
© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 1

Embedded System CPUs: ARM7, Cortex M3

COE718: Embedded Systems Design
http://www.ecb.torontomu.ca/~courses/coe718/

Dr. Gul N. Khan

http://www.ecb.torontomu.ca/~gnkhan

Electrical, Computer and Biomedical Engineering

 Toronto Metropolitan University

Overview
• Processors and System Architecture, Interrupts, Memory System

• Pipelining, I/O and CPU Performance

• Micro-controllers and Embedded CPUs

• ARM Architectures: ARM7TDMI

• Cortex-M3 a small foot-print Microcontroller

Text by Lewis: Chapter 5, part of Chapters 6 and 8 (8.1) and ARM7/M3 Data Sheets

Text by M. Wolf: part of Chapters/Sections 2.1, 2.2, 2.3 and 3.1-3.5

http://www.ecb.torontomu.ca/~gnkhan
http://www.ee.ryerson.ca/

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 2

CPU/Processor Architecture

• Control and Timing Section

• Register Section

• ALU (Arithmetic Logic Unit)

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 3

Processor Architectures

von Neumann architecture
• Memory holds data, instructions.

• Central processing unit (CPU) fetches instructions from memory.

• Separate CPU and memory distinguishes programmable computer.

• CPU registers help out: program counter (PC), instruction register (IR),

general-purpose registers, etc.

Memory

CPU

PC

address

data

IR ADD r5, r1, r3 200

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 4

Harvard Architecture

• Harvard architecture cannot use self-modifying code.

• It allows two simultaneous memory fetches.

• Most DSPs use Harvard architecture for streaming data.

CPU

PC

Data memory

Program memory

address

data

address

data

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 5

Instruction Execution Process

Instruction Fetch: Reads next instruction into the instruction

register (IR). PC has the instruction address.
Instruction Interpretation: Decodes the op-code, gets the required

operands and routes them to ALU.
Sequencing

Determines the address of next instruction and loads it into the PC.

Execution: Generates control signals of ALU for execution.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 6

System Organization

Memory and I/O having Separate Bus

Memory Bus

I/O Bus

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 7

Memory Mapped Peripherals

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 8

Single Accumulator Architecture

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 9

Interrupts

A computer program has only two ways to determine the

conditions that exist in internal and external circuits.

• One method uses software instructions that jump to subroutine on

some flag status.

• The second method responds to hardware signals called interrupts

that force the program to call interrupt-handling subroutines.

• Interrupts take processor time only when action is required.

• Processor can respond to an external event much faster by

using interrupts.

The whole programming of microcomputers and micro-controller

by using interrupts is called real-time programming.

Interrupts are often the only way for successful real-time

programming.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 10

Instruction Cycle with Interrupts

Generally CPU checks for interrupts at the end of each instruction and

executes the interrupt handler if required.

Interrupt Handler program identifies the nature/source of an

interrupt and performs whatever actions are needed.
• It takes over the control after the interrupt.

• Control is transferred back to the interrupted program that will resume

execution from the point of interruption.

• Point of interruption can occur anywhere in a program.

• State of the program is saved.

User program

Interrupt handler

i

i+1

1

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 11

Interrupt Processing

 Device controller or

other system h/w

issues an interrupt

Processor finishes

execution of current

instruction

Processor signals

acknowledgment

of interrupt

Processor pushes

PSW and PC onto

control stack

Processor loads new

PC value based on

the interrupt

Save remainder of

process state

information

Process interrupt

Restore process

state information

Restore old PSW,

PC, etc.

Software

Hardware

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 12

 Multiple Interrupts (Sequential Order)
• Disable interrupts to complete the interrupting task at hand.

• Additional interrupts remain pending until interrupts are enabled. Then

interrupts are considered in order

• After completing the interrupt handler routine, the processor checks for

additional interrupts.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 13

Multiple Interrupts (Nested)

• A higher priority interrupt causes lower-priority interrupts to wait.

• A lower-priority interrupt handler is interrupted.

For example, when input arrives from a communication line, it needs

to be absorbed quickly to make room for additional inputs.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 14

Processor Operation Modes

User mode

▪ A user program is running.

▪ Certain instructions are not allowed.

▪ Memory mapping (base and bound) is enabled.

Supervisor mode

▪ The operating system is running.

▪ All instructions are allowed.

▪ Memory mapping (base and bound) is disabled.

A single PSW (processor status word) bit sets the above two

modes:
For instance: PSW-bit =1 for Supervisor mode

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 15

Cache Memory

• Cache: Expensive but very fast memory directly connected to CPU

interacting with slower but much larger main memory.

• Processor first checks if the addresses word is in cache.

• If the word is not found in cache, a block of memory containing the

word is moved to the cache.

CPU

cache
controller

Cache

Main

Memory

data

data

address

data

address

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 16

address

data
cache

00..0016

FF..FF16

copies of
data

registers

processor

dataaddress

address

instructionsaddress

cache

copies of
instructions

instructions

memory

instructions

data

Separate Data and Instruction Caches

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 17

A Unified Instruction and Data Cache

address

instructions

cache
memory

copies of

instructions

data

00..0016

FF..FF16

instructions

copies of
data

registers

processor

instructions
address

and data

and data

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 18

 CPU Pipelining

Improve performance by increasing instruction throughput.

2nd Instruction (Adrs: PC+1)

Fetch Decode Execute

1st Instruction (Adrs: PC)

Fetch Decode Execute

3rd Instruction (Adrs: PC+2)

Fetch Decode Execute

Time

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 19

CPU Pipelining

What makes pipelining easy?
• When all instructions are of the same length.

• Few instruction formats.

• Memory operands appear only in loads and stores.

What makes pipelining hard?
• Structural Hazards:

• Control Hazards:

• Data Hazards

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 20

Pipelined Instruction Execution (5-stage Pipeline)

Read-after-write pipeline hazard

fetch dec reg ALU mem res1

fetch dec reg ALU mem res

fetch dec reg ALU mem res

2

3

time

instruction

fetch dec reg ALU mem res1

fetch dec reg ALU mem res2

time

stall

instruction

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 21

CPU Power Consumption

• Most modern CPUs are designed with power consumption

in mind to some degree.

• Power vs. energy:
▪ Heat depends on power consumption;

▪ Battery life depends on energy consumption.

Power Saving Strategies

• Reduce power supply voltage.

• Run at lower clock frequency.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 22

Microcontrollers and Embedded CPUs

Microcontrollers are available in 4 to 32-bit word sizes.

8-bit or 16-bit micro-controllers are widely used.

Popular Microcontrollers

Model Pins

I/O
RAM ROM Counter

Timer

Remarks

Intel 8051 40:32 128 4K 2 128K External, Serial port

Motorola 6811 52:40 256 8K 2 A/D, Watch Dog timer, Serial Port

ARM CPUs

TMS470-ARM

Soft

8-64KB
64KB-

1MB

 16/32-bit RISC

DMA, Watch Dog timer, CAN, I2C

Intel, 80C196 68:40 232 8K 2 16-bit 64K External, Serial, A/D, WD

Intel, 80960
(i960)

132 512 Ins

Cache
-- 20MHz

Clock

32-bit bus, FPU, Interrupt control

No I/O on-chip

MIPS32 4K Soft

core

I/D

Cache
-- 32-bit RISC, EJTAG and On-chip bus

MC68360

QUICC

240/241

 4 or

16-bit

32-bit, WD, Fault-tolerant, 4-Ethernet,

2 serial, Integrated Com Controller

Nios II Soft

core

On-chip

Ram
 IP 32-bit RISC, Soft Core for Embedded

CPUs on FPGA

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 23

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 24

4

Cortex-M3

Cortex-M1

SC300

Cortex-A8

Cortex-A9 (MPCore)

ARM7

ARM7TDMI

ARM11 (MPCore)

ARM9

Cortex-M0

2007 2008 2009 2010

Cortex-A5

Cortex-M4

Cortex-A15

Cortex-A9 (Dual)
Up to 2 GHz

~600 to 1 GHz

72 – 150 + MHz

Cortex-R4F

Cortex-R4

Cortex-R5

Microcontroller

Application

Real-time

ARM 7, 9, 11

Up to 2.5 GHz

ARM926EJ-S

Cortex-M0
DesignStart

Cortex-R7

200+ MHz

200+ MHz

50 MHz

2011 2012

MMU

No MMU

All dates are approximate

N
o

t t
o

 s
ca

le

Cortex-M0+

Cortex-A57
Cortex-A53

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 25

ARM CPU

ARM7TDMI ARMv4T ARM7TDMI(S)

ARM9 ARM9E ARMv5TE(J) ARM926EJ-S, ARM966E-S

ARM11 ARMv6 (T2) ARM1136(F), 1156T2(F)-S,

1176JZ(F), ARM11 MPCore™

Cortex-A

Cortex-R

Cortex-M

ARMv7-A

ARMv7-R

ARMv7-M

ARMv6-M

Cortex-A5, A7, A8, A9, A15

Cortex-R4(F)

Cortex-M3, M4

Cortex-M1, M0

NEW ! ARMv8-A 64 Bit

Versions, cores and architectures ?

▪ What is the difference between ARM7™ and ARMv7 ?

▪ ARM doesn’t make chips….well maybe a few test chips.

Family Architecture Cores

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 26

ARM Processor Licenses (the public ones)

▪ ARMv8-A ? NVIDIA, Applied Micro, Cavium, AMD, Broadcom,
Calxeda, HiSilicon, Samsung and STMicroelectronics

▪ Cortex-A15 4 ST-Ericson, TI, Samsung, nVIDIA

▪ Cortex-A9 9 NEC, nVIDIA, STMicroelectronics, TI, Toshiba …

▪ Cortex-A8 9 Broadcom, Freescale, Matsushita, Samsung,
STMicroelectronics, Texas Instruments, PMC-Sierra

▪ Cortex-A5 3 AMD,

▪ Cortex-R4(F) 14 Broadcom, Texas Instruments, Toshiba, Inf

▪ Cortex-M4 5 Freescale, NXP, Atmel, ST

▪ Cortex-M3 29 Actel, Broadcom, Energy Micro, Luminary
Micro, NXP, STMicroelectronics, TI, Toshiba, Zilog, …

▪ Cortex-M0 14 Austria-microsystems, Chungbuk Technopark,
NXP, Triad Semiconductor, Melfas

▪ Cortex-M0+ Freescale, NXP

▪ ARM7 172, ARM9 271, ARM11 82

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 27

ARM vs. x86 Power

iMX6 is Cortex A7, A9 and M4 multicore CPUs NXP SoCs

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 28

NXP iMX6 Multiple ARM Processors

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 29

ARM Instruction Sets

▪ ARM (32 bit) now referred as AArch32

▪ Thumb (16 bit)

▪ Thumb2: Cortex-Mx processors. Cortex-R, A have Thumb2 + ARM.

▪ A64 (64 bit) referred as AArch64

ARM now called AArch32

Thumb-2

Thumb (actually includes all ARM 32 bit instructions)

A64 AArch64

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 30

Tools: Keil MDK™ with µVision:

▪ For Cortex-M and Cortex-R processors.

▪ Proprietary IDE µVision

▪ ARM compiler, assembler and linker.

▪ ULINK2, ULINKpro, CMSIS-DAP + more debug adapters.

▪ Many board support packages (BSP) and examples.

▪ MDK Professional: TCP/IP. CAN, USB & Flash middleware.

▪ Serial Wire Viewer and ETM, MTB & ETB Trace supported.

▪ Evaluation version is free from www.keil.com/arm.

▪ Is complete turn-key package: no add-ons needed to buy.

▪ Valuable technical support included for one year. Can be

easily extended.

▪ Keil RTX RTOS included free with source code.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 31

Three Types of Instruction Sets

The Wall Street Journal July 18, 2016

SoftBank to Buy ARM Holdings for $32 Billion
Japanese group’s deal for U.K.-based chip designer comes together in just two weeks

• ARM Instruction Set
– Instructions are 32 bits wide
– Original RISC (lots of parallelism)
– “Load/Store” Architecture

• Thumb Instruction Set
– Subset of ARM instructions, some restrictions
– Instructions are 16 bits wide (more like CISC)
– Intended for compilers
– Less parallelism, longer instruction sequences
– but total code size is 30% smaller

• Jazelle Instruction Set
– Java byte codes

Hardware
Decoder

16-bit Thumb
Instruction

32-bit ARM
Instruction

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 32

Three Instruction Sets

ARM Thumb* Jazelle

Instruction Size 32 bits 16 bits 8 bits

Core instructions 58 30

> 60% of Java byte

codes in hardware;
rest in software

Conditional Execution most

Only branch

instructions or in an IT
block

N/A

Data processing

instructions

Access to barrel

shifter and ALU

Separate barrel shifter

and ALU instructions
N/A

Program status

register

Read/write in

privileged mode
No direct access

N/A

Register usage
15 general purpose

registers + pc

8 general purpose

registers + 7 high
registers + pc

N/A

* LM3S811 (a Cortex M3 variation) uses the Thumb2 set

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 33

ARMv7 vs Thumb Instruction Set

• ARM has 2 instructions sets = traditional ARM ISA (i.e. ARMv7,

etc) and the condensed Thumb ISA (16/32bit)

• ARMv7 is a 32-bit standard instruction set derived by ARM

• Thumb2 incorporates 16/32-bit mix by using a Unified Assembler

Language (UAL) to alternate between theese 2 ISAs, basically adds

suffixes the instructions ['N' (16) and 'W' (32)] to let the compiler

know if it's 16-bit or 32-bit

• Each Thumb instruction directly correlates to an equivalent 32-bit

ARM instruction version, which has the same effect on the

processor and only their encodings are different.

Thumb | 0| 0 | 0| OP (2b) | Imm5 | Rs (3b) | Rd (3b)
ARM | cond 4b | 0 | 0| 1| op (4b) | S | Rn (4b) | Rd (4b) | rotate (4b) | imm8

Thumb when in 'N' mode has less register space to work with, and can only deal with

smaller imm values (for loads/stores, branching etc.)

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 34

HISTORY of ARM ISA

ARM initially came out with Thumb, and then introduced Thumb-2

technology (still using Thumb ISA) bc ARM had two separate syntaxes

which made compilation and execution more complex.

• Solved with UAL

• Using Thumb only one ISA could be active at a time, switching in the

middle of an application gives some overhead (i.e. BLX)

• Thumb is used to trim down code size and memory utilization with hardly

no change to the core

Decreased code size = less memory usage = lower power consumption

Reduces code size by > 30%

Thumb still has 32-bit bus and operates with a 32bit data-width.

More instructions can be fetched from memory as instructions are smaller

and code size is condensed. In general, fetching instructions is slower than

executing instructions

* Less instruction memory utilization

* Very little performance difference.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 35

Performance/Code for Instruction Sets

-Use Thumb for limited memory as well as low power.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 36

Pipelined Instruction Fetch, Decode

and Execute

Fetch

Decode

Execute
Read register(s) from Register Bank,

Shift and ALU operation,

Write register(s) back to Register Bank

Decompress thumb instruction, Decode

ARM instruction

Select registers

16-bit Instruction fetched

from memory
PC

PC - 2

PC - 4

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 37

ARM7 Architecture

• Load/store architecture

• Most instructions are RISCy

Some multi-register operations take multiple cycles

• All instructions can be executed conditionally

ARM7 is a small, low power, 32-bit microprocessor.

Three-stage pipeline, each stage takes one clock cycle

• Instruction fetch from memory

• Instruction decode

• Instruction execution.
▪ Register read

▪ A shift applied to one operand and the ALU operation

▪ Register write

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 38

ARM CPU Core Organization

multiply

data out register

instruction

decode

&

control

incrementer

register
bank

address register

barrel
shif ter

A[31:0]

D[31:0]

data in register

ALU

control

P
C

PC

A
L
U

b
u
s

A

b
u
s

B

b
u
s

register

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 39

ARM7 Features

Combined Shift and ALU Execution Stage

• A single instruction can specify one of its two source operands for

shifting or rotation before it is passed to the ALU

• Allows very efficient bit manipulation and scaling code

• Eliminates virtually single shift instructions from ARM code.

ARM7 CPU does not have explicit shift instructions.

• A move instruction can apply a shift to its operand

ARM7 uses von-Neumann memory architecture where instructions

and data occupy single address space that can limit the performance

• Instruction fetching (and execution) must stop for instructions that

access memory

• The pipeline stalls during load and store operations, ARM7 can

continue useful work.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 40

 ARM7 Pipeline Execution

• Latency
Time it takes for an instruction to get through the pipeline.

• Throughput
Number of instructions executed per time period.

add r0,r1,#5

sub r2,r3,r6

cmp r2,#3

fetch

time

decode

fetch

execute

decode

fetch

execute

decode execute

1 2 3

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 41

ARM CPU Features: Modified RISC

Multiple Load and Store Operation
Reduce the penalty of data accesses during a stall in the pipeline

Multiple load/store instructions can move any of the ARM registers

to and from memory, and update the memory address register

automatically after the transfer.

• This not only allows one instruction to transfer many words of

data (in a single bus burst), it also reduces the amount of

instructions needed to transfer data.

• Make the ARM code smaller than other 32-bit CPUs

• These instructions can specify an update of the base address

register with a new address after the transfer.

RISC CPU architectures would normally use a second instruction (add or

subtract) to form the next address in a sequence.

ARM does it automatically with a single bit in the instruction, again a

useful saving in code size.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 42

ARM CPU (More) Features

All instructions are conditionally executed:

• A very useful feature

• Loads, stores, procedure calls and returns, and all other operations

can execute conditionally after some prior instruction to set the

condition code flags

• Any ALU instruction may set the flags

• This eliminates short forward branches in ARM code

• It also improves code density and avoids flushing the pipeline for

branches and increase execution performance

▪ Most CPU architectures have conditional branch instructions

▪ These follow a test or compare instruction to control the flow of

execution through the program

▪ Some architectures also have a conditional move instruction,

allowing data to be conditionally transferred between registers

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 43

Real-timed Debug System Organization
(ARM7TDMI)

EmbeddedICE

Trace por t
analyzer

ARM

core

Embedded

trace
macrocell

EmbeddedICEJTAG TAP
JTAG

port

Trace
por t

host

system

System on chip

data

address

control

controller

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 44

ARM7TDMI and ARM9TDMI Pipeline

The ARM10TDMI pipeline

instruction

fetch

instruction

fetch

Thumb

decompress

ARM

decode

reg

read

reg

writeshift/ALU

reg

writeshift/ALU
r. read

decode

data memory

access

Fetch Decode Execute

Memory WriteFetch Decode Execute

ARM9TDMI:

ARM7TDMI:

branch
prediction

reg

write

r. read

decode

data memory
access

Memory WriteFetch Decode Execute

decode

Issue

multiplier

par tials add

instruction

fetch

data
write

shift/ALU

addr.

calc.

multiply

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 45

ARM Architectures
Core Architecture

Classic ARM Processors
ARM1 v1

ARM2, ARM2as, ARM3 v2, v2a

ARM6, ARM600, ARM610 v3

ARM7TDMI, ARM710T, ARM720T, ARM740T v4T

ARM8, ARM810 v4

ARM9TDMI, ARM920T, ARM940T v4T

ARM9ES v5TE

ARM10TDMI, ARM1020E v5TE

ARM11 v6

.

ARM Cortex Processors
ARM Cortex-M3 v7M
ARM Cortex-M4 v7ME
ARM Cortex-R4, R5, R7 v7R
ARM Cortex-A5, A8, A9, A15 v7A

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 46

ARM7: Programming Model

• Word is 32 bits long.

• Word can be divided into four 8-bit bytes.

• ARM addresses can be 32 bits long.

• Address refers to byte.

Address 4 starts at byte 4.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

(PC)

CPSR

31 0

N Z C V

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 47

ARM Cortex-M4

Latest Cortex-M series CPU that has a combination of efficient signal

processing and low-power.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 48

Harvard vs. Van Neumann Architecture

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 49

ARM Cortex-M3

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 50

ARM Cortex-M3 Core System

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 51

ARM Cortex-M3 Core System

NVIC - Interrupt controller (will get back to this in interrupt section).

Memory Protection Unit (MPU) - invokes rules for accessing

memory;

SYSTICK - countdown timer, used to generate interrupts.

WIC - unit for waking up the CPU

ROM - small lookup table that stores configuration information

BusMatrix - interconnect used to transfer data on different busses

simultaneously.

Rest are debugging blocks ----> SW-DP (Serial Wire Debug Port),

ETM (Embedded Trace Macrocell), DWT (Data Watch-point and

Trace), ITM (Instrumentation Trace Macrocell), etc.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 52

Cortex-M3 CPU Overview

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 53

Cortex-M3 Bus System

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 54

 ARM Cortex-M3 Core System

• ARM uses the AMBA bus

• AMBA is an open standard on-chip interconnect specification (i.e. it

has protocols, handshake methods, etc.)

Cortex-M3 uses the following AMBA based busses:

1) Advanced Peripheral Bus - low bandwidth, used for processor to

peripheral transactions

2) ARM High-Performance Bus - high bandwidth/data-width

transfers for high performance, uses bursts

Cortex M3 has a Harvard architecture CPU: there are dedicated

instruction and data busses.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 55

ARM Cortex-M3

Introduced in 2004, the mainstream ARM processor developed

specifically with microcontroller applications in mind.

Registers

R0 – R15

Barrel Shifter

Sign Extender

Incrementer

MAC

Data Bus

Address
Bus

R15
(pc)

Rn

Rd

Result Bus

ALU

Address Register

Rm

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 56

ARM Cortex-M3

• Implement Thumb-2 instruction subset of ARM Instruction Set.

• Most Thumb-2 instructions are 16-bit wide that are expanded

internally to a full 32-bit ARM instructions.

• ARM CPUs are capable of performing multiple low-level

operations in parallel.

• A hardware sign extender convert 8-16 bit operands to 32-bit

• Load store architecture.

• Barrel shifter allows operand Rm to be shited first and then ALU

can perform another operation (e.g. add, subtract, mul etc.)

• MAC is a sort of memory address calculator for different

addressing of arrays and repetitive address calculations.

• R0-R12 GPR, R13-R15 special purpose registers i.e. SP, PC and LR

(that holds the return address when a subroutine is called.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 57

ARM Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13: Stack Pointer (SP)

R14: Link Register (LR)

R15: Program Counter (PC)

Thumb
Mode:

8 general
purpose
registers

7 “high”
registers

r8-R12 only
accessible
with MOV,
ADD, or
CMP

ARM
Mode:

15 general
purpose
registers

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 58

Barrel Shifting

• Barrel shifter rotates/shift instruction operand prior to inputting the value into the ALU

MUL R1 R2 #2 (LSL R1 R2 #2)
ADD R5, R1, R4

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 59

ARM Cortex-M3 Bus

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 60

Status Registers (xPSR)

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

1

6

1

5

1

0 9 8 0

N C Z V Q

0 or exception #

ICI/IT T ICI/IT

Bits Name Description

31 N Negative (bit 31 of result is 1)

30 C Unsigned Carry

29 Z Zero or Equal

28 V Signed Overflow

Most important
for application
programming

APSR

IPSR

EPSR

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 61

PSR: Program Status Register

Divided into three bit fields
• Application Program Status Register (APSR)

• Interrupt Program Status Register (IPSR)

• Execution Program Status Register (EPSR)

IPSR holds the exception number for exception processing.

EPSR has the following useful bits.

• ICI/IT bits hold the state information for IT block instructions or

instructions that are suspended during interrupt processing.

• Q-bit is the sticky saturation bit and supports two rarely used

instructions (SSAT and USAT)

 SSAT{cond} Rd, #sat, Rm{, shift}

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 62

SSAT: Saturate Instruction

• Consider two numbers 0xFFFF FFFE and 0×0000 0002. A 32-bit mathematical
addition would result in 0×1 0000 0001 which contain 9 hex digits or 33 binary
bits. If the same arithmetic is done in a 32-bit processor, ideally the carry flag
will be set and the result in the register will be 0×0000 0001.

• If the operation was done by any comparison instruction this would not cause
any harm but during any addition operation this may lead to un-predictable
results if the code is not designed to handle such operations. Saturate arithmetic
says that when the result crosses the extreme limit the value should be
maintained at the respective maximum/minimum (in our case result will be
maintained at 0xFFFF FFFF which is the largest 32-bit number).

• Saturate instructions are very useful in implementing certain DSP algorithms
like audio processing.

• Also a new flag field called ‘Q’ has been added to the ARM processor to show
us if there had been any such saturation taken place or the natural result itself
was the maximum.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 63

ARM Operating Modes & Register Usage

Exception vector addresses

CPSR[4:0] Mode Use Registers

10000 User Normal user code user

10001 FIQ Processing fast interrupts _fiq

10010 IRQ Processing standard interrupts _irq

10011 SVC Processing software interrupts (SWIs) _svc

10111 Abort Processing memory faults _abt

11011 Undef Handling undefined instruction traps _und

11111 System Running privileged operating system tasks user

Exception Mode Vector address

Reset SVC 0x00000000

Undefined instruction UND 0x00000004

Software interrupt (SWI) SVC 0x00000008

Prefetch abort (instruction fetch memory fault) Abort 0x0000000C

Data abort (data access memory fault) Abort 0x00000010

IRQ (normal interrupt) IRQ 0x00000018

FIQ (fast interrupt) FIQ 0x0000001C

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 64

 The ARM Condition Code Field

ARM condition codes

cond

31 28 27 0

Opcode

[31:28]

Mnemonic

extension

Interpretation Status flag state for

execution

0000 EQ Equal / equals zero Z set

0001 NE Not equal Z clear

0010 CS/HS Carry set / unsigned higher or same C set

0011 CC/LO Carry clear / unsigned lower C clear

0100 MI Minus / negative N set

0101 PL Plus / positive or zero N clear

0110 VS Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater than or equal N equals V

1011 LT Signed less than N is not equal to V

1100 GT Signed greater than Z clear and N equals V

1101 LE Signed less than or equal Z set or N is not equal to V

1110 AL Always any

1111 NV Never (do not use!) none

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 65

ARM - Interrupt Processing

Hardware interrupt
request occurs: CPU
finishes , suspends or
abandons the current
instruction and then
initiates an exception
response sequence.

Interrupt Complete:
Interrupted code
continues where it
left off as if nothing
happened.

Exception Response Sequence: CPU
stacks the processor state and return
address, enables Handler Mode,
identifies the requesting device, and
transfers control to the corresponding
Interrupt Service Routine.

Exception Handler / ISR:
1. Preserve R4-R11 as needed.
2. Transfer data between queue
and I/O device.
3. Restore R4-R11 as needed.
4. Return to interrupted code.

Exception Return: Unstack
and restore the processor
state and mode.

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 66

Exception/Interrupt Handler

Exception: a condition that needs to halt the normal sequential flow of

instruction execution.

Exception Categories: Reset, SVC Supervisor Call, Fault and

Interrupts

Each exception has:

• An exception number

• A priority level

• An exception handler routine

• An entry in the vector table

Exception Response

• Processor state (8 words) stored on stack: CPSR, Return Address, LR,

R12, R3 - R0.

• Processor switched (from Thread Mode) to Handler Mode

• PC  vector table [exception #]

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 67

Exception Handlers and Return

An exception handler (ISR) is a software routine that is executed

when a specific exception condition occurs.

Interrupt Stacking

Old SP

SP

PSR

Return Address

LR

R12

R3

R2

R1

R0

In
cr

ea
si

n
g

A
d

d
re

ss
es

Eights words
pushed onto
stack by
exception
response.

Exception return occurs when in

Handler Mode and one of the

following instructions is

executed:

• POP/LDM includes the PC, or

• LDR with PC as destination or

• BX with any register as the

source

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 68

Interrupt Latency

Tail Chaining

ISR UnstackingStacking

12
Cycles

Latency:
17 Cycles

Input data
read from

device

Abandons any
instruction longer

than 1 cycle

ISR #1 Unstacking ISR #2

12 Cycles 24 Cycles 12 Cycles

12 Cycles 6 Cycles 12 Cycles

With Tail-Chaining

Stacking UnstackingStacking

Stacking ISR #1 ISR #2 Unstacking

Without Tail-Chaining

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 69

Interrupt Latency Reduction

Time from interrupt request to the corresponding interrupt handler begins to

execute.

1. Suspend or Abandon Instruction Execution:

No need to suspend single cycle instruction but multiple cycle ones.

2. Late Arrival Processing:

CPU has begun an interrupt response sequence and another high priority interrupt

arrive during the stacking operation.

3. Tail Chaining:

In most CPUs when two ISRs execute back to back, the state information is popped

off the stack at the end of 1st interrupt only to be pushed back at the beginning of the

2nd interrupt.

M3 completely eliminates this useless pop-push sequence with a technique called

tail-chaining, lowering the ISR transition time from 24 down to 6 clock cycles.

CPSIE i ; Enable External Interrupts

CPSID i ; Disable External Interrupts

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 70

M3 (Interrupt/Exception) Vector Table

Exception Type Position Priority Comment

 0 - Initial SP value (loaded on reset)

Reset 1 -3 Power up and warm reset

NMI 2 -2 Non-Maskable Interrupt

Hard Fault 3 -1

Memory Mgmt 4

S

e

t

t

a

b

l

e

Bus Fault 5 Address/Memory-related faults

Usage Fault 6 Undefined instruction

 7-10 Reserved

SVCall 11 Software Interrupt (SVC instruction)

Debug Monitor 12

 13 Reserved

PendSV 14

SysTick 15 System Timer Tick

Interrupts ≥16 External; fed through NVIC

© G.N. Khan Embedded Processors/Cores – COE718: Embedded System Design Page: 71

Nested Vectored Interrupt Controller

Mapped to addresses E000E100-E000ECFF16

It provides ability to:
• Individually Enable/Disable interrupts from specific devices.

• Establishes relative priorities among the various interrupts.

NVIC INTERRUPTS

Bit in the interrupt registers

0-4 GPIO Ports A-E

5,6 UART 0 & 1

7 SSI

8 I2C

9 PWM Fault

10-12 PWM Generator 0-2

13 Reserved

14-17 ADC Sequence 0-3

18 Watchdog Timer

19-24 Timer 0a-2b

25 Analog Comparator

26-27 Reserved

28 System Control

29 Flash Control

30-31 Reserved

