
© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 1

ARM7, Cortex M3 Programming

COE718: Embedded Systems Design
http://www.ecb.torontomu.ca/~courses/coe718/

Dr. Gul N. Khan

http://www.ecb.torontomu.ca/~gnkhan

Electrical, Computer and Biomedical Engineering

 Toronto Metropolitan University

Overview
• ARM Cortex-M* Programming

• Data Processing & Load/Store Instructions

• Control Instruction and Conditional Execution - IT Instructions

• Functional Call and Return

• Temporary Variables

Text by Lewis: Part of Chapters 6, 7 and Data Sheets

Text by M. Wolf: part of Chapters/Sections 2.1, 2.2 and 2.3

http://www.ecb.torontomu.ca/~gnkhan
http://www.ee.ryerson.ca/

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 2

ARM Registers and Programming Model

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13: Stack Pointer (SP)

R14: Link Register (LR)

R15: Program Counter (PC)

Thumb
Mode:

8 general
purpose
registers

7 “high”
registers

r8-R12 only
accessible
with MOV,
ADD, or
CMP

ARM
Mode:

15 general
purpose
registers

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 3

ARM Data Processing Instructions

Opcode

[24:21]

Mnemonic Meaning Effect

0000 AND Logical bit-wise AND Rd := Rn AND Op2

0001 EOR Logical bit-wise exclusive OR Rd := Rn EOR Op2

0010 SUB Subtract Rd := Rn - Op2

0011 RSB Reverse subtract Rd := Op2 - Rn

0100 ADD Add Rd := Rn + Op2

0101 ADC Add with carry Rd := Rn + Op2 + C

0110 SBC Subtract with carry Rd := Rn - Op2 + C - 1

0111 RSC Reverse subtract with carry Rd := Op2 - Rn + C - 1

1000 TST Test Scc on Rn AND Op2

1001 TEQ Test equivalence Scc on Rn EOR Op2

1010 CMP Compare Scc on Rn - Op2

1011 CMN Compare negated Scc on Rn + Op2

1100 ORR Logical bit-wise OR Rd := Rn OR Op2

1101 MOV Move Rd := Op2

1110 BIC Bit clear Rd := Rn AND NOT Op2

1111 MVN Move negated Rd := NOT Op2

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 4

Bitwise Instructions

Bitwise Instructions Operation {S} <op> Notes

AND Rd, Rn,<op> Rd  Rn & <op> NZC

imm. const.

-or-

reg{,<shift>}

ORR Rd, Rn,<op> Rd  Rn | <op> NZC

EOR Rd, Rn,<op> Rd  Rn ^ <op> NZC

BIC Rd, Rn,<op> Rd  Rn & ~<op> NZC

ORN Rd, Rn,<op> Rd  Rn | ~<op> NZC

MVN Rd, Rn Rd  ~Rn NZC

Shift Instructions

<shift> Meaning Notes

LSL #n Logical shift left by n bits Zero fills; 0 ≤ n ≤ 31

LSR #n Logical shift right by n bits Zero fills; 1 ≤ n ≤ 32

ASR #n Arithmetic shift right by n bits Sign extends; 1 ≤ n ≤ 32

ROR #n Rotate right by n bits 1 ≤ n ≤ 32

RRX Rotate right w/C by 1 bit

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 5

Load/Store Instructions

Load/Store Memory Operation Notes

LDR Rd,<mem> Rd  mem32[address]

LDRB Rd,<mem> Rd  mem8[address] Zero fills

LDRH Rd,<mem> Rd  mem16[address] Zero fills

LDRSB Rd,<mem> Rd  mem8[address] Sign extends

LDRSH Rd,<mem> Rd  mem16[address] Sign extends

LDRD Rt,Rt2,<mem> Rt2.Rt  mem64[address]
Addr. Offset must

be imm.

Load/Store Memory Operation Notes

STR Rd,<mem> Rd → mem32[address]

STRB Rd,<mem> Rd → mem8[address]

STRH Rd,<mem> Rd → mem16[address]

STRD Rt,Rt2,<mem> Rt2.Rt → mem64[address]
Addr. Offset must

be imm.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 6

Loading Constants

MOV rd, constant

• Works for 0 - 255 and “some” others

MVN rd, constant ; rd <- ~constant

• Effectively doubles the # of constants

• Assembler converts MOV w/neg. const to MVN

LDR rd, =constant

• An assembler pseudo-op, not an instruction

• Converted to MOV or MVN if possible

• Else converts to LDR rd, [pc, #imm]

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 7

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 8

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 9

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 10

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 11

The ARM Condition Code Field

ARM condition codes

cond

31 28 27 0

Opcode

[31:28]

Mnemonic

extension

Interpretation Status flag state for

execution

0000 EQ Equal / equals zero Z set

0001 NE Not equal Z clear

0010 CS/HS Carry set / unsigned higher or same C set

0011 CC/LO Carry clear / unsigned lower C clear

0100 MI Minus / negative N set

0101 PL Plus / positive or zero N clear

0110 VS Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater than or equal N equals V

1011 LT Signed less than N is not equal to V

1100 GT Signed greater than Z clear and N equals V

1101 LE Signed less than or equal Z set or N is not equal to V

1110 AL Always any

1111 NV Never (do not use!) none

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 12

Branch Instructions

Branch

Instructions
Operation {S} Notes

B{c} label PC  PC + imm n/a
“c” is an optional condition

code

BL label
PC  PC + imm;

LR  rtn adr
n/a Subroutine call

BX reg PC  reg n/a

CBZ Rn,label If Rn=0, PC  PC + imm n/a
Cannot append condition

code to CBZ

CBNZ Rn,label If Rn≠0, PC  PC + imm n/a
Cannot append condition

code to CBNZ

ITc1c2c3 cond
Each ci is one of T, E, or

empty
n/a

Controls 1-4 instructions in

“IT block”

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 13

Branch Conditions

Branch Interpretation Normal uses

B

BAL

Unconditional

Always

Always take this branch

Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC

BLO

Carry clear

Lower

Arithmetic operation did not give carry-out

Unsigned comparison gave lower

BCS

BHS

Carry set

Higher or same

Arithmetic operation gave carry-out

Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred

BVS Overflow set Signed integer operation; overflow occurred

BGT Greater than Signed integer comparison gave greater than

BGE Greater or equal Signed integer comparison gave greater or equal

BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal

BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 14

Status Registers (xPSR)

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

1

6

1

5

1

0 9 8 0

N C Z V Q

0 or exception #

ICI/IT T ICI/IT

Bits Name Description

31 N Negative (bit 31 of result is 1)

30 C Unsigned Carry

29 Z Zero or Equal

28 V Signed Overflow

Most important
for application
programming

APSR

IPSR

EPSR

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 15

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 16

PSR: Program Status Register

Divided into 3-bit fields
• Application Program Status Register (APSR)

• Interrupt Program Status Register (IPSR)

• Execution Program Status Register (EPSR)

Q-bit is the sticky saturation bit and supports two rarely used

instructions (SSAT and USAT)

 SSAT{cond} Rd, #sat, Rm{, shift}

• IPSR holds the exception number of exception processing.

• ICI/IT bits hold the state information for IT block instructions or

instructions that are suspended during interrupt processing.

• T bit = 1, indicates Thumb instructions.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 17

SSAT: Saturate Instruction

• Consider two numbers 0xFFFF FFFE and 0×0000 0002. A 32-bit mathematical
addition would result in 0×1 0000 0001 which contain 9 hex digits or 33 binary
bits. If the same arithmetic is done in a 32-bit processor, ideally the carry flag
will be set and the result in the register will be 0×0000 0001.

• If the operation was done by any comparison instruction this would not cause
any harm but during any addition operation this may lead to un-predictable
results if the code is not designed to handle such operations. Saturate arithmetic
says that when the result crosses the extreme limit the value should be
maintained at the respective maximum/minimum (in our case result will be
maintained at 0xFFFF FFFF which is the largest 32-bit number).

• Saturate instructions are very useful in implementing certain DSP algorithms
like audio processing where we have a cutoff high in the amplitude. For
instance, the highest amplitude is expressed by a 32-bit value and if my audio
filter gives an output more than this I need not to programmatically monitor the
result. Rather the value automatically saturates to the max limit.

• Also a new flag field called ‘Q’ has been added to the ARM processor to show
us if there had been any such saturation taken place or the natural result itself
was the maximum.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 18

SSAT or USAT Instructions

op{cond} Rd, #n, Rm {, shift #s}

op = SSAT Saturates a signed value to a signed range.

 USAT Saturates a signed value to an unsigned range.

Cond condition code

Rd Specifies the destination register.

n Specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT

n ranges from 0 to 31 for USAT.

Rm Register containing the value to saturate.

shift #s optional shift applied to Rm before saturating.

These instructions saturate to a signed or unsigned n-bit value.

SSAT instruction applies the specified shift, then saturates to the signed

range −2n-1 ≤ x ≤ 2n-1−1.

The USAT instruction applies the specified shift, then saturates to the unsigned

range 0 ≤ x ≤ 2n−1.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 19

SSAT or USAT Instructions

If the returned result is different from the value to be saturated, it is

called saturation.

If saturation occurs, the instruction sets the Q flag to 1 in the APSR.

Otherwise, it leaves the Q flag unchanged.

Examples

SSAT R7, #16, R7, LSL #4

 ;

USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an

 ; unsigned 7 bit value and write it to R0.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 20

ARM
Cortex-M3
Memory

MB)

MB)

MB)

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 21

Bit Banding

• Memory mapped I/O, 4GB memory address space organized in bytes.

• 4GB is very large for small embedded applications.

• Bit-banding happens by taking advantage of this large memory space.

• Uses two different regions of the address space to refer the same physical

data in the memory.

• In primary bit-band region each address corresponds to single data byte.

• In the bit-band alias each address corresponds to 1-bit of the same data.

• It allows the access of a bit of data (read or write) by a single instruction.

• Two bit band alias regions can be used to access individual status and

control bit of I/O devices or to implement a set of 1-bit Boolean flags

that can be used to implement a set of mutex objects.

• Bit-band hardware does not allow interruption of read-modify write.

Bit_band alias address = Bit_band base +128 x word_offset + 4 x bit #

If bit-5 at address 2000100016 is to be accessed, the bit-band alias will be

2200000016 + (12810 x 100016) + (4 x 5) = 2208001416

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 22

Bit Banding

Address 0x20000000 = SRAM

0x40000000 = Peripheral = external RAM

devices, memory vendor specific, etc.

.

* One bit is addresses by its own 32-bit

(word) in a separate part of memory (bit-

band region)

* Bit-banding is for 2 predefined memory

regions:

 - first 1MB of SRAM,

 - first 1MB of peripheral region

* To access each bit individually, we need to

access a memory region referred to as the

bit-band alias region.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 23

Bit Banding

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 24

Bit Banding

Bit Band Word Address =

 Bit Band Alias Base Address + (Byte_Offset * 32) + (Bit Number * 4) (1)

 Byte_Offset = Bit's Bit Band Base Address - Bit Band Base Address (2)

where: Byte_Offset
Bit's Bit Band Base Address - the base address for the targeted SRAM or peripheral register

(The Effective Address of the Port) (= real address)

 Bit Band Base Address: for SRAM = 0x20000000, for Peripherals = 0x40000000

 Bit Band Alias Base Address:

for SRAM = 0x22000000, for Peripherals = 0x42000000

 Bit Number: the bit position of the targeted register (i.e. pin of the port)

Question: Find bit band word address for:

SRAM address 0x2008C000, bit 3.

Use equations (2) and (1):

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 25

Bit Banding Example

Peripheral address 0x400ABC00, bit 8

Steps for bit banding:

1. Calculate the Word Address:

2. Define a Pointer to the Address:

#define BIT_ADDR= (*(*))

3. Assign a Value to the Port Bit:

int main(void) {

 ...

}

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 26

Conditional Execution

ADD instruction with the EQ condition appended.
This instruction will only be executed when the zero flag in the cpsr is set;

ADDEQ r0, r1, r2 ; r0 = r1 + r2 if zero flag is set

while (a!=b) { ; Greatest Common Divisor Algorithm

if (a > b) a -= b; else b -= a;

}

Register r1 represent a and register r2 represent b.

gcd CMP r1, r2

BEQ complete

BLT lessthan

SUB r1, r1, r2

B gcd

lessthan SUB r2, r2, r1

B gcd

complete

...

 This dramatically reduces

the number of instructions

gcd CMP r1, r2

SUBGT r1, r1, r2

SUBLT r2, r2, r1

BNE gcd

complete

...

gcd CMP r1, r2

SUBGT r1, r1, r2

SUBLT r2, r2, r1

BNE gcd

complete

...

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 27

IT (If-Then)

IT (If-Then) instruction makes up to four following instructions (the

IT block) conditional. The conditions can be all the same, or some of

them can be the logical inverse of the others.

IT {x {y {z} } } {cond}
where: x: specifies the condition switch for the second instruction in

the IT block.

y: specifies condition switch for the third instruction in the IT block

z: specifies condition switch for the fourth instruction in the IT block

cond: specifies the condition for first instruction in the IT block

Condition switch for 2nd, 3rd & 4th instruction in the IT block either:

• T Then. Applies the condition cond to the instruction.

• E Else. Applies the inverse condition of cond to the instruction.

The instructions (including branches) in the IT block, except the

BKPT instruction, must specify the condition in the {cond} part of

their syntax.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 28

IT (If-Then) instruction

• You do not need to write IT instructions in your code.

• The assembler generates them automatically according to the conditions

specified on the following instructions.

• Writing the IT instructions ensures that you consider the placing of

conditional instructions, and the choice of conditions.

• When assembling to ARM code, the assembler performs the same checks,

but does not generate any IT instructions.

• With the exception of CMP, CMN, and TST, the 16-bit instructions that

normally affect the condition code flags, do not affect them in IT block.

• A BKPT instruction in an IT block is always executed, so it does not need

a condition in the {cond} part of its syntax. The IT block continues from

the next instruction.

• Conditional branches inside an IT block have a longer branch range than

those outside the IT block.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 29

IT (If-Then) instruction

The following instructions are not permitted in an IT block:

• IT

• CBZ and CBNZ

• TBB and TBH

• CPS, CPSID and CPSIE

• SETEND.

Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC is only permitted in an

IT block if it is the last instruction in the block.

• You cannot branch to any instruction in an IT block, unless when

returning from an exception handler.

Architectures

• This 16-bit Thumb instruction is available in ARMv6T2 and above.

• In ARM code, IT is a pseudo-instruction that does not generate any code.

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 30

IT Examples
 ITTE NE ; IT can be omitted

 ANDNE r0,r0,r1 ; 16-bit AND, not ANDS

 ADDSNE r2,r2,#1 ; 32-bit ADDS (16-bit ADDS dos’nt set flags in IT)

 MOVEQ r2,r3 ; 16-bit MOV

 ITT AL ; emit 2 non-flag setting 16-bit instructions

 ADDAL r0,r0,r1 ; 16-bit ADD, not ADDS

 SUBAL r2,r2,#1 ; 16-bit SUB, not SUB

 ADD r0,r0,r1 ; expands into 32-bit ADD, and is not in IT block

 ITT EQ

 MOVEQ r0,r1

 BEQ dloop ; branch at end of IT block is permitted

 ITT EQ

 MOVEQ r0,r1

 BKPT #1 ; BKPT always executes

 ADDEQ r0,r0,#1

Incorrect example
 IT NE

 ADD r0,r0,r1; syntax error: no condition code used in IT

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 31

if-then statement

 LDR R0,A
 CMP R0,#0
 BNE L1
 LDR R0,=1
 STR R0,B
L1: …

 - or –

A = 0? B  1

Yes

No

L1:

if (a == 0) b = 1 ;

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 32

if-then-else statement

 LDR R0,A
 LDR R1,B
 CMP R0,R1
 BLE L1
 LDR R0,=1
 B L2
L1: LDR R0,=0
L2: STR R0,C
 …

 - or –

 LDR R0,A
 LDR R1,B
 CMP R0,R1
 ITE GT
 LDRGT R0,=1
 LDRLE R0,=0
 STR R0,C

A :: B?

C  1 C  0

> ≤

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 33

An ITTE Block

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 34

Conditional Execution

• ARM allows non-control flow based instructions to be appended

with conditional codes.

• It allows for more efficient coding and processor performance.

Conditional Instruction Method

CMP r2, #5 //if (a <= 5)

MOVLE r2, #10 //a = 10;

MOVGT r2, #1 //else a = 1;

Non-Conditional Method

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 35

Loops: Variable #Iterations

GCD (a, b) – Greatest Common Divisor

while (a != b) {

 if (a > b) a = a – b ;

 else b = b – a ;

}

 LDR R0,a

 LDR R1,b

top: CMP R0,R1

 BEQ done

 ITE GT

 SUBGT R0,R0,R1

 SUBLE R1,R1,R0

 B top

 done:

 ; R0 = R1 = GCD(a,b)

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 36

ARM Procedure Call Standard

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 37

Function Call and Return

Function Call: “BL function”

• Loads program counter (pc) with entry point address of function.

• Saves return address in the link register.

Function Return: “BX lr”

• copies link register back into program counter.

Compiler

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 38

Function Call and Return

 ● ● ●
 ● ● ●

 BL foo
 ● ● ●
 ● ● ● foo PUSH {LR}

 ● ● ●
 ● ● ●

 BL bar
 ● ● ●
 ● ● ●
 POP {LR}
 BX LR

bar ● ● ●
 ● ● ●
 BX LR

Preserve LR

Restore LR

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 39

Function Call and Return

 int32_t random(void) ;
 ● ● ●

 numb = random() ;
 ● ● ●

 ● ● ●

 BL random

 STR R0,numb
 ● ● ●

 export random

random ● ● ●
 ● ● ●

 MOV R0, ● ● ●

 BX LR

Compiler

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 40

Temporary Variables

r0 - r3 (those not used for parameters)

Must preserve and restore around any call

r4 – r8 (must always preserve and restore)

Temporaries in Registers

func1 …

 …

 No function calls;

 OK to use r0 – r3

 …

 BX lr

func2 PUSH {r4,..,r8}
 …

 …

 ; registers r4 – r8 may be in use

 ; by the function that called this

 ; function, so their values must

 ; be preserved if these registers

 ; are used here.

 …

 …

POP {r4,..,r8}

BX lr

func3 PUSH {lr,..}
 …
; Since functions are not required

; to preserve r0 – r3, then if used

; here, you must preserve/restore

; their values wherever this function

; calls other functions.

 …

 PUSH {r0,..,r3}

 BL func4

 POP {r0,..,r3}
 …

 POP {lr,…}

 BX lr

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 41

Use of special registers: Example

proc_example() ------ ;

..... ; other code

Void proc_example() {

int a = b + 1;

}

The assembly:

proc_example ; LR = PC i.e. MOV R14, R15 ---- to get to this subroutine,

we have a return address in LR

 PUSH {R1} ; R13 = R13 - 4, Memory[R13] = R1

 ADD R3, R1, #1

 POP {R1} ; R1 = Memory[R13] and R13 = R13 + 4;

 BX R14 (i.e., link register)

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 42

Use of special registers: Example

What's happening concurrently:

IF | ID | EXE

fetch = fetch instructions, PC = PC + 4

To access PC, use the MOV instruction

0x1000 MOV R0, PC ;

© G.N. Khan ARM CPU Programming – COE718: Embedded System Design Page: 43

Temporary Variables

void Exchange(int *pItem1, int *pItem2)

 {
 int temp1 = *pItem1 ;

 int temp2 = *pItem2 ;

 *pItem1 = temp2 ;

 *pItem2 = temp1 ;

 }

EXPORT Exchange
 ; r0 = pItem1

 ; r1 = pItem2

Exchange LDR r2,[r0] ; r2 = temp1

 LDR r3,[r1] ; r3 = temp2

 STR r3,[r0]

 STR r2,[r1]

 BX lr

