R3=0.99, R4=0.99, R5=0.87

Rt = [1-(1-0.9)(1-0.9)][1-(1-0.87)(1-(0.99*0.99))]

= 0.987

©G. Khan Fault-Tolerant Embedded Systems 13

Reliability Analysis of
Serial-Parallel Systems

MTTF: Mean Time To Failure or Expected Life
MTTF is also used to specify the reliability of a system.

It is given by

MTTF of Serial and Parallel Systems

MTTFSER= 1/

MTTFPAR= 1/

Reliability of TMR System

RTMR(t) = 3R2(t) - 2R3(t) =

For smaller t, RTMR(t) is large but for large t it is small

Threshold time = ln2/ = 0.7/

E X R t dt[] () /= =



0

1 

ii
n
= 1

1
1

/ ln() /i n
i

n


=
 

tt ee  32 23 −− −

14

Embedded System Development
Stages Error Sources Error Detection
Specification &

design

Algorithm Design Formal

Specification

Consistency checks

Simulation

Prototype

Algorithm design

Wiring & assembly

Timing

Component Failure

Stimulus/response

Testing

Manufacture

Wiring & assembly

Component failure

System testing

Diagnostics

Installation

Assembly

Component failure

System testing

Diagnostics

Field Operation

Component failure

Operator errors

Environmental factors

Diagnostics

©G.Khan COE718: Embedded Systems Design

©G. Khan Fault-Tolerant Embedded Systems 15

Faults and Their Sources

What is a Fault?
Fault is an erroneous state of software or hardware
resulting from failures of its components

Fault Sources
Design errors

Software or Hardware

Manufacturing Problems
Damage, Fatigue and Deterioration

External disturbances
Harsh environmental conditions, electromagnetic

interference and ionization radiation

System Misuse

©G. Khan Fault-Tolerant Embedded Systems 16

Fault Sources

Mechanical -- “wears out”
Deterioration: wear, fatigue, corrosion

Shock: fractures, overload, etc.

Electronic Hardware -- “bad fabrication; wears out”
Latent manufacturing defects

Operating environment: noise, heat, ESD, electro-migration

Design defects (Pentium F-DIV bug)

Software -- “bad design”
Design defects

“Code rot” -- accumulated run-time faults

People
Can take a whole lecture content...

©G. Khan Fault-Tolerant Embedded Systems 17

Fault and Classifications
Failure: Component does not provide service

Fault: A defect within a system

Error: (manifestation of a fault)
A deviation from the required operation of the

system or subsystem

Extent: Local (independent) or Distributed (related)

Value:

Determinate (stuck at high or low)

Indeterminate (varying values)

Duration:

• Transient- design errors, environment

• Intermittent- repair by replacement

• Permanent- repair by replacement

©G. Khan Fault-Tolerant Embedded Systems 18

Fault-Tolerant Computing
Main aspects of FTC: Fault Tolerant Computing
• Fault detection
• Fault isolation and containment
• System recovery
• Fault Diagnosis
• Repair Detection

Time

Diagnosis & Repair

Isolation

Fault

Recovery

td

ti

tr

Normal Processing

Switch-in Spare

Time

©G. Khan Fault-Tolerant Embedded Systems 19

Tolerating Faults
There is four-fold categorization to deal with the system
faults and increase system reliability and/or availability.

Methods for Minimizing Faults
Fault Avoidance: How to prevent the fault occurrence.

by construction increase reliability by conservative design
and use high reliability components.

Fault Tolerance: How to provide the service complying with
the specification in spite of faults having occurred or occurring.

by redundancy
Fault Removal: How to minimize the presence of faults.

by verification
Fault Forecasting: How to estimate the presence, occurrence,
and the consequences of faults. by evaluation

Fault-Tolerance is the ability of a computer system
to survive in the presence of faults.

20

Fault-Tolerance Techniques
Hardware Fault Tolerance

Software Fault Tolerance

Hardware Fault-tolerance Techniques

• Fault Detection

• Redundancy (masking, dynamic)
Use of extra components to mask the effect of a faulty

component. (Static and Dynamic)

Redundancy alone does not guarantee fault tolerance.

It guarantee higher fault arrival rates (extra hardware).

Redundancy Management is Important

A fault tolerant computer can end up spending as much as 50%

of its throughput in managing redundancy.

©G.Khan COE718: Embedded Systems Design

©G. Khan Fault-Tolerant Embedded Systems 21

Hardware Fault-Tolerance

Fault Detection

Detection of a failure is a challenge

Many faults are latent that show up (a lot) later

Use watchdog timer ?

Fault detection gives warning when a fault occurs.

Duplication: Two identical copies of hardware run the

same computation and compare each other results.

When the results do not match a fault is declared.

©G. Khan Fault-Tolerant Embedded Systems 22

Redundancy
Static and Dynamic Redundancy
Extra components mask the effect of a faulty component.

• Masking Redundancy

Static redundancy as once the redundant copies of an

element are installed, their interconnection remains

fixed e.g. TMR (Triple Modular Redundancy) where

three identical copies of modules provide separate

results to a voter that produces a majority vote.

• Dynamic Redundancy

System configuration is changed in response to a fault.

Its success largely depends upon the fault detection

ability.

©G. Khan Fault-Tolerant Embedded Systems 23

TMR Configuration

• P1, P2 and P3 processors execute different versions of
the code for the same application.

• Voter compares the results and forward the majority
vote of results (two out of three).

TMR based hardware redundancy is transparent to
the programmer

P3

P1

P2 V

Inputs
Outputs

Voter

©G. Khan Fault-Tolerant Embedded Systems 24

Software Fault-Tolerance
Hardware based fault-tolerance provides tolerance against

physical i.e. hardware faults.

How to tolerate design/software faults?

It is virtually impossible to produce fully correct software.

We need something:

To prevent software bugs from causing system disasters.

To mask out software bugs.

Tolerating unanticipated design faults is much more difficult than

tolerating anticipated physical faults.

Software Fault Tolerance is needed as:

Software bugs will occur no matter what we do.

No fully dependable way of eliminating these bugs.

These bugs have to be tolerated.

©G. Khan Fault-Tolerant Embedded Systems 25

Software Failures

©G. Khan Fault-Tolerant Embedded Systems 26

Some Software Failures
Software failure lead to partial/total system crashes

Cost of software has exceeded the cost of hardware.

Penalty costs for software failure are more significant.

Some Spectacular Software Failures
• Space shuttle malfunction in 1982.

• Lethal doses of therapy radiation to Canadians in 1986.

• AT&T‘s telephone switching network failure in 1990.

• Loss of Ariane rocket and its payload in June 1996.

• Computer problems Airbus-330 Qantas flight from Singapore

to Perth, October 2008.

• Airbus 330 AF flight 447, Rio de Janeiro to Paris May 2009

• iPhone 3G Glitches 2010 Dropped calls & choppy web surfing

http://www5.in.tum.de/~huckle/bugse.html

©G. Khan Fault-Tolerant Embedded Systems 27

Some Software Failures
1. Blackout 2003 - power plant went offline due to high demand from
grid, power network went under great stress, power lines heated up.
Started hanging and destroying the network to 20% of its capacity

- The blackout could have been averted (proper shutdowns etc.)

- Software bug in control center alarm system caused a race condition,
that caused the alarm system to freeze and stop processing these alerts to
the workers.

2. Radiation therapy - Therac-25 administered radiation therapy to treat
cancer patients. So while operator was configuring machine it would go
into fail safe mode. During fail safe mode, "Arithmetic overflow" occurred
during an automatic safety check, and patient was not in place. So while
operator was configuring machine it would go into fail safe -- beams 100
times higher than intended would be fired into the patient.

3. USS Yorktown CG-48, navy ship, carries artillery, fighter jets etc. Was
stuck in the water for 3 hours due to a complete failure of its propulsion
system. One of the crew member typed 0 in one of the on-board systems -
caused a division by zero crashed the control system.

©G. Khan Fault-Tolerant Embedded Systems 28

Tolerating Software Failures
How to Tolerate Software Faults?
Software fault-tolerance uses design redundancy to mask

residual design faults of software programs.

Software Fault Tolerance Strategy

Defensive Programming

If you can not be sure that what you are doing is correct.

Do it in many ways.

Some of them will turn to be right.

Review and test the software.

Verify the software.

Execute the specifications

Produce programs automatically

Full tools & technology were not available in the past

©G. Khan Fault-Tolerant Embedded Systems 29

SW Fault-Tolerance Techniques

Software Fault Detection is a bigger challenge
Many software faults are of latent type that shows up later,

Can use a watchdog to figure out if the program is crashed

Fault-tolerant Software Design Techniques
• Recovery block scheme (RB)

Dynamic redundancy-- Use an on-line acceptance

test to determine which version to believe.

• N-version programming scheme (NVP)

n-modular redundancy -- Write use multiple versions

of the software and vote the results.
◆ Hardware redundancy is needed to implement the above

Software Fault-tolerance techniques.

30

SW Fault-Tolerance Techniques

Fault-tolerant Software Design Techniques

• Recovery block scheme (RB)

Dynamic redundancy

• N-version programming scheme (NVP)

n-modular redundancy

◆ Hardware redundancy is needed to implement the

above Software Fault-tolerance techniques.

©G.Khan COE718: Embedded Systems Design

©G. Khan Fault-Tolerant Embedded Systems 31

Software Fault-Tolerance

Fault-tolerant Software Design Techniques

H H

RB

H

V1

H

V2

H

V3

NVP

Primary Primary

Alternate Alternate

H H

V2

H

V3

H

V4

NSCP: N-Self Checking Programming

V1

©G. Khan Fault-Tolerant Embedded Systems 32

NVP: N-Version Programming
N-independent program variants execute in parallel

Each program variant must be developed using different

Algorithms, Techniques, Programming Languages,

Environments, Tools, etc.

For basic NVP, voting is done at the end

in community-error-recovery voting at intermediate points is

done. Requires synchronization of programs at intermediate

comparison points.

i.e. errors are detected and recovered at checkpoints which are

inserted in all the versions of the software

N Self-Checking Version (NSCP) uses intermediate voting

Similar to community-error-recovery but acceptance test is by

comparison checking.

©G. Khan Fault-Tolerant Embedded Systems 33

RB: Recovery Block
RB Scheme comprises of three elements

A primary module to execute critical software functions.

Acceptance test for the output of primary module.

Alternate modules perform the same functions as of primary.

A Simple Recovery Block Scheme

Calculating Square Root of x
Ensure AT |y*y - x| = 0

By P y = sqrt(x)
Else A1

Else A2
.
Else by An-1

Else Error
where AT = acceptance test condition

P is the primary module.

A 1=> n-1 are alternate modules.

©G. Khan Fault-Tolerant Embedded Systems 34

RB: Recovery Block Scheme
An Architectural View of RB

Recovery

Memory

Input

Primary

Alternate-1

Alternate-n

Raise error

Rollback and try

alternate version Failed

Passed

Failed and

alternates

exhausted

OutputS

w

i

t

c

h

AT

RB uses diverse versions

Attempt to prevent residual software faults

©G. Khan Fault-Tolerant Embedded Systems 35

Fault Recovery

Fault recovery technique's success depends on the

detection of faults accurately and as early as possible.

Three classes of recovery procedures:
Full Recovery

It requires all the aspects of fault tolerant computing.

Degraded recovery: Also referred as graceful degradation

Similar to full recovery but no subsystem is switched-in.

Defective component is taken out of service.

Suited for multiprocessors.

Safe Shutdown

Often called fail-safe operations.

A limiting case of degraded recovery.

©G. Khan Fault-Tolerant Embedded Systems 36

Fault Recovery

Fault recovery techniques restore enough of the system

state that can restart a process execution without loss of

acquired information.

Two Basic Approaches:

Forward Recovery

Produces correct results through continuation of normal

processing.

Highly application dependent

Backward Recovery

Some redundant process and state information is recorded

with the progress of computation.

Rollback the interrupted process to a point for which the

correct information is available.

©G. Khan Fault-Tolerant Embedded Systems 37

Backward Recovery Schemes

Retry

Operation is retried after fault detection.

Suits to transient faults.

In case of hard failures, reconfiguration is attempted.

Checkpointing

Some subset of system is saved at checkpoints and rollback

is attempted.

JPL STAR and Tandem computer systems

Journaling

 Copy of the initial database is saved.

 All transactions that effect the data are kept on record

during the process execution.

 When the process fails, recorded transactions are run

on the backup data.

©G. Khan Fault-Tolerant Embedded Systems 38

Concluding Remarks

• The common techniques for fault handling are
fault avoidance, fault detection, masking
redundancy, and dynamic redundancy.

• Any reliable embedded system must have its
failure response carefully built into it, as some
complementary set of actions and responses.

• System reliability can be modeled at a component
and module level, assuming the failure rate is
constant (exponential distribution).

• Reliability must be built into the embedded system
project from the start.

	Slide 1: Fault-Tolerant Embedded System
	Slide 2: High Performance Embedded Systems
	Slide 3: Reliability
	Slide 4: System Reliability: Preliminaries
	Slide 5: Component Reliability Model
	Slide 6: Component Failure Rate
	Slide 7: MTTF: Mean Time To Failure
	Slide 8: MTTF-MTTD-MTTR
	Slide 9: Serial System Reliability
	Slide 10: System Reliability
	Slide 11: Parallel System Reliability
	Slide 12: Parallel-Serial Reliability
	Slide 13: Reliability Analysis of Serial-Parallel Systems
	Slide 14: Embedded System Development
	Slide 15: Faults and Their Sources
	Slide 16: Fault Sources
	Slide 17: Fault and Classifications
	Slide 18: Fault-Tolerant Computing
	Slide 19: Tolerating Faults
	Slide 20: Fault-Tolerance Techniques
	Slide 21: Hardware Fault-Tolerance
	Slide 22: Redundancy
	Slide 23: TMR Configuration
	Slide 24: Software Fault-Tolerance
	Slide 25: Software Failures
	Slide 26: Some Software Failures
	Slide 27: Some Software Failures
	Slide 28: Tolerating Software Failures
	Slide 29: SW Fault-Tolerance Techniques
	Slide 30: SW Fault-Tolerance Techniques
	Slide 31: Software Fault-Tolerance
	Slide 32: NVP: N-Version Programming
	Slide 33: RB: Recovery Block
	Slide 34: RB: Recovery Block Scheme
	Slide 35: Fault Recovery
	Slide 36: Fault Recovery
	Slide 37: Backward Recovery Schemes
	Slide 38: Concluding Remarks

