

__
COE718: Embedded Systems Design Page 1 of 13 Lab-2

Exploring Cortex-M3 Features for

Performance Efficiency

COE718: Embedded System Design

Lab 2

1. Objectives

The purpose of this lab is to introduce students to the concepts of Bit Banding, conditional branching, and
barrel shifting associated with the ARM Cortex-M3 embedded processor. These concepts will help to
understand the Cortex M-series processors, which are commonly employed in the embedded systems. In
particular, students will have hands-on experience with bit banding, conditional branching, and barrel
shifting to examine their efficiency both in Debug and Target mode using performance assessment
techniques introduced in the lectures. You will apply this knowledge at the end of the lab and implement
an LED bit-band application. The following sections provide you with some basic information and
examples to help familiarize yourself with these topics.

2. Creating the New Project

1. When uVision has launched, select Project >> New uVision Project in the main menu bar. If a project
already exists, first close the project by selecting Project >> Close Project.
Select New uVision Project as shown in Figure 1.

Figure 1

__
COE718: Embedded Systems Design Page 2 of 13 Lab-2

2. You should see a window like the one shown in Figure 2. Select the icon for "New Folder" and name
your working folder “Lab2". Name the project as “Bitband” and Press Save.

3. Type “LPC1768” as shown in the Figure 3 below and select the device and press OK.

Figure 2

Figure 3

__
COE718: Embedded Systems Design Page 3 of 13 Lab-2

4. Select the following Packages from Run Time Environment and add those to your project as depicted in
Figure 4.

a. Board Support>LED
b. CMSIS>CORE
c. Compiler>Event Recorder
d. Device > Startup, GPIO, PIN
e. Press okay once selected.

5. Now your Project files should look like the Figure 5 given below.

Figure 4

Figure 5

__
COE718: Embedded Systems Design Page 4 of 13 Lab-2

6. Using Microsoft Explore, browse to your "U:\\coe718\labs\lab2" directory to find, copy and paste ALL
three directories (Barrel_shifting, bitbanding, and cond_exe) to your project directory.

7. Right click on Source Group1 folder select “Add Existing Files to Group ‘Source Group 1’. Select .c and
.h files from “bitbanding” folder.

8. Now your Project Folder should look like as given in Figure 6 below.

9. Click on the icon on the top menu as shown in Figure 7. Alternatively, Right Click on SWO
Trace, select Options for Target 'SWO Trace.

10. Perform the following changes as depicted in Figure 8. Under Target, ARM Compiler> Use default

compiler version 5. Uncheck IRAM2. Make sure that IROM1 is checked.

Figure 6

Figure 7

__
COE718: Embedded Systems Design Page 5 of 13 Lab-2

11. Select C/C++ and check c99 mode as shown in Figure 9.

Figure 9

12. Select Debug option and do the following changes: check Use Simulator option. Moreover, choose the

Figure 8

__
COE718: Embedded Systems Design Page 6 of 13 Lab-2

CPU and DLL parameters as given below.

a. For CPU DLL Parameter in Dialog DLL: choose DARMP1.DLL, Parameter: -pLPC1768
b. For Driver DLL Parameter in Dialog DLL: TARMP1.DLL, Parameter: -pLPC1768

Debug Window should look like the one in Figure 10, and then press OK.

Now the Project Directory is all set for the lab and assignment.

3. Bit Banding

3.1 Definition

When implementing applications for embedded systems, there is often a need to clear and set individual
bits within peripheral and SRAM registers. For instance, to check when an A/D conversion is complete, it
is necessary to check the status flag for completion, obtain the value, and then reset the flag to obtain a
new conversion. Consequently, bitwise AND and/or OR masks are needed to check, set, and clear the
flags. The Cortex-M3/M4 processors provide a more efficient implementation to perform these frequent
actions, known as Bit Banding.

Figure 10

__
COE718: Embedded Systems Design Page 7 of 13 Lab-2

Bit Banding is a technique which allows individual bits in the SRAM and peripheral registers to be read or
written to, instead of reading the whole register and masking the desired bits. These SRAM words and
peripheral registers are bit addressable.

The Cortex-M3 has a predefined memory map to access its components, with the bit banding portion
shown in Figure 11. In total, the LPC1768's memory map consists of 4GB. The first 0.5GB is allocated to
code storage. The next GB (starting from 0x20000000) is of particular interest to bit banding; the rest of
the memory (2.5 GB) is dedicated to external RAM and devices, private internal accesses, and vendor
specific needed memory. As seen in Fig. 11, the first MB of both the SRAM (0x20000000) and peripheral
regions (0x40000000) are dedicated bit band regions. As seen in Fig. 12, each bit in the bit band region is
aliased to one word (32 bits) in the bit band alias region. Therefore, if we were to consider the entire 1MB
region of SRAM registers in the Cortex-M3's bit band region, this would actually be aliased to 32MB
(1MB*32bits) of virtual word addresses (in the alias region). In other words, each 1 or 0 accessible in a
single SRAM or peripheral register is given its own 32-bit word in a separate part of memory (bit band
alias region) which start at addresses 0x22000000 and 0x42000000 respectively.

3.2 Calculating the Bit Band Word Address

To use bit banding, the desired (register) bit's bit band address must be calculated based on the bit's real
memory address. Once calculated, a pointer in your code is used to reference the calculated address so that
it may alias the 32-bit region and modify the bit directly (without masking). The formula to calculate the
address of the bit's alias is as follows:

Bit Band Word Address = Bit Band Alias Base Address + (Byte Offset * 32) + (Bit Number * 4) (1)
Byte Offset = Bit's Bit Band Base Address - Bit Band Base Address (2)

where:
• Byte Offset:

▪ Bit's Bit Band Base Address - the base address for the targeted SRAM or peripheral register (i.e.,
the effective address of the port)

▪ Bit Band Base Address - for SRAM = 0x20000000, for Peripherals = 0x40000000
• Bit Band Alias Base Address - for SRAM = 0x22000000, for Peripherals = 0x42000000
• Bit Number - the bit position of the targeted register (i.e., pin of the port)

 *Martin, T., "The Designer's Guide to the Cortex-M Processor Family", Elsevier Ltd, 2013.

Figure 11: Address Allocation of SRAM and
Peripheral Regions*

Figure 12: Bit to word Mapping*

__
COE718: Embedded Systems Design Page 8 of 13 Lab-2

3.3 Example Calculation of Bit Banding

As an example, let us take the SRAM address 0x2008C000, and try to modify bit 3. We will use this
address to implement and observe the different techniques (bit banding and masking) to help illustrate the
efficiency of the bit banding method. We must first calculate the bit band word address of this bit's bit
band base address.

Calculate the Word Address:
Substituting the values in equations (2) and (1):

Byte Offset = 0x2008C000 - 0x20000000
= 0x0008C000

 Bit Band Word Address = 0x22000000 + (0x0008C000 * 0x20) + (0x3 * 0x4)
= 0x22000000 + (0x1180000) + 0xC
= 0x2318000C

Define a Pointer to the Address:
#define BIT_ADDR= (*(volatile unsigned long *)0x2318000C)

Assign a Value to the Port Bit:
int main(void) {

...
BIT_ADDR = 1;

}

3.4 Bit Banding Example Application

Once uVision is setup, open bitband.c and examine the code. Follow the steps and logic given in Section
3.1 to 3.3 to understand how the .c code is implementing for bit banding.

Build the project. Enter debug mode.

Click reset. From the main menu select Debug >> Execution Profiling >> Show Times. Run the
application to completion. Verify the expected code output to the Debug (printf) viewer. Examine
and analyze the execution times of the 3 different methods. What do you notice?

4. Conditional Execution

4.1 Definition

Now, it is time to think in terms of assembly code and registers. The program status register (PSR) in the
Cortex-M processor contains several CPU status-flags that indicate conditions raised during code
execution (ex: "r5 - r5" will raise a zero flag). Figure 13 presents the Cortex M3's PSR. The most
important bits to note for this lab are the N (Negative), Z (Zero), C (Carry), V (oVerflow) and If Then (IT)
flags. As learned in various lectures and courses, these status flags are essential for branching and general
control- flow execution. The Cortex-M family invokes several conditional branching techniques to
minimize branch penalties for performance efficiency. One of the primary techniques used is fetching
instructions through speculation, using the PSR and compiler optimization.

Figure 13: PSR and Status Flags

__
COE718: Embedded Systems Design Page 9 of 13 Lab-2

4.2 Different Types of Conditional Execution with Cortex-M3

A unique feature of the Cortex-M series is conditional execution: instructions executed by the CPU do not
affect the flags in the PSR unless explicitly stated. Therefore, the CPU and ARMv7 ISA uses special
instructions suffixed by an 's' to update its PSR flags (ex: SUBS, ADDS versus SUB, ADD etc.).
Conditional branches (and/or conditional instructions- see below) then use the PSR flags to effectively find
the next (correct) instruction to execute. The exception to the 's' suffix rule is the CMP and/or TST
instructions for updating the PSR (which do not require 's'). An example of the 's' suffix rule is as follows.

ADD r2, r3, #5

SUBS r1, r1, r2

BEQ function1

The ADD instruction will add 5 to register r3 and place the result in r2 without affecting the PSR. The next
instruction will then subtract r1 from r2, and place the difference in register r1 with the ability to modify
the PSR flags as SUBS is appended with an S. If the Z flag is raised, then the program will branch to
function1. Table I presents various condition codes that are exclusive to the ARM instruction set, along
with their respective PSR flag tests.

ARM also allows non-control flow-based instructions to be appended with conditional codes. This
instruction appending allows for more efficient coding and processor performance. Let's take the following
code:

Conditional Instruction Method Versus Non-Conditional Method
CMP r2, #5 //if (a <= 5)

MOVLE r2, #10 //a = 10;

MOVGT r2, #1 //else a = 1;

 CMP r2, #5

BGT t_else

MOV r2, #10

t_else: MOV r2, #1

Aside from achieving code density, these conditional instructions allow the processor to avoid unnecessary
branch prediction techniques if a condition is not met (i.e., BGT t_else). Therefore, the pipeline does not
have to be flushed and/or refilled with the correct instructions if a branch is mis-predicted. With the
conditional instructions, the PSR flags may be directly evaluated by the instruction. For example, if the
PSR flags of the first instruction listed above (i.e., MOVLE) does not evaluate to true according to the
conditional code flags generated by CMP (the LE flag), then the instruction is simply treated as a NOP and
the next instruction is executed. Although the NOP instruction may utilize processor time, this technique
nonetheless still avoids the need to flush and refill the pipeline as required of typical processors.

The second and more efficient conditional execution technique used by the Cortex-M is referred to as IF-
THEN (IT) Blocks. In this case, if an IF condition consisting of less than four instructions is present in an
IF statement block, ARMv7 compiles all the instructions within the block for conditional execution using
its ISA's IT (If-Then) instruction. An IT block may possess many forms such as ITE (If-Then-Else), ITTE
(If-Then-Then-Else - meaning that there is an IF condition consisting of 2 instructions if evaluated to true,
and one Else instruction if evaluated to false), ITTEE (If-Then-Then-Else-Else - 2 instructions each for
then and else clauses), ITEE etc.

__
COE718: Embedded Systems Design Page 10 of 13 Lab-2

Table I: Instruction Condition Codes1

Let's take a simple IT example which evaluates R0 and R1 in assembly:

CMP R0, R1

ITE EQ

ADDEQ R4, R3, R2

ASRNE R4, #4

Here, if R0 equates to R1, ADDEQ is conditionally executed. If not, ASRNE is executed, and ADDEQ is
treated as a NOP. Note that when the ITE instruction is executed, the IT flag will also be raised in the PSR
with an "ITE EQ" status.

4.3 Conditional Execution Example Application:

1. Create a project for conditional execution in a similar way you created the project for bitbanding. Add
cond_ex.c file to Source Group 1 from cond_exe folder. Alternatively, you can remove the bitbanding
related files and add c code for conditional execution without creating a new project.

2. Prior to building the project, in the main menu select Project >> Options for 'Target...' (or button).
Click on the C/C++ tab. In the "Optimization" drop-down box, select Level 0 (-O0) and click OK.

3. Build the project and enter debug mode. Place a breakpoint after "int main(void) {". Expand the
"xPSR" register in the "Registers" Window.

4. Reset and run the code. Your code will halt at the breakpoint. From this point, step through the code to
see the conditional code generated by the ARM Compiler. This level of optimization employs the
's' suffix technique. Open the Performance Analyzer and note the total execution time of the .c code
and entire application with the base -O0 optimization. (60.880us). The value might be different in your
execution. See Figure 14.

5. Then exit the Debug mode. Take out the breakpoint from the code. In the main menu, once again.

select Project >> Options for 'Target...' (or). Click on the C/C++ tab. In the "Optimization" drop-
down box, select Level 3(-O3). Underneath the optimization drop-down, there is a checkbox titled
"Optimize for Time". Check this option to enable time optimization and click OK.

6. Build the project with the new optimization level and enter debug mode. Place a breakpoint after "int

main(void) {" and expand the xPSR register. Reset and run the code. Your code will halt at the
breakpoint. From this point, step through the code to see the IT conditional code optimized by the
compiler in the disassembler. Make note of how the xPSR registers change during execution of the IT
block. Note the total execution time of the .c code and entire application with the base ---O3 / time
optimization selected. (60.730us). See the performance analyzer in Figure 15. The values might be
different in your execution however O3 optimization should show lower time than that of O1
optimization.

__
COE718: Embedded Systems Design Page 11 of 13 Lab-2

This conditional execution efficiency is presented on a small scale, and thus as the size and complexity of
an application increases, the benefits of the ARM instruction set optimization will also transpire.

4. Barrel Shifter

4.1 Definition

The Cortex-M3 contains a 32-bit barrel shifter that can rotate/shift an instruction's operand prior to
inputting values into the ALU. This technique is extensively used in DSPs and multiply-accumulate units
for signal processing. Thus, a line of code such as a = b + (c*d) could be executed in a single cycle as:

ADD R1, R2, R3 LSL R4 Versus MUL R1, R2, R3

ADD R5, R1, R4

4.2 Barrel Shifting Example

Create a project for Barrel shifting in a similar way you created the project for bitbanding. Add
Barrel_shifting.c file to Source Group 1 from Barrel_shifting folder. Alternatively, you can remove the
bitbanding and conditional execution related files and add the c code for Barrel shifting without creating a
new project.

Figure 14

Figure 15

__
COE718: Embedded Systems Design Page 12 of 13 Lab-2

Make sure that the optimization level is set to -O3 and "Optimize for Time" is selected. Compile the
project and open Debug mode. Eliminate all the breakpoints. Set a breakpoint in the .c code where barrel
shifting would apply. Enable the instruction execution time display in Debug mode by selecting Debug >>
Execution Profiling >> Show times.

Reset and run the code. Once the breakpoint is reached in the assembly version, continue stepping through
the program. Notice the use of the 's' suffix in addition to barrel shifting optimization.

5. Lab Assignment

Using the knowledge obtained from this lab, create an application which lights-up 2 to 3 LEDs on the
MCB1700 using bit banding. You will be expected to:
• Use three different methods to light up the LEDs: Mask, function, and bit banding mode. These three

methods will all be invoked as one application (i.e., one .c file).
• Calculate the effective address with the aid of Table 101 in the NXP LPC17XX User manual.

▪ Use at least two LEDs from two different ports (will require you to calculate a minimum
of two effective addresses) -- i.e., LED1 = P1. 28, LED2 = P2.2

• Use a conditional execution method to turn the LEDs on and off for the three different methods.
Explicitly state in your code (as a comment) whether you have invoked the 's' suffix or ITE

conditional execution method.

• Find an application which requires barrel shifting. Find a creative way to integrate it into the code
above. Display the equation (and/or method) along with its result to the LCD.

Once you have these basics working, then you will need to create a Debug performance analysis version.

1) Debug (Performance Analysis) Version
In Debug mode, implement and analyze the execution times for the 3 different LED BB methods.
Write a report explaining how you implemented the 3 different methodologies, the calculations you
performed to code each of the methods, the performance outcomes of each method, along with any
other information needed. What technique did you use to measure each BB method's execution time?
Include the following table in the report:

Method Execution Time (-O0) Execution Time (-O3) Performance Improvement

Masking

BitBand() Function

Direct Bit Banding

Explain why each method performed as it did (in terms of application performance). Also discuss the
conditional execution method you have used. Note that you will need to use Debug mode and its tools
for analyzing these application details.

2) Target (Demo) Version

The demo version will require you to turn the LEDs on and off with the 3 different methods
implemented and invoke the barrel shifter function.

In order to explicitly observe the LEDs light up (i.e., Peripheral pin check-box for the three different
methods), you will need to invoke a delay function in the methods. Insert these delays in your code
each time you turn an LED on or off.
Use the LCD to display the method currently executing. Use the execution profiling tools to
determine the total execution time of one call to your delay function- include this value in your report.
Also include a brief description of the barrel shifting method you used in your code and the result
obtained.

__
COE718: Embedded Systems Design Page 13 of 13 Lab-2

Finally in your report, mention the differences between version (1) and (2) of your code and why it is
necessary to have a debug and target version. In particular, what differences do you notice in the Performance
Analyzer?

This lab is due in week 4 at the beginning of your lab session. You are expected to deliver the following:

• Print out of the report, the separate .c codes (i.e., analysis and demo version) and any supporting files
that you may have adjusted to implement the lab. Also print out any assembly code that proves your .c
code implements the required Cortex-M3 features. Ensure that you include the Ryerson University title
page, dated and signed, with your code attached.

• Present your demo, displaying the LEDs flashing on and off, and output to the LCD for the BB and
barrel shifting functions. You may also be quizzed during the demo to assess your knowledge of the
topics covered during the course of this lab. Marks will be awarded based on creativity.

