COE718: Embedded Systems Design

Lab 1: Introduction to Keil uVision & ARM Cortex M3

1. Objectives

The purpose of this lab is to introduce students to the Keil uVision IDE, the ARM Cortex M3
architecture, and some of its features. Specifically, the basic steps of coding and execution with the ARM
Cortex M3 and its NXP LPC1768 microcontroller will be provided, including how to run a simple
program on the MCB1700 dev board. The lab will allow students to become familiar with the uVision
environment, its simulating capabilities, and the tools needed to assess various CPU performance factors.
As majority of embedded systems use ARM based for low-power consumption and competitive
performance, students will find the skill sets obtained from this lab especially useful.

2. Developing Software for Cortex with Keil uVision

In this section, you will learn how to create a uVision project, import necessary files, compile, and
simulate an application to assess performance. This example will demonstrate a simple project called
blinky. The code will read the voltage provided by the microcontroller's ADC channel AIN2 (the
potentiometer found on the MCB1700 board). Based on the value set on the channel, the LEDs will flash
at a certain speed. If enabled, a bar graph and voltage reading will also appear on the LCD display.

2.1. The uVision Workspace and Building the Project
We will be working with the NXP LPC1768 chip for this lab. This chip can be found on the Keil
MCB1700 evaluation board located at your workstation.

To run uVision IDE on the EE network, launch Windows 10 through VMWare by selecting
Applications>>windows. Once Windows is running, you will find the Keil uVision5 program. Launch the
uVision application from the start menu.

Fig. 1: uVision Icon

1. When uVision is launched and if a project already exists, then first close the project by
selecting Project >> Close Project.

e

2. Select Pack Installer option in the top bar as shown in Figure 2.

(%) uVision [Non-Commercial Use Lic

File Edit View Projedt Flash Debug Peripherals Tools SVCS Window Help

NBA@| S B9 |« |prnnE i | o
1] U R BB oS

Install ar update Software Packs that
contain Software Companents

Fig. 2: Select Pack installer

3. The Pack Installer Opens up Select the Blinky ULp Project. As shown in Figure 3.

& Pack Installer - C:\Users\Dev\AppData\Local\Arm\Packs

- oEN

File Packs Window Help
e‘ Device: NXP - LPC1763

P i—
4] Devices | Boards | 2] L4l pad] pampes |)]
Search: <X [Show examples from mstalled Packs only
Device /| Summary Example Action Description
& Lpcas 4 Devices ﬂ -BSD Client (MCB1700) ! Copy Example using BSD sockets to send commands to remote server & |
% Lrcass 4 Devices -BSD Server (MCB1700) Example using BSD sockets to accept commands from remote clie
0[3 LPC1100 Series 128 Devices Blinky example
P
% LPC1200 Series 12 Devices < inky ULINKpro example
P! P
%3 LPC1300 Series 24 Devices CAN] CAN example that sends and receives data messages
% LPC1500 Series 13 Devices ~Demo (MCB1700) Coy Demo example
() p!
=% LPCIT0D Series 21 Devices FTP Server (MCB1700) 2 Copy File Server using FTP protocol with SD/MMC Memery Card as stori
_@5 LPC175x 6 Devices -File System Demo (MCB1700) Coj File manipulation example: create, read, copy, delete files on any e
P! P PY.]
1PC17ex 7 Devices -HTTP Server (MCB1700) & Copy Compact Web Server with C6l interface
@ s ARM Cortex-M3, 100 MHz, 64 kB RAM. 256 kB ROM HTTP Upload (MCB1700) Coj Web Server with CGl interface and SD/MMC Memory Card as stora
pl Ty
& LpCiTes ARM Cortex-M3, 100 MHz, 32 kB RAM. 128 kB ROM SMTP Client (MCB1700) 2 Copy Example showing how to cempese and send emails
LPCI765 ARM Cortex-M3, 100 MHz. 54 kB RAM, 256 kB ROM -SNMP Agent (MCB1700) & Copy Example showing how to use a Simple Network Management Prot
LPCI766 ARM Cortex-M3, 100 MHz, 64 kB RAM, 256 kB ROM Telnet Server (MCB1700) & Copy Command-line Host service example using Telnet protocal
& Lpci7e7 ARM Cortex-M3, 100 MHz, 64 kB RAM. 512 kB ROM USE Device Audio (MCB1700) 2 Copy USB Audio Device demonstrating USB Speaker.
- LPC1768 —> | ARM Cortex-M3, 100 MHz, 64 kB RAM, 512 kB ROM USE Device HID (MCB1700) ! Copy USB Human Interface Device providing access from PC to board LE
4 pciTes ARM Cortex-M3, 120 MHz. 64 kB RAM. 512 kB ROM ~USE Device Mass Storage (MCB1700) Co USB Mass Storage Device using SD/MMC Memory Card as storage
g g) y g
@3 LPCI77 4 Devices USE Device Virtual COM (MCB1700) ! Copy Virtual COM Port example: bridges UART port of the eval board to
 LpCiTn 4 Devices USE Host Keyboard (MCE1700) @ Copy | Measure example using USE HID Keyboard as input device
% LPC1800 Series 21 Devices ~USB Host Mass Storage (MCB1700) Coy USB Host file manipulation example: create, read, copy, delete files
9 & P p Py.
%5 LPCAD0D Series 16 Devices ~emWin Example (MCB1700) Co emWin Graphics simple eample
P P P! P
0[3 LPC4300 Series 25 Devices emWin GUI Demo (MCE1700) Coj emWin Graphics Demo example
pl P
“ Lpessiz 2 Devices -
“ 1pcasia 2 Devices =) | | D
Output 2 x
Refresh Pack descriptions
Update available for ARM:CMSIS-Driver finstalled: 2.6.0, available: 2.6.1)
Update available for Keil:MDK-Middleware (installed: 7.11.1, available: 7.12.0)
Ready [Jonume

Fig. 3: Copying [NXP->LPC1700->LPC176x->LPC1768] Blinky Project

4. Create a new directory for COE718 Labs and a then a sub-folder for Labl in your home
directory. Click on "Devices -> LPC1768 ... to copy the Blinky project files to your created

folder as depicted in Figure 4.

5. Your project workspace should now resemble as shown in Figure 5.

e i m e, e -2 pm g o
EBlinky (MCB1700) ! Copy Blinky example

Blinky ULp (MCE1700) [€ Copy |Blinky ULINKpro.

B RAM, 512 kB ROM CAN (MCB1700) i Copy CAN example tha
Demao (MCB17001 i Copy Demo example

copy Example 4 Copy F?Ie Ser\r?r usin.g I

! Copy File manipulation

Destination Folder Lﬂ’—l Cop Compact Web Se

- & Cop Web Server with (

[Ex\Ryerson MASC\COE718 TABlinky = |m| ® Cop Example showing

[¥ Use Pack Folder Structure [¥ Launch pvision & Copy Example showing

4 Copy Command-line -

oK | Cancel | & Copy | USB Audio Devici

g Copy USB Human Inter

USBE Device Mass Storage (MCB1700) i Copy USE Mass Storage

USE Device Virtual COM (MCB1700) & Cop Virtual COM Port

USE Host Keyboard (MCE1700) ! Copy Measure example

USE Host Mass Storage (MCB1700) & Cop USE Host file mar

emWin Example (MCB1700) ! Copy emWin Graphics

. emWin GUI Demo (MCB1700) g Copy emWin Graphics

Fig. 4: Copy Blinky to Lab1 folder

2 E:\Ryerson MASc\COE718 TA\kiel5 project\lab1\Boards\Keil\M(
File Edit View Project Flash Debug Peripherals Tools SWCS Window Help
IR Y | | m | & & | & JE# | @Q-|le oo &-
E4] :@' |%€|SWOTrace va’;\|é K:PM/@
roject L |] Abstract.xt
5% Project: Blinky The 'Blinky' project is a simple program for the LPC1768
=45 SWO Trace microcontreller using Keil 'MCB17@@' Evaluation Board, compliant
25 Source Files to Cortex Microcontroller Software Interface Standard (CMSIS).
1 Binky.c It demonstrates the use of ULINKpro Debugger.
] IRQ«
2-1Z Documentation Example functionality:
] Abstract.bt - Clock Settings:
- XTAL = 12.8@ MHz
@ Board Support - = 186.08 MHz
@ cmsis
R Compiler - Sys Timer is used in interrupt mode
& <> Device - 8 LEDs blink with speed depending on potentiometer position

- AD settings: 12 bit resolution
- AD value is output onto ITM debug port #@

The Blinky program is available in different targets:

- SWO Trace: cenfigured for on-chip Flash
shows use of System Analyzer, ITM output

Fig. 5: Project Workspace

6. Double click on startup_LPC17xx.s to open the editor. Click on the "Configuration Wizard"
tab at the bottom of the editor window as shown in Figure 6. The Wizard window converts the
"Text Editor" window so that the programmer may view the configuration options more easily.
It is possible to adjust the stack and heap sizes of the LCP1768 chip here if necessary as
depicted in Figure 6.

7. Similarly, by clicking on the "Books" tab at the bottom of the Project workspace window, the
"Complete User Guide Selection” opens up to provide you with the FAQs and system help.
Once you have finished inspecting the user guide, switch back to the "Project"” tab in the Project
window

B) e) st
=% Project: Blinky e R R
-8 SWO Trace Bpand Al | Collapse Al | Hep | I Show Gid
H@ Source Files Option Value
7] Blinky.c (- Stack Configuration
IRQ.c . -Stack Size (in Bytes) D000 0200
[Abstractbxt ~Heap Size (in Bytes) 0x0000 000D
w4 Board Support
- cwsis
R 4 Compiler
I'_—'l‘ Device
[*T GPIO_LPC1Tc.c (GPIO)
[T PIN_LPCITicc (PIN)
| RTE_Device.h (Startup)
1 startup_LPC1Tocs (Startup)
system_LPC17ec (Startup)
Heap Configuration
< i O
[i=] Project @Books | {} Fundio..| 04 Templa... | Text Editor) Confi tion Wizard |
Fig. 6: Workspace
8. Open the run time environment as shown by a red circle in Figure 7.
I BEHP| % LB | == | BRE R EEE G| D ad VER Q-|e o0&

Bl & e- ::‘Ql ﬂl SWO Trace

T EOX

ject L~)

] system_LPCiTxxc vl

“% Project: Blinky
= %3 SWO Trace
= & Source Files
@] Blinky.c
@) IRQc
= (& Documentation
) Abstract.txt
@ ¢ Board Support
& omsis
R 4 Compiler
E‘.’Deﬁce
@ & GPIO_LPCI7xx.c
@ & PIN_LPC17xx.c (P
] RTE_Device.h (Sta
) startup_LPC17xx.
@) system LPC17xx.

- Neither the name of ARM nor the names of its contributors may be use
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "2

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUF

ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS E

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINE

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 1

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFIWARE, EVEN IF ADVISED OF

POSSIBILITY OF SUCH DAMAGE.

#include <stdint.h>
#include "LPCl7xx.h"

/*

/* - Clock Configuration

// <e> Clock Configuration
// <h> System Controls and Status Register (SCS)
/7 <nl as NSCRANGF +* Main Narillarary Ranma Salarcr

| |
[pr... [@5o.. | (3 Fu.. | O4Te..

Text Editor 4 Configuration Wizard [

Fig. 7: Run Time Environment

9. You will get a new screen Manage Run-Time environment as given in Figure 8. Select A/D
converter box and unselect LED under Board Support. Unselect GPIO box under Device.
Then click OK and you will come back to your project workspace as shown in Figure 9.

10. Remove Blinky.c and IRQ.c files from your project.

| Software Component Sel. Variant Version Description
@ =] ‘ Board Support MCB1700 1.00 Keil Development Board MCB1700
r £ 4 A/D Converter (AP]) 1.00 A/D Converter Interface
o ¥ A/D Converter v 1.00 A/D Converter interface for Keil MCB1700 Development Board
1 ’ Buttons (API) 1.0.0 Buttons Interface
0 D/A Converter (API) 1.00 D/A Converter Interface
& Graphic LCD (API) 1.00 Graphic LCD Interface
@ Joystick (API) 1.00 Joystick Interface
= € LED (AP)) 1.00 LED Interface
¥ LED I 1.00 LED driver for Keil MCB1700 Development Board
@ emWin LCD (API) 1.1.0 emWin LCD Interface
@ cmsis Cortex Microcontroller Software Interface Components
. CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
‘ CMSIS RTOS Validation CMSIS-RTOS Validation Suite
& Compiler ARM Compiler 172 Compiler Extensicns for ARM Compiler 5 and ARM Compiler &
@ CyconeACME CycloneACME 218 ACME Client Library
@ CycloneCRYPTO CycloneCRYPTO 218 Cryptographic Library
& CycloneCommon CycloneCommon 218 Common Files
& CycloneSSH CycloneSSH 218 SSH Library
@ CyclonesSsL CycloneSSL 218 TLS/DTLS Library
@ CycloneSTP CycloneSTP 218 Spanning Tree Protocol Library
& CycloneTCP CycloneTCP 2.1.8 Dual IPv4/IPv6 Stack
5 9 Device Startup, System Setup
¢ GPDMA I 14.0 GPDMA driver used by RTE Drivers for LPC1700 Series
¢ GPIO r 110 GPIO driver used by RTE Drivers for LPC17xx Series
¥ PIN v 1.00 Pin Connect driver used by RTE Drivers for LPC1700 Series
¥ Startup v 1.00 System Startup for NXP LPC1700 Series
J_ . File System MDK-Plus « 6.15.0 File Access on various storage devices
i ’ Graphics MDK-Plus v 6.24.0 User Interface on graphical LCD displays
iild @ Multicore MCUXpresso SDK... 1.2.0 RPMsg-Lite FreeRTOS environment layer
9 @ Network MDK-Plus ~|7.17.0 IPv4 Networking using Ethernet or Serial protocols
& Operating System MCUXpresso SDK O... 9.0.0 FreeRTOS, Real Time Operating System
’ RTOS FreeRTOS 104.6 FreeRTOS Real Time Kernel
T

Fig. 8: Manage Run-Time Environment

BE=2"N- Iy - \ BB 5:%:.Y Ve 1| B ade JARe Q-le oo |@-| X
& & E - W] sworrace vx“&-}"}m
Project = A] system_LPC17x0ctc
2% ?rnj:ct: Blinky 18
=52 SWO Trace 19
=3 Source Files 20
=) 21 »
@ Blinky.c S . = e - - - - e
T 22 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
_ﬁ 3 Rac 23 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
& [Documentation 24 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
() Abstractxt 25 ARE DISCLAIMED. IN NO EVENT SEALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
i 26 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMFLARY, OR
= 9 Board Support — N — . . - - _
b4 2] CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
CMsis 28 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
@ 9 Compiler 29 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
=¥ Device 30 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING N SENCE OR OTHERWISE)
ARTSING IN ANY F THE USE OF THIS SOFTHZ | F ADVIS F T
& B GPIO_LPCITax.c (GPIO) 31 RRISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 POSSIBILITY OF SUCH DAMAGE.
@ & PIN_LPC17cx.c (PIN) = .y
] RTE_Device.h (Startup) 3q L
L] startup_LPC17xx.5 (Startup) 35 stdint.h>
“1LDC17xx.h®
@] system_LPC17xx.c (Startup) _:-j LECLTxx.B
38/~
oS | /f-————— <<< Use Configuration Wizard in Context Menu >>> ————-————-———————-
40 | */
41
e/ Clock Configuration
43 | //
44 | // <e> Clock Co
45 | // h> System ls and Status Register (5C5)
as | 11 e NSCRANGF: Main Oemillarar Ranma Sala~r
< | o
[El project | @ 8ooks | {3} Functio... 0, Templat...| ||\ Text Editor { Configuration Wizard [
Build Output

Fig. 9: Project Workspace

11. Using Microsoft Explore, browse to your "U:\\coe718\labs\labl" directory to find, copy and
paste ALL the files to your project directory. There should be a total of 9 files copied.

12. In the project workspace (in the upper left column of uVision), right-click on the "Source Files"
folder and select the option Add files to Group ""Source Files". Select all the .c and .h files.

13. Click "Add" and then "Close". All the files selected should now be displayed in the Project
workspace under the "Source Files" folder tree, resembling that of Figure 10.

14. Your final workspace should now resemble Figure 11 shown above.

15. Right Click on SWO Trace as shown in Figure 12, select Options for Target 'SWO Trace...'

as depicted

Project
= %% Project: Blinky
5 %3 SWO Trace

=i Source Filr=—

in Figure 12.

L=
= 18
19
20

_] Blinky $ Options for Group "Source Files'...
] Font¢ Add New Item to Group "Source Files'...
] Font_| Add Existing Files to Group 'Source Files'...
—] GLCD, Remove Group ‘Source Files' and its Files
L] LED.h
- J Blinky Open Build Log
) GLCD. (¥4 Rebuild all target files
] IRQc| (%] Build Target
L] LED.c
- Manage Project Items...
=4 Documen™—/——————————————————————————§% ==
] Abstrz| ¥ | Show Include File Dependencies
5 € Board SuppOn SrTTTeTTstdint
(5] ADC_MCB1700.c (A/D Conve | R F1ocinde SLECY T
A . anin 37
Fig. 10: Importing all .c and .h files to uVision
roject e

3 "% Project: Blinky
-l s SWO Trace

~ [Sourc & Options for Target 'SWO Trace..

-

Bl
F
Fi é
G
U
Bl L

Add Group...

Open Map File
Open Build Log

Build Target

J
U
»
LJ
-l
i
8 L]
i

Project L x|
=% Project: Blinky -
545 SWO Trace
=) 5 Source Files
|1 Blinky.h
_] Font_6x8_h.h
] Font_16x24_h.h
1 6LcDh
11 Leph
] Blinky.c
1 GLCD_SPI_LPC1700.c
2 IRac
] LeD.c
-1 ' Documentation
] Abstracttxt
59 Board Support
[ADC_MCB1700.c (A/D Conve
& cmsis
o 4 Compiler
= @ Device
51 PIN_LPC17xx.c (PIN)
1 RTE_Device.h (Startup)
[startup_LPC17xx.s (Startup) —
[system_LPC17xx.c (Startup)

Fig. 11: Final Workspace

Manage Project Items...

Rebuild all target files

IR v | Show Include File Dependencies

DISCLAIMED
LE FOR ANY

N |

EQUENTIAL |
TITUTE GOOC!
RRUPTICHN)

'RACT, STRII

5 IN ANY

LI
.7 Deocumentation

b I T

32 POSSIBILITY OF
- e

Fig. 12. Options for Target 'SWO Trace’

16. Select the Debug tab, select "Use™ on the right side, from the drop down select “ULINK2/ME
Cortex Debugger” and then click the Settings box. Under the Trace tab, click "Trace Enable".
Ensure that the Core Clock is set to 96 MHz, and that the SWO Clock has "Autodetect"
enabled. In the ITM Stimulus Ports, set Enable to OXFFFFFFFF, and ensure that the lower port
checkbox, Port 7..0 is unchecked. Click OK. In the "Options..." window, select "Use Simulator"
once again. Click OK. Also notice the source code necessary in Blinky.c to support the printf
function.

17. To compile and link the .c modules, click the build icon % | You can alternatively build the
project by pressing F7. Ensure that the project compiles and links without any errors. A newline
at end of file warning may appear: this is fine.

Side Note: Examining the Application

Before we continue to work with Debug mode, it is important to understand what each part of the
Blinky.c application is responsible for. Take a minute to analyze the code provided to you. Examine
Blinky.c, ADC_MCB1700.c, IRQ.c, LED.c. How do they work together? What are their functionalities?

Browse through the NXP LP17xx user manual for the MCB1700 board available at the COE718 labs
directory and Support Material Webpage, https://www.ech.torontomu.ca/~courses/coe718/support.html.
You will need to refer to this manual for all the labs. Note the specifications which pertain to the AD
conversion (ADC_MCB1700.c) and GPIO (LED.c) programming pins used for this lab in the code
provided to you. For further elaboration on the programming of these pins, refer to the Appendix of this
lab.

Blinky.c - main file, initializes the LED, Serial and ADC functions. To use the LCD, uncomment #define
_USE_LCD before main(). Sets up the timer interrupt every 10ms. Reads and averages AD conversion for
LED.c to interpret. Prints out AD value to both Debug (printf) stdout (using a clock_ms timer flag) and the
LCD if enabled. Examine the ITM Stimulus code for printf functionality in uVision.

ADC_MCB1700.c - Initializes ADC channels and variables used by Blinky.c. Contains an interrupt handler for
ADC which clears the ADC flag and stores the converted value.

IRQ.c - Contains the timer interrupt handler routine needed by Blinky.c. It is responsible for keeping track of
clock_ms (10 ms timer flag) and the LED blinking rate.

LED.c - initializes the LEDs and contains routines to turn the LEDs on and off. Also contains the function
needed by IRQ to adjust the speed of the LEDs according to the ADC converted value.
GLCD_SPI_LPC1700.c - contains all functions needed to use the MCB1700 dev board's LCD screen.

2.2 Simulation with Debug Mode
Next, we will enter Debug mode. Debug mode is an environment that provides capabilities to assess your
application and its performance characteristics.

1. Enter Debug mode by clicking on the 'él icon. uVision will transform into a new succession
of windows, including the disassembled version of your .c code.

If you have entered the Debug mode correctly, you will see several windows pop up which will
allow you to examine and control the execution of your code. You should observe something
like that of Figure 13. Close debug and reopen debug if any error showed in Command
window. You might or might not see the variables shown in Command window from Figure 13.
The Debug mode will connect uVision to a simulation model of your program, downloading
the project's image into the microcontroller's simulated memory.

O
2. Reset the program using the RsT icon.

3. Execute the program by clicking the RUN icon. STOP (or pause) the program by selecting
the @ icon.

https://www.ecb.torontomu.ca/~courses/coe718/support.html

Register Window

Disassembly Debug Mode
Step Logic Analyzer ch
Reset File Edit iew Project | Flash Debug Peripherals Tools S§CS Window elp l
CRETE a “«o|m EX Y V) Jae([@ e oo e-|[@ A
& oo ol s [DRleEEEa-2-%-0- 8- »-
Reqisteﬁ 2 E1 Disassembly| x|
chi!'er l IVaiue [; 54 uinc32_t AD avg =0; ~
RUN¢ v 0x00000834 2400 MOVS x4, $0x00
RO 00000000 55: u, 16_t AD value = 0;
R1 00000000 0x00000B36 2500 MoV x5, #0x00
00000000 56: uintlé_t AD print = 0;
0 §7: = =
R4 0x00000B38 2600 MOVS x6, #0x00
RS 58: LED Initialize():; // LED Initialization
R6 0x00000B3A F7FFFBE1 BL.W LED_Inicialize (0x00000300)
R7 00000000 59: ADC_Initialize(): // ADC Initialization
z v
RS 00000000 i s
R9 x00000000
R10 (00000000) Abstracttt | |) startup_LPC17xcs) Blinkyc | °] ADC_MCB1700.c v X
RN 000000000 50 Main function "
R12 OO000000': I I ¢ et e o e o e s e N
(SP) (10000230 Elint main (void) {
RS‘LR’ OETFEETE 53 | inct32_c res;
I "5 O CAO0N0ED 54 | uint32 t AD avg = 0;
. xPSR 001000000 55 uintlé_t AD value = 0;
& Banked 56 uintlé_t AD print = 0;
s System =1 57
Intemal 58 I.ED_In.L:Lal:Lze (): a
P"A:de ;H"d 59 ADC_Initialize(): / [ali
viege rivileged | = =
i i > 0 . R Watch Window v
[l project | 52 Registers < >
Command o B wateh1 l x|
Running with Code Size Limit: 32K Name Value Type
Load "E:\\Ryerson MASc\\COE718 TA\\kielS project\\labli\\Boar -
WS 1, ‘AD avg ¥ AD_avg 0x00000000 uint
WS 1, ‘AD:value ¥ AD_value OxOFFF ushort
WS 1, °‘AD print @ AD_print OxOFFF ushort
el he @ AD_dbg OXOFFF ushort
P9 <Enter expression>
< >
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet &4 Call Stack - Locals | E@Debug (printf) Viewer Watch 1

Simuiation 1: 6.2430

Fig. 13: uVision Debug Mode

Congratulations, you have executed your first program on uVision. Now, what do all these windows in
Debug mode actually do? What does this all mean?

2.3 uVision Debug Features and Analysis

uVision possesses many features for assessing the status and performance of your application software
running in Cortex. The following is a list of useful features that can be used to view and control your
applications. Note that they can only be accessed when in Debug mode.

a) Watch Window
A watch window allows you to keep track and view local and global variables, as well as raw memory
values. These values can be observed by running or stepping through your program. It may be beneficial
to pair the watch window with the use of steps and/or breakpoints in your code for debugging.
Note on steps and breakpoints:
o Steps: (See Fig. 13) As opposed to running through the whole code, the step keys allow you to
step through your code line by line, step through a function etc.
o Breakpoints: Move the mouse cursor into the grey area next to the line numbers in your .c code
in the debugger. Left click the line (with a dark grey area) that you would like to set a
breakpoint. A red dot will appear if you were successful. Click it again to remove the
breakpoint.

= Note when the code is executed, the dark grey boxes will turn green indicating that the line
has been executed.

1. To open a watch window (in Debug mode), select View >> Watch Window >> Watch 1. Note,
a watch window may open automatically when entering Debug mode.

2. Find the column entitled "Name" in the Watch 1 window. The subsequent rows under this
column should read <Enter expression>. Highlight the field and press backspace. Enter
"AD_dbg" in the first row.

e When you click the RUN icon to execute the program, the value of AD_dbg will
change depending on the ADC value inputted on analog channel 2 (AIN2). (More on
inputting analog input in the Peripheral section)

e To automatically input a variable in the watch window, go to the Blinky.c code. Right-
click on the variable AD_dbg. A pop-up menu will appear. Select "Add AD_dbg to..."
>> Watch 1.

3. It is also possible to change AD_dbg's value during execution. If you enter a '0" in the value
field of the watch window, you may modify the variable's value without affecting the CPU
cycles during executing.

b) Register Window

The register window (see Fig. 13) displays the contents of the CPU's register file (RO - R15), the program
status register (xPSR), the main stack pointer (MSP) and the process stack pointer (PSP). This window
will automatically open when transitioning to Debug mode. These registers may be used for debugging
purposes, in conjunction with the watch window, steps, and breakpoints.

c) Disassembly Window

The disassembly window displays the low-level assembly code, where its respective C code is appended
beside it as a comment. This window is useful for viewing compiler optimizations and the .c code's
assembly generation. The left margin of the disassembly window is also useful for keeping track of
execution (green blocks), possible executable blocks (grey), line numbers, and setting breakpoints.

d) Performance Analyzer
The Performance Analyzer (PA) tool is extremely useful for determining the time your program spends
executing a certain task. It presents itself as a horizontal bar graph dynamically changing with respect to
the total execution time of its respective tasks. Separate columns display the exact execution time and the
number of calls for each task. To use this feature:
1. (In Debug mode) Select View >> Analysis Windows >> Performance Analyzer to open
Performance Analyzer.

2. Expand some of the tasks in the PA window by pressing the "+" sign located next to the
heading. There should be a list of functions present under this heading tree.

3. Press the & Reset icon to reset the program (ensure that the program has been stopped first).
Click RUN El,

4. Watch the program execution and how the functions are called. You will see something like
that of Figure 14. The analyzer can gather various statistics dynamically from the program,
which may be useful for both debugging and performance assessment. Stop the program when
you have finished analyzing with the PA tool.

10

Performance Analyzer n o

Show: [Modules -

Module/Function Calls [Tme(seq) [Time(z)
= Blnky 161675ms T00%
B Binky.c 181553 ms 100%
main 1 181.553ms 100%
" LEDe 54070 us 0%
- system_LPC17occ 42650us
H-IRGe 14060 us
SysTick_Hander 18 14060 us
H-ABE ii2500s
ADC it i i570s
ADC_StatCryv 18 324Dus
ADC_StopCrv] lus
ADC_GelCrv 0 tus

B Disessenbly | E performance Analyzer | B Logic Analyze

IR IR

Fig. 14: Performance Analyzer Window

e) Execution Profiling

An alternative to the PA is the Execution Profiling (EP) tool. EP is useful for determining how many
times a function call has occurred and/or the total time spent executing a certain line of code and/or
function. Therefore, the PA tool would technically be the graphical representation of the EP tool. To use
this feature:

1. From the menu select Debug >> Execution Profiling >> and either Show Times or Show Calls.
A left column will expand on your source code, indicating either the execution time per task, or
the number of calls, respectively.

2. Regardless of the option you choose, if you hover the mouse over a number in the left column,
all the information will be displayed as if you chose both options (i.e., execution time and the
number of calls).

f) Logic Analyzer
The Logic analyzer in debug mode allows you to visualize a logic trace for a variable during its
execution. Thus, we could use this as a visualization for the variables we place in the watch window. For
this lab, we will graphically follow the AD_dbg value in our code:

1. Select View >> Analysis Windows >> Logic Analyzer to open Logic Analyzer.

2. In the Blinky.c code, right-click on the variable AD_dbg. A pop-up menu will appear. Select
"Add AD_dbg to..." >> Logic Analyzer. The variable will appear in the Logic analyzer
window.

3. If AD_dbg is defined as static volatile uintl6_t then comment the line and redefine it as
uintl6_tthen try step 2.

4. If you click run, you will see the AD_dbg trace generate as a straight line on the zero mark. It
should correspond to the value you are seeing in the Watch 1 window.

5. Under the Zoom heading in the Logic analyzer, click "All". This will scale your window
according to the execution trace time (horizontally).

6. Under the Min/Max heading, select "Auto" to scale the trace's amplitude (vertically).

This AD_dbg value will keep running with a zero value. Why? The AD_dbg is representative of the value
which we place on the board's potentiometer (AD input channel 2). Since we are not inputting any values
on the channel, it will logically continue to trace at '0". It is evident how we would go about turning the
potentiometer on the dev board, but how could we simulate the pot for testing in Debug mode?

g) Peripherals (A/D Converter, System Tick Timer, and GPI10s)
uVision debugger allows you to model the microcontroller's peripherals. With peripheral modeling, it is
possible to adjust input states of the peripherals and examine outputs generated from your program. In our

11

Blinky.c program, the peripherals of interest are the AD converter (since we are inputting AD values from
AIN2 - pot), the systick timer, and the GPIOs (the output to the LEDs). We will not model the LCD in
this lab as it possesses high CPU utilization times and is more for demo purposes. Therefore, make sure
that #define _USE_LCD remains commented in the code during debugging.

1. To open the AD Converter window, in the main menu select Peripherals >> A/D Converter. A
window will appear like that of Fig. 15.

2. To open the System Tick Timer window, in the main menu select Peripherals >> Core
Peripherals >> System Tick Timer. A window will appear resembling Fig. 16.

3. To open the GPIO 2 analyzer (LED simulator), select Peripherals >> GPIO Fast Interface >>
Port 2. A window will appear as shown in Fig. 17. Also, open Port 1, i.e., Peripherals >> GPIO
Fast Interface >> Port 1 (as the first 3 LEDs belong to Portl, last 5 belong to Port 2).

System Tick T =
|A/D Converter X e ——
e Contro & St [ENABLE ¥ CLKSOURCE
ADCR: 01200404 SEL|04 [4 POM ST_CTRL_STAT: [(x000710007
cuon - BURST I EDGE ¥ TICKINT [# COUNTFLAG
START: |Now ~ | A/D Clock: [5000000 Reload & Cument Value
/D Globl Dot & Sichs ST_RELOAD: [Reii0F 4237 RELOAD: [ReF423F
ADGDR: | x02000000 RESULT: | (<0000 [~ DONE I OVERUN ST_CURRENT: |(<000CC288 CURRENT: |:DCC288
ADSTAT: | (00000404 CHN: | 302 [~ ADINT N
Calibration
A/D Channel Deta ST_CALIB: [00000000 TENMS: [T00000
ADDRAO: | (00000000 RESULTO: | k<0000 [~ DONED ™ OVERUNO
[~ SKEW [~ NOREF
ADDR1: | (00000000 RESULT1: | k0000 [~ DONE1 [T OVERUN1

ADDR2: | (CO000000 RESULT2: ’W [V DONEZ W OVERUNZ
ADDR3: [B00000000 RESULT3:[B0000 [~ DONE3 [OVERUN3 F|g 16: System Tick Timer Window
ADDR4: [200000000 RESULT4:[0<0000 [~ DONE4 [~ OVERUN4
ADDRS: [2:00000000 RESULTS:[0<0000 [~ DONES I~ OVERUNS

ADDRE: [B00000000 | RESULTE: [30000 | [DONEE [T OVERUNG General Purpose Input/Output 2 (GPIO 2) - Fast Interface =&
ADDR7: | (<00000000 RESULT7: | k<0000 [~ DONE7 [~ OVERUN7 GPioZ
9 Bts 2423 Bts 1615 Bts 8 7 Bts 0
AD rtemt Encble FIO2DIR: OV P [T T [T 1T [PR
I ADINTENO [ADINTENA
ADINTEN: [2:00000100 I~ ADINTEN1 [~ ADINTENS FIOZMASK: 00000000 [T T T T T [T T T T T [T T [TTTrrrT
W AR WAL FIO2SET: [BD0003FED [T T T 1T FTTTT T T [TPeeRRRE RITTTTTT
W ADGINTEN [~ anINTENZ [ADINTEN7
sodos s o FIOZCLR:|®D0000000 [T T T T [T T T rrrrs
islog Inputs erence
(B00003F 20
AINO: |0.0000 AINT: |0.0000 AINZ: [0.0000 AIN3: (0.0000 VREF: =82 T rrTrrrTT FTeFRR METTTTTT
AN [00000 AINS:[00000 AINe: [0.0000 AIN7:[0.0000 33000 | MRRRRR FTTTTT T
Fig. 15: A/D Converter Window Fig. 17: GPIO Peripheral Window

4. To open the Debug window and view printf statements in the code, select View >> Serial
Windows >> Debug (printf) Viewer.

5. Reset the program and run the blinky application until it has simulated for 1 second. Watch
how the asserted "Pins" on the GPIO windows transition. This represents the LEDs on the dev
board and how they will transition when the program is executed. Note that, these transitions
are occurring at a much faster speed than they are during this simulation. Why?

o Simulators require long computational runtimes to simulate a brief period of hardware
runtime. This is a well-known problem in software.

6. Notice the System Tick Timer and its quick transitions within each of the fields in the window.

7. Once 1 second of simulation time has been reached, there are two possible ways to change the
value of the simulated pot:
o Locate the A/D converter window and type 3.3000 in the AIN2 textbox under "Analog
Inputs™. This will simulate the value transition for your pot from 0V to 3.3V (notice the
Vref voltage of 3.3V, which cannot be exceeded).
e Alternatively, in the "Command window" found in the debugger, type "AIN2 = 3.3".
This will execute the same result as the A/D converter window.

8.

10.

11.

Now interrupt enable must be asserted to simulate the value inputted on the AIN2 channel. To
enable the interrupt, locate the A/D Interrupt Enable box in the A/D Converter window. Check
off the ADINTEN2 box. Wait for a moment. Uncheck the box.

Wait for approximately 0.1sec (simulated time) or so. Your logic analyzer and watch windows
will update the inputted A/D information accordingly (Note this transition may take slightly
longer. To speedup the process, you may also click and unclick the "BURST" checkbox at the
top of the A/D Interrupt window).

Note the GPIO windows and how the speed of the LED flashes has also changed (will
transition at a slower pace).

Keep transitioning to different values using this simulated potentiometer method. Your
simulation should then resemble close to Figure 18.

Sehin _ | Lasd Mt T Wi T] Ci MMy | Lpdss Soeesn | Toyeias bl Soral efo gtz

ADLC Dby

12.

13.

14.

s 1] 1 134810 a7 in (k| Al | | Bule | fUrge] | Stop | e | P [Rlesal | Codes | [Trecs | o Sheee Cpcies v

C (v FALfe T Rt
a1 o FLw Filer] nETan

E ..-u-.lu'\-.lcl |

Fig. 18: Simulating the Pot and A/D Conversion using Logic Analyzer

While your program continues to execute, watch the application using the Performance
Analyzer, Watch window, execution times in the Disassembly window, and the Execution
Profiler. This will help you analyze the application. Where does your program spend most of its
time executing?

Once you have finished executing your simulated blinky application, exit Debug mode by
clicking the @2 icon once again.

Try executing blinky with the LCD display (i.e., uncomment the statement #define
_USE_LCD in Blinky.c). Go back to debug mode and execute the program. See how the
utilization times of your applications differ from the results you obtained by not including the
LCD.

3. Executing with Target Mode (MCB1700 Dev Board)
Up until this point, we have simulated the application. In this section we will focus on how to use target
mode to execute Blinky.c on the Keil MCB1700 development board. To upload the program to the
board's flash memory:

1.

Since we want to use the LCD during the demo, ensure that the statement #define _USE_LCD
in Blinky.c is uncommented.
uncomment or delete uintl6_t AD_dbg and redefine it as static volatile uint16_t AD_dbg.

Build the program to check for errors. Ensure that there are no errors. You might see few
warnings which are fine.

Right Click on SWO Trace as shown in Figure 12, select Options for Target 'SWO Trace and
select Utilities — uncheck Use Debug Driver and make sure ‘ULINK2/ME Cortex Debugger.
Click on Settings >> Flash Download and tick Reset and Run. Click OK. Then click OK to
close Options for Target ‘SWO Trace’.

With the dev board powered on, click on the load #% button located on top of the Project

12

13

Workspace column on the left side. Refer Troubleshoot note below If you see any Error related
to Ulink connection.

6. The bottom of uVision will present a horizontal blue bar line indicating the status of uploading
the software to the board:

Build target 'LPC1700'

linking...
Program Size: Code=5420 RO-data=6540 RW-data=40 ZI-data=608
"blinky.axf" - 0 Error(s), 0 Warning(s).

Load "S:\\...\\blinky.axf"
Erase Done.

Programming Done.

Verify OK.

Ensure a loading failure has not occurred. If an error has occurred, refer to the troubleshooting
section.

Writing should appear on the LCD, and the LEDs should be flashing at a constant rate.

Locate the potentiometer and rotate it either clockwise or counter clockwise.

This rotation will provide the board with a variable A/D reading (varying the resistance of the
voltage), which will be converted to a hex value (digital reading) and displayed on the LCD
screen. A bar graph will transition underneath accordingly. Similarly, the LEDs will flash at a
different rate depending on the reading of the channel.

Troubleshoot Note: If the board is powered on, with the USB's connected and there still is a
problem uploading the program to Flash, this may be a VMWare connectivity issue. In the VMWare
window, select Virtual Machine >> Removable Devices >> Ulink-Me >> Connect (Disconnect from
Host). Try loading the program once again using the following steps.

Fig. 19: Executing Blinky.c on the MCB1700 Dev Board

4. Lab Assignment

With the code given to you in this tutorial, and the joystick (KBD.*) files and notes found in the
Appendix of this lab or Use Joystick from Device Run time environment, create a program which will
read the direction that the joystick is pressed on the MCB1700 dev board. Based on the direction of the
joystick, the following peripherals should function as follows:

14

e LCD - will display the last direction that the joystick has been tilted/pressed. Design a suitable
header and title on your LCD for demo purposes.

e LEDs - depending on the direction the joystick has been last tilted/pressed, an LED(s) will turn
on representing the direction. Examine LED.c from the tutorial to understand how LEDs are
turned on and off.

Have an option which enables or disables the LCD like the blinky tutorial. Disable the LCD when in
Debug mode. Analyze your program (your TA may ask you questions regarding simulation during your
demo).

This lab is due in week 3 at the beginning of your lab session. You are expected to deliver the following:

1. Print the source code for your lab including the main files, and any .h or .c files provided to
you during the tutorial that you may have altered for your application. Ensure that you include
the Ryerson University title page, dated and signed, with your code attached.

2. Present a demo displaying your joystick implementation, and the output to the LCD and LEDs
on the dev board. You may also be quizzed on your understanding of your joystick
implementation when in Debug mode. Be prepared.

15

Appendix

Peripheral Programming with the LPC1768

Peripheral pins on the LPC1768 are divided into 5 ports ranging from 0 to 4. Thus, during this lab, you
may have noticed that pin naming conventions (for GPIOs etc.) were in the format Pi.j, where i is the port
number and j in the pin number. For instance, if we look at the first LED on the MCB1700 dev board, we
will see the label P1.28, signifying that the LED can be found on Port 1, Pin 28. A pin may also take on
any one of four operating modes: GPIO (default), first alternate function, second alternate function, and
third alternate function. It is important to note that only pins on Ports O - 2 can generate interrupts.

To use the peripherals provided to you on the dev board, ensure that you abide by the following steps. Let
us take KBD.c as an example which can be found at the end of this Appendix. Note: masking register bits
with |= (...) will turn the specified port pins high, while &= ~(...) will alternatively place them as low.

1) Power up the Peripheral

Looking at the NXP LPC17XX User Manual provided to you in the course directory, refer to Chapter 4:
Clocking and Power Control (pp. 63). The PCONP register is responsible for powering up various
peripherals on the board, represented as a total of 32 bits.

The joystick is considered as a GPIO and therefore we are concerned with bit 15 for powering up. Note
that the default value is '1' when the chip is reset. Thus, GPI1Os are powered up by default on reset. When
coding for KBD_Init() we must then include the following code to power up the GPIO:

LPC_SC->PCONP = (1 << 15);

2) Specify the operating mode

The pins that need to be used by the peripherals must be connected to a Pin Connect Block
(LPC_PINCON macro in LPC17xx.h). The registers which connect the peripheral pins to the
LPC_PINCON are referred to as PINSEL, containing 11 registers in total.

The joystick pins are located on Port 1, pins 20, 23, 24, 25, and 26 (verify on the dev board). Referring to
the manual (i.e., Table 82 on pp. 109) we observe that PINSELZ3 is responsible for configuring these pin
functions. Thus, we include the following in KBD.c:

/* P1.20, P1.23..26 is GPIO (Joystick) */
LPC PINCON->PINSEL3 &= ~((3<< 8) | (3<<14) | (3<<16) | (3<<18) | (3<<20));

These pins are automatically selected as GP1Os upon reset according to Table 82. Thus, we keep the 00"
value assigned to them (re-declare these values as good practice).

3) Specify the direction of the pin

The 1/O direction of the peripheral pins must also be specified (input/output). The FIODIR registers are
used to set pin directions accordingly, where '0' represents input, and '1' is output. By default, all registers
are assigned as input. As the joystick is on port 1 in the LPC1768, we can configure specific pins as input
as follows (pins on the LPC_GPI101 macro):

/* P1.20, P1.23..26 is input */
LPC GPIOI1->FIODIR &= ~ ((1<<20) | (1<<23) | (1<<24) | (1<<25) | (1<k<206));

X% X o ok ok X X ok F

*

* %

#i
#1i

ui

vO

/*

/*

ui

ui

Name : KBD.c
Purpose: MCB1700 low level Joystick
Version: V2.0

This file is part of the uVision/ARM development tools.

This software may only be used under the terms of a valid, current,

end user licence from KEIL for a compatible version of KEIL software
development tools. Nothing else gives you the right to use this software.

This software is supplied "AS IS" without warranties of any kind.

Copyright (c) 2008 Keil - An ARM Company. All rights reserved.

History:
V2.0 - updated by Anita Tino for LPC1768

nclude <LPCl7xx.H> /* LPCl7xx definitions
nclude "KBD.h"

nt32 t KBD val = 0;

id KBD Init (void) {

LPC_SC->PCONP |= (1 << 15); /* enable power to GPIO & IOCON

P1.20, P1.23..26 is GPIO (Joystick) */
LPC _PINCON->PINSEL3 &= ~((3<< 8) | (3<<14) | (3<<16) | (3<<18) | (3<<20));

P1.20, P1.23..26 is input */
LPC GPIO1l->FIODIR &= ~((1<<20) | (1<<23) | (1<<24) | (1<<25) | (1<<26));

Get Joystick value.. part of get button

nt32 t KBD get (void) {
uint32 t kbd val;

kbd val = (LPC_GPIO1->FIOPIN >> 20) & KBD MASK;
return (kbd_val);

nt32 t get button (void) {
uint32 t val = 0;

val KBD get () ; /* read Joystick state */
val = (~val & KBD MASK); /* key pressed is read as a non '0'

return (val);

value*/

16

Name:

Purpose:
Version:
Note (s) :

* % X ok

*

end user

* % kX ok %

Copyright

KBD.h

MCB1700 low level Joystick definitions

v2.00

Positioning of Joystick on MCB1700
Revised by: Anita Tino

This file is part of the uVision/ARM development tools.
This software may only be used under the terms of a valid, current,

licence from KEIL for a compatible version of KEIL software

development tools. Nothing else gives you the right to use this software.

(c) 2008 Keil - An ARM Company. All rights reserved.

#ifndef KBD H
#define _ KBD_H

#define KBD_ SELECT 0x01
#define KBD UP 0x08
#define KBD RIGHT 0x10
#define KBD DOWN 0x20
#define KBD LEFT 0x40
#define KBD MASK 0x79

extern uint32 t KBD val;

extern void

KBD Init (void);

extern uint32 t KBD get (void);
extern uint32 t get button (void);

#endif

17

