
COE718: Embedded Systems Design

Lab 1: Introduction to Keil uVision & ARM Cortex M3

1. Objectives
The purpose of this lab is to introduce students to the Keil uVision IDE, the ARM Cortex M3

architecture, and some of its features. Specifically, the basic steps of coding and execution with the ARM

Cortex M3 and its NXP LPC1768 microcontroller will be provided, including how to run a simple

program on the MCB1700 dev board. The lab will allow students to become familiar with the uVision

environment, its simulating capabilities, and the tools needed to assess various CPU performance factors.

As majority of embedded systems use ARM based for low-power consumption and competitive

performance, students will find the skill sets obtained from this lab especially useful.

2. Developing Software for Cortex with Keil uVision
In this section, you will learn how to create a uVision project, import necessary files, compile, and

simulate an application to assess performance. This example will demonstrate a simple project called

blinky. The code will read the voltage provided by the microcontroller's ADC channel AIN2 (the

potentiometer found on the MCB1700 board). Based on the value set on the channel, the LEDs will flash

at a certain speed. If enabled, a bar graph and voltage reading will also appear on the LCD display.

2.1. The uVision Workspace and Building the Project
We will be working with the NXP LPC1768 chip for this lab. This chip can be found on the Keil

MCB1700 evaluation board located at your workstation.

To run uVision IDE on the EE network, launch Windows 10 through VMWare by selecting

Applications>>windows. Once Windows is running, you will find the Keil uVision5 program. Launch the

uVision application from the start menu.

Fig. 1: uVision Icon

1. When uVision is launched and if a project already exists, then first close the project by

selecting Project >> Close Project.

2. Select Pack Installer option in the top bar as shown in Figure 2.

2

Fig. 2: Select Pack installer

3. The Pack Installer Opens up Select the Blinky ULp Project. As shown in Figure 3.

Fig. 3: Copying [NXP->LPC1700->LPC176x->LPC1768] Blinky Project

4. Create a new directory for COE718 Labs and a then a sub-folder for Lab1 in your home

directory. Click on "Devices -> LPC1768 … to copy the Blinky project files to your created

folder as depicted in Figure 4.

5. Your project workspace should now resemble as shown in Figure 5.

3

Fig. 4: Copy Blinky to Lab1 folder

Fig. 5: Project Workspace

6. Double click on startup_LPC17xx.s to open the editor. Click on the "Configuration Wizard"

tab at the bottom of the editor window as shown in Figure 6. The Wizard window converts the

"Text Editor" window so that the programmer may view the configuration options more easily.

It is possible to adjust the stack and heap sizes of the LCP1768 chip here if necessary as

depicted in Figure 6.

7. Similarly, by clicking on the "Books" tab at the bottom of the Project workspace window, the

"Complete User Guide Selection" opens up to provide you with the FAQs and system help.

Once you have finished inspecting the user guide, switch back to the "Project" tab in the Project

window

4

Fig. 6: Workspace

8. Open the run time environment as shown by a red circle in Figure 7.

Fig. 7: Run Time Environment

5

9. You will get a new screen Manage Run-Time environment as given in Figure 8. Select A/D

converter box and unselect LED under Board Support. Unselect GPIO box under Device.

Then click OK and you will come back to your project workspace as shown in Figure 9.

10. Remove Blinky.c and IRQ.c files from your project.

Fig. 8: Manage Run-Time Environment

Fig. 9: Project Workspace

6

11. Using Microsoft Explore, browse to your "U:\\coe718\labs\lab1" directory to find, copy and

paste ALL the files to your project directory. There should be a total of 9 files copied.

12. In the project workspace (in the upper left column of uVision), right-click on the "Source Files"

folder and select the option Add files to Group "Source Files". Select all the .c and .h files.

13. Click "Add" and then "Close". All the files selected should now be displayed in the Project

workspace under the "Source Files" folder tree, resembling that of Figure 10.

14. Your final workspace should now resemble Figure 11 shown above.

15. Right Click on SWO Trace as shown in Figure 12, select Options for Target 'SWO Trace…'

as depicted in Figure 12.

Fig. 10: Importing all .c and .h files to uVision Fig. 11: Final Workspace

Fig. 12. Options for Target 'SWO Trace’

7

16. Select the Debug tab, select "Use" on the right side, from the drop down select “ULINK2/ME

Cortex Debugger” and then click the Settings box. Under the Trace tab, click "Trace Enable".

Ensure that the Core Clock is set to 96 MHz, and that the SWO Clock has "Autodetect"

enabled. In the ITM Stimulus Ports, set Enable to 0xFFFFFFFF, and ensure that the lower port

checkbox, Port 7..0 is unchecked. Click OK. In the "Options..." window, select "Use Simulator"

once again. Click OK. Also notice the source code necessary in Blinky.c to support the printf

function.

17. To compile and link the .c modules, click the build icon . You can alternatively build the

project by pressing F7. Ensure that the project compiles and links without any errors. A newline

at end of file warning may appear: this is fine.

Side Note: Examining the Application
Before we continue to work with Debug mode, it is important to understand what each part of the

Blinky.c application is responsible for. Take a minute to analyze the code provided to you. Examine

Blinky.c, ADC_MCB1700.c, IRQ.c, LED.c. How do they work together? What are their functionalities?

Browse through the NXP LP17xx user manual for the MCB1700 board available at the COE718 labs

directory and Support Material Webpage, https://www.ecb.torontomu.ca/~courses/coe718/support.html.

You will need to refer to this manual for all the labs. Note the specifications which pertain to the AD

conversion (ADC_MCB1700.c) and GPIO (LED.c) programming pins used for this lab in the code

provided to you. For further elaboration on the programming of these pins, refer to the Appendix of this

lab.

Blinky.c - main file, initializes the LED, Serial and ADC functions. To use the LCD, uncomment #define

_USE_LCD before main(). Sets up the timer interrupt every 10ms. Reads and averages AD conversion for

LED.c to interpret. Prints out AD value to both Debug (printf) stdout (using a clock_ms timer flag) and the

LCD if enabled. Examine the ITM Stimulus code for printf functionality in uVision.

ADC_MCB1700.c - Initializes ADC channels and variables used by Blinky.c. Contains an interrupt handler for

ADC which clears the ADC flag and stores the converted value.

IRQ.c - Contains the timer interrupt handler routine needed by Blinky.c. It is responsible for keeping track of

clock_ms (10 ms timer flag) and the LED blinking rate.

LED.c - initializes the LEDs and contains routines to turn the LEDs on and off. Also contains the function

needed by IRQ to adjust the speed of the LEDs according to the ADC converted value.

GLCD_SPI_LPC1700.c - contains all functions needed to use the MCB1700 dev board's LCD screen.

2.2 Simulation with Debug Mode
Next, we will enter Debug mode. Debug mode is an environment that provides capabilities to assess your

application and its performance characteristics.

1. Enter Debug mode by clicking on the icon. uVision will transform into a new succession

of windows, including the disassembled version of your .c code.

If you have entered the Debug mode correctly, you will see several windows pop up which will

allow you to examine and control the execution of your code. You should observe something

like that of Figure 13. Close debug and reopen debug if any error showed in Command

window. You might or might not see the variables shown in Command window from Figure 13.

The Debug mode will connect uVision to a simulation model of your program, downloading

the project's image into the microcontroller's simulated memory.

2. Reset the program using the icon.

3. Execute the program by clicking the RUN icon. STOP (or pause) the program by selecting

the icon.

https://www.ecb.torontomu.ca/~courses/coe718/support.html

8

Fig. 13: uVision Debug Mode

Congratulations, you have executed your first program on uVision. Now, what do all these windows in

Debug mode actually do? What does this all mean?

2.3 uVision Debug Features and Analysis
uVision possesses many features for assessing the status and performance of your application software

running in Cortex. The following is a list of useful features that can be used to view and control your

applications. Note that they can only be accessed when in Debug mode.

a) Watch Window
A watch window allows you to keep track and view local and global variables, as well as raw memory

values. These values can be observed by running or stepping through your program. It may be beneficial

to pair the watch window with the use of steps and/or breakpoints in your code for debugging.

Note on steps and breakpoints:

• Steps: (See Fig. 13) As opposed to running through the whole code, the step keys allow you to

step through your code line by line, step through a function etc.

• Breakpoints: Move the mouse cursor into the grey area next to the line numbers in your .c code

in the debugger. Left click the line (with a dark grey area) that you would like to set a

breakpoint. A red dot will appear if you were successful. Click it again to remove the

breakpoint.

9

▪ Note when the code is executed, the dark grey boxes will turn green indicating that the line

has been executed.

1. To open a watch window (in Debug mode), select View >> Watch Window >> Watch 1. Note,

a watch window may open automatically when entering Debug mode.

2. Find the column entitled "Name" in the Watch 1 window. The subsequent rows under this

column should read <Enter expression>. Highlight the field and press backspace. Enter

"AD_dbg" in the first row.

• When you click the RUN icon to execute the program, the value of AD_dbg will

change depending on the ADC value inputted on analog channel 2 (AIN2). (More on

inputting analog input in the Peripheral section)

• To automatically input a variable in the watch window, go to the Blinky.c code. Right-

click on the variable AD_dbg. A pop-up menu will appear. Select "Add AD_dbg to..."

>> Watch 1.

3. It is also possible to change AD_dbg's value during execution. If you enter a '0' in the value

field of the watch window, you may modify the variable's value without affecting the CPU

cycles during executing.

b) Register Window
The register window (see Fig. 13) displays the contents of the CPU's register file (R0 - R15), the program

status register (xPSR), the main stack pointer (MSP) and the process stack pointer (PSP). This window

will automatically open when transitioning to Debug mode. These registers may be used for debugging

purposes, in conjunction with the watch window, steps, and breakpoints.

c) Disassembly Window
The disassembly window displays the low-level assembly code, where its respective C code is appended

beside it as a comment. This window is useful for viewing compiler optimizations and the .c code's

assembly generation. The left margin of the disassembly window is also useful for keeping track of

execution (green blocks), possible executable blocks (grey), line numbers, and setting breakpoints.

d) Performance Analyzer
The Performance Analyzer (PA) tool is extremely useful for determining the time your program spends

executing a certain task. It presents itself as a horizontal bar graph dynamically changing with respect to

the total execution time of its respective tasks. Separate columns display the exact execution time and the

number of calls for each task. To use this feature:

1. (In Debug mode) Select View >> Analysis Windows >> Performance Analyzer to open

Performance Analyzer.

2. Expand some of the tasks in the PA window by pressing the "+" sign located next to the

heading. There should be a list of functions present under this heading tree.

3. Press the Reset icon to reset the program (ensure that the program has been stopped first).

Click RUN .

4. Watch the program execution and how the functions are called. You will see something like

that of Figure 14. The analyzer can gather various statistics dynamically from the program,

which may be useful for both debugging and performance assessment. Stop the program when

you have finished analyzing with the PA tool.

10

Fig. 14: Performance Analyzer Window

e) Execution Profiling
An alternative to the PA is the Execution Profiling (EP) tool. EP is useful for determining how many

times a function call has occurred and/or the total time spent executing a certain line of code and/or

function. Therefore, the PA tool would technically be the graphical representation of the EP tool. To use

this feature:

1. From the menu select Debug >> Execution Profiling >> and either Show Times or Show Calls.

A left column will expand on your source code, indicating either the execution time per task, or

the number of calls, respectively.

2. Regardless of the option you choose, if you hover the mouse over a number in the left column,

all the information will be displayed as if you chose both options (i.e., execution time and the

number of calls).

f) Logic Analyzer
The Logic analyzer in debug mode allows you to visualize a logic trace for a variable during its

execution. Thus, we could use this as a visualization for the variables we place in the watch window. For

this lab, we will graphically follow the AD_dbg value in our code:

1. Select View >> Analysis Windows >> Logic Analyzer to open Logic Analyzer.

2. In the Blinky.c code, right-click on the variable AD_dbg. A pop-up menu will appear. Select

"Add AD_dbg to..." >> Logic Analyzer. The variable will appear in the Logic analyzer

window.

3. If AD_dbg is defined as static volatile uint16_t then comment the line and redefine it as

uint16_t then try step 2.

4. If you click run, you will see the AD_dbg trace generate as a straight line on the zero mark. It

should correspond to the value you are seeing in the Watch 1 window.

5. Under the Zoom heading in the Logic analyzer, click "All". This will scale your window

according to the execution trace time (horizontally).

6. Under the Min/Max heading, select "Auto" to scale the trace's amplitude (vertically).

This AD_dbg value will keep running with a zero value. Why? The AD_dbg is representative of the value

which we place on the board's potentiometer (AD input channel 2). Since we are not inputting any values

on the channel, it will logically continue to trace at '0'. It is evident how we would go about turning the

potentiometer on the dev board, but how could we simulate the pot for testing in Debug mode?

g) Peripherals (A/D Converter, System Tick Timer, and GPIOs)
uVision debugger allows you to model the microcontroller's peripherals. With peripheral modeling, it is

possible to adjust input states of the peripherals and examine outputs generated from your program. In our

11

Blinky.c program, the peripherals of interest are the AD converter (since we are inputting AD values from

AIN2 - pot), the systick timer, and the GPIOs (the output to the LEDs). We will not model the LCD in

this lab as it possesses high CPU utilization times and is more for demo purposes. Therefore, make sure

that #define _USE_LCD remains commented in the code during debugging.

1. To open the AD Converter window, in the main menu select Peripherals >> A/D Converter. A

window will appear like that of Fig. 15.

2. To open the System Tick Timer window, in the main menu select Peripherals >> Core

Peripherals >> System Tick Timer. A window will appear resembling Fig. 16.

3. To open the GPIO 2 analyzer (LED simulator), select Peripherals >> GPIO Fast Interface >>

Port 2. A window will appear as shown in Fig. 17. Also, open Port 1, i.e., Peripherals >> GPIO

Fast Interface >> Port 1 (as the first 3 LEDs belong to Port1, last 5 belong to Port 2).

4. To open the Debug window and view printf statements in the code, select View >> Serial

Windows >> Debug (printf) Viewer.

5. Reset the program and run the blinky application until it has simulated for 1 second. Watch

how the asserted "Pins" on the GPIO windows transition. This represents the LEDs on the dev

board and how they will transition when the program is executed. Note that, these transitions

are occurring at a much faster speed than they are during this simulation. Why?

• Simulators require long computational runtimes to simulate a brief period of hardware

runtime. This is a well-known problem in software.

6. Notice the System Tick Timer and its quick transitions within each of the fields in the window.

7. Once 1 second of simulation time has been reached, there are two possible ways to change the

value of the simulated pot:

• Locate the A/D converter window and type 3.3000 in the AIN2 textbox under "Analog

Inputs". This will simulate the value transition for your pot from 0V to 3.3V (notice the

Vref voltage of 3.3V, which cannot be exceeded).

• Alternatively, in the "Command window" found in the debugger, type "AIN2 = 3.3".

This will execute the same result as the A/D converter window.

Fig. 16: System Tick Timer Window

Fig. 15: A/D Converter Window Fig. 17: GPIO Peripheral Window

12

8. Now interrupt enable must be asserted to simulate the value inputted on the AIN2 channel. To

enable the interrupt, locate the A/D Interrupt Enable box in the A/D Converter window. Check

off the ADINTEN2 box. Wait for a moment. Uncheck the box.

9. Wait for approximately 0.1sec (simulated time) or so. Your logic analyzer and watch windows

will update the inputted A/D information accordingly (Note this transition may take slightly

longer. To speedup the process, you may also click and unclick the "BURST" checkbox at the

top of the A/D Interrupt window).

10. Note the GPIO windows and how the speed of the LED flashes has also changed (will

transition at a slower pace).

11. Keep transitioning to different values using this simulated potentiometer method. Your

simulation should then resemble close to Figure 18.

Fig. 18: Simulating the Pot and A/D Conversion using Logic Analyzer

12. While your program continues to execute, watch the application using the Performance

Analyzer, Watch window, execution times in the Disassembly window, and the Execution

Profiler. This will help you analyze the application. Where does your program spend most of its

time executing?

13. Once you have finished executing your simulated blinky application, exit Debug mode by

clicking the icon once again.

14. Try executing blinky with the LCD display (i.e., uncomment the statement #define

_USE_LCD in Blinky.c). Go back to debug mode and execute the program. See how the

utilization times of your applications differ from the results you obtained by not including the

LCD.

3. Executing with Target Mode (MCB1700 Dev Board)
Up until this point, we have simulated the application. In this section we will focus on how to use target

mode to execute Blinky.c on the Keil MCB1700 development board. To upload the program to the

board's flash memory:

1. Since we want to use the LCD during the demo, ensure that the statement #define _USE_LCD

in Blinky.c is uncommented.

2. uncomment or delete uint16_t AD_dbg and redefine it as static volatile uint16_t AD_dbg.

3. Build the program to check for errors. Ensure that there are no errors. You might see few

warnings which are fine.

4. Right Click on SWO Trace as shown in Figure 12, select Options for Target 'SWO Trace and

select Utilities – uncheck Use Debug Driver and make sure ‘ULINK2/ME Cortex Debugger.

Click on Settings >> Flash Download and tick Reset and Run. Click OK. Then click OK to

close Options for Target ‘SWO Trace’.

5. With the dev board powered on, click on the load button located on top of the Project

13

Workspace column on the left side. Refer Troubleshoot note below If you see any Error related

to Ulink connection.

6. The bottom of uVision will present a horizontal blue bar line indicating the status of uploading

the software to the board:

Build target 'LPC1700'

linking...

Program Size: Code=5420 RO-data=6540 RW-data=40 ZI-data=608

"blinky.axf" - 0 Error(s), 0 Warning(s).

Load "S:\\...\\blinky.axf"

Erase Done.

Programming Done.

Verify OK.

Ensure a loading failure has not occurred. If an error has occurred, refer to the troubleshooting

section.

7. Writing should appear on the LCD, and the LEDs should be flashing at a constant rate.

8. Locate the potentiometer and rotate it either clockwise or counter clockwise.

9. This rotation will provide the board with a variable A/D reading (varying the resistance of the

voltage), which will be converted to a hex value (digital reading) and displayed on the LCD

screen. A bar graph will transition underneath accordingly. Similarly, the LEDs will flash at a

different rate depending on the reading of the channel.

Troubleshoot Note: If the board is powered on, with the USB`s connected and there still is a

problem uploading the program to Flash, this may be a VMWare connectivity issue. In the VMWare

window, select Virtual Machine >> Removable Devices >> Ulink-Me >> Connect (Disconnect from

Host). Try loading the program once again using the following steps.

Fig. 19: Executing Blinky.c on the MCB1700 Dev Board

4. Lab Assignment

With the code given to you in this tutorial, and the joystick (KBD.*) files and notes found in the

Appendix of this lab or Use Joystick from Device Run time environment, create a program which will

read the direction that the joystick is pressed on the MCB1700 dev board. Based on the direction of the

joystick, the following peripherals should function as follows:

14

• LCD - will display the last direction that the joystick has been tilted/pressed. Design a suitable

header and title on your LCD for demo purposes.

• LEDs - depending on the direction the joystick has been last tilted/pressed, an LED(s) will turn

on representing the direction. Examine LED.c from the tutorial to understand how LEDs are

turned on and off.

Have an option which enables or disables the LCD like the blinky tutorial. Disable the LCD when in

Debug mode. Analyze your program (your TA may ask you questions regarding simulation during your

demo).

This lab is due in week 3 at the beginning of your lab session. You are expected to deliver the following:

1. Print the source code for your lab including the main files, and any .h or .c files provided to

you during the tutorial that you may have altered for your application. Ensure that you include

the Ryerson University title page, dated and signed, with your code attached.

2. Present a demo displaying your joystick implementation, and the output to the LCD and LEDs

on the dev board. You may also be quizzed on your understanding of your joystick

implementation when in Debug mode. Be prepared.

15

Appendix

Peripheral Programming with the LPC1768

Peripheral pins on the LPC1768 are divided into 5 ports ranging from 0 to 4. Thus, during this lab, you

may have noticed that pin naming conventions (for GPIOs etc.) were in the format Pi.j, where i is the port

number and j in the pin number. For instance, if we look at the first LED on the MCB1700 dev board, we

will see the label P1.28, signifying that the LED can be found on Port 1, Pin 28. A pin may also take on

any one of four operating modes: GPIO (default), first alternate function, second alternate function, and

third alternate function. It is important to note that only pins on Ports 0 - 2 can generate interrupts.

To use the peripherals provided to you on the dev board, ensure that you abide by the following steps. Let

us take KBD.c as an example which can be found at the end of this Appendix. Note: masking register bits

with |= (...) will turn the specified port pins high, while &= ~(...) will alternatively place them as low.

1) Power up the Peripheral

 Looking at the NXP LPC17XX User Manual provided to you in the course directory, refer to Chapter 4:

Clocking and Power Control (pp. 63). The PCONP register is responsible for powering up various

peripherals on the board, represented as a total of 32 bits.

The joystick is considered as a GPIO and therefore we are concerned with bit 15 for powering up. Note

that the default value is '1' when the chip is reset. Thus, GPIOs are powered up by default on reset. When

coding for KBD_Init() we must then include the following code to power up the GPIO:

 LPC_SC->PCONP |= (1 << 15);

2) Specify the operating mode

The pins that need to be used by the peripherals must be connected to a Pin Connect Block

(LPC_PINCON macro in LPC17xx.h). The registers which connect the peripheral pins to the

LPC_PINCON are referred to as PINSEL, containing 11 registers in total.

The joystick pins are located on Port 1, pins 20, 23, 24, 25, and 26 (verify on the dev board). Referring to

the manual (i.e., Table 82 on pp. 109) we observe that PINSEL3 is responsible for configuring these pin

functions. Thus, we include the following in KBD.c:

/* P1.20, P1.23..26 is GPIO (Joystick) */

 LPC_PINCON->PINSEL3 &= ~((3<< 8)|(3<<14)|(3<<16)|(3<<18)|(3<<20));

These pins are automatically selected as GPIOs upon reset according to Table 82. Thus, we keep the "00"

value assigned to them (re-declare these values as good practice).

3) Specify the direction of the pin

The I/O direction of the peripheral pins must also be specified (input/output). The FIODIR registers are

used to set pin directions accordingly, where '0' represents input, and '1' is output. By default, all registers

are assigned as input. As the joystick is on port 1 in the LPC1768, we can configure specific pins as input

as follows (pins on the LPC_GPIO1 macro):

/* P1.20, P1.23..26 is input */

 LPC_GPIO1->FIODIR &= ~((1<<20)|(1<<23)|(1<<24)|(1<<25)|(1<<26));

/*--

16

 * Name: KBD.c

 * Purpose: MCB1700 low level Joystick

 * Version: V2.0

 *--

 * This file is part of the uVision/ARM development tools.

 * This software may only be used under the terms of a valid, current,

 * end user licence from KEIL for a compatible version of KEIL software

 * development tools. Nothing else gives you the right to use this software.

 *

 * This software is supplied "AS IS" without warranties of any kind.

 *

 * Copyright (c) 2008 Keil - An ARM Company. All rights reserved.

 *--

 * History:

 * V2.0 - updated by Anita Tino for LPC1768

 --/

#include <LPC17xx.H> /* LPC17xx definitions */

#include "KBD.h"

uint32_t KBD_val = 0;

/*--

 initialize Joystick

 --/

void KBD_Init (void) {

 LPC_SC->PCONP |= (1 << 15); /* enable power to GPIO & IOCON */

/* P1.20, P1.23..26 is GPIO (Joystick) */

 LPC_PINCON->PINSEL3 &= ~((3<< 8)|(3<<14)|(3<<16)|(3<<18)|(3<<20));

/* P1.20, P1.23..26 is input */

 LPC_GPIO1->FIODIR &= ~((1<<20)|(1<<23)|(1<<24)|(1<<25)|(1<<26));

}

/*--

 Get Joystick value.. part of get_button

 --/

uint32_t KBD_get (void) {

 uint32_t kbd_val;

 kbd_val = (LPC_GPIO1->FIOPIN >> 20) & KBD_MASK;

 return (kbd_val);

}

/*--

 Get Joystick value

 --/

uint32_t get_button (void) {

 uint32_t val = 0;

 val = KBD_get(); /* read Joystick state */

 val = (~val & KBD_MASK); /* key pressed is read as a non '0' value*/

 return (val);

}

17

/*--

 * Name: KBD.h

 * Purpose: MCB1700 low level Joystick definitions

 * Version: V2.00

 * Note(s): Positioning of Joystick on MCB1700

 * Revised by: Anita Tino

 *--

 * This file is part of the uVision/ARM development tools.

 * This software may only be used under the terms of a valid, current,

 * end user licence from KEIL for a compatible version of KEIL software

 * development tools. Nothing else gives you the right to use this software.

 *

 * Copyright (c) 2008 Keil - An ARM Company. All rights reserved.

 --/

#ifndef __KBD_H

#define __KBD_H

#define KBD_SELECT 0x01

#define KBD_UP 0x08

#define KBD_RIGHT 0x10

#define KBD_DOWN 0x20

#define KBD_LEFT 0x40

#define KBD_MASK 0x79

extern uint32_t KBD_val;

extern void KBD_Init(void);

extern uint32_t KBD_get (void);

extern uint32_t get_button (void);

#endif

