
h
A
cts

it
nd

or,
ies
d

e
nia.
,

vel
-
.
l,
ith
SI

to
d
es
ny

g
r
s

IP,
ng
s,
ny
d

ity
a
to

System Level Design Using the SystemC Modeling Platform1

Joachim Gerlach, University of Tübingen, Germany
gerlach@informatik.uni-tuebingen.de

Wolfgang Rosenstiel, University of Tübingen, Germany
rosenstiel@informatik.uni-tuebingen.de

Abstract

This paper gives an overview of the SystemC modeling platform and outlines the features supported by the
SystemC class library. The use of the modeling platform is shown in terms of an example.
1. Introduction1

As system complexity increases and design time
shrinks, it becomes extremely important that system
specification be captured in a form that leads to
unambiguous interpretation by the system
implementers. The most common form of specification
capture, a written document, has several drawbacks:
natural language is ambiguous and open to
interpretation; the specification may be incomplete and
inconsistent; and, finally, there is no way to verify the
correctness of such a specification. These drawbacks
have driven many system, hardware, and software
designers to createexecutable specificationsfor their
systems. For the most part, these are functional models
written in a language like C or C++. These languages
are chosen for three reasons: they provide the control
and data abstractions necessary to develop compact
and efficient system descriptions; most systems
contain both hardware and software and for the
software, one of these languages is the natural choice;
designers are familiar with these languages and the
large number of development tools associated with
them. A functional model in C or C++ is essentially a
program that when executed exhibits the same
behavior as the system. However, creating a functional
model in a programming language like C or C++ is
problematic because these languages are intended for
programming software and do not have the constructs
necessary to model timing, concurrency, and reactive
behavior, all of which are needed to create accurate
models of systems containing both hardware and
software. To model concurrency, timing, and
reactivity, new constructs need to be added to C++. An
object-oriented programming language like C++

provides the ability to extend a language throug
classes, without adding new syntactic constructs.
class-based approach to providing modeling constru
is superior to a proprietary new language because
allows designers to continue to use the language a
tools they are familiar with.

2. The SystemC Approach
On September 1999, leading EDA, IP, semiconduct
systems and embedded software compan
announced the "Open SystemC Initiative" (OSCI) an
immediate availability of a C++ modeling platform
called SystemC for free web download at th
Embedded Systems Conference, San Jose, Califor
Achieving a break-through in industry cooperation
SystemC is the first result of the initiative, which
enables, promotes and accelerates system-le
intellectual property (IP) model exchange and co
design using a common C++ modeling platform
Through an Open Community Licensing mode
designers can create, validate and share models w
other companies using SystemC and a standard AN
C++ compiler. In addition, electronic design
automation (EDA) vendors have complete access
the SystemC modeling platform required to buil
interoperable tools. There are no licensing fe
associated with the use of SystemC, and any compa
is free to join and participate. Backed by a growin
community of well over 45 charter membe
companies, the Open SystemC Initiative include
representation from the systems, semiconductor,
embedded software and EDA industries. The steeri
group includes ARM, CoWare, Inc., Cygnus Solution
Ericsson, Fujitsu, Infineon, Lucent Technologies, So
Corporation STMicroelectronics, Synopsys, Inc. an
Texas Instruments. The goal of the Open Commun
Licensing model is to provide a foundation to build
market upon, and the role of the steering group is

1. This work was partially supported by Synopsys,
Inc., Mountain View, CA.

le
as
g

ke
nts

.9
he
is
.

s
t
in

in-
-

n-
be

ee
rd-
ks,

ed
ne
e

o
ft-
s.
t
s.
d

provide an environment of structured innovation
ensuring that interoperability is retained.

In regard of the excellent background of the Open
SystemC Initiative, SystemC is on the best way to
become a de-facto-standard for system-level
specification. This paper gives an overview of the
SystemC modeling platform and outlines the features
supported by the SystemC class library.

3. Overview of the SystemC Design
Flow

The following overview refers to SystemC version 0.9,
which is currently available for free web download at
www.systemc.org. Extensions supported by SystemC
version 1.0 are summarized in a later section. SystemC
1.0 is announce on March 2000.

In a SystemC description, the fundamental building
block is a process. A process is like a C or C++
function that implements behavior. A complete system
description consists of multiple concurrent processes.
Processes communicate with one another through
signals, and explicitclockscan be used to order events
and synchronize processes. All the building blocks are
objects (classes) that are part of SystemC. Special data
types required to model hardware efficiently are also
provided as a part of the library. SystemC is written
using the full C++ language. A user just needs to
understand how to use the classes and functions
provided by the library, but she/he does not need to
know how they are implemented. Using the SystemC
library, a system can be specified at various levels of
abstraction. At the highest level, only the functionality
of the system may be modeled. For hardware
implementation, models can be written either in a
functional style or in a register-transfer level style. The
software part of a system can be naturally described in
C or C++. Interfaces between software and hardware
and between hardware blocks can be easily described
either at the transaction-accurate level or at the cycle-
accurate level. Moreover, different parts of the system
can be modeled at different levels of abstraction and
these models can co-exist during system simulation. C/
C++ and the SystemC classes can be used not only for
the development of the system, but also for the
testbench. The functionality of the SystemC classes
together with the object-oriented nature of C++
provides a powerful mechanism for developing
compact, efficient, and reusable testbenches. SystemC
consists of a set of header files describing the classes
and a link library that contains the simulation kernel.
The header file can be used by the designer in her/his
program. Any ANSI C++-compliant compiler can
compile SystemC, together with the program. During
linking, the SystemC library, which contains the

simulation kernel is used. The resulting executab
serves as a simulator for the system described,
shown in figure 1. Choosing C/C++ as the modelin
language, a host of software development tools li
debuggers and integrated development environme
can be leveraged.

4. Features of the SystemC Class
Library

In the following, some features of SystemC version 0
are presented. More details can be found in t
SystemC Release 0.9 Reference Manual, which
enclosed in the open source distribution of SystemC

• Modules: SystemC has a notion of a container clas
called a module. This is a hierarchical entity tha
can have other modules or processes contained
it. Modules and processes can have a functional
terface, which allows to hide implementation de
tails and, for this, include blocks of IP.

• Processes: Processes are used to describe functio
ality. Processes can be stand alone entities or can
contained inside modules. SystemC provides thr
different process abstractions to be used by ha
ware and software designers: asynchronous bloc
synchronous and asynchronous processes.

• Signals: SystemC supports resolved and unresolv
signals. Resolved signals can have more than o
driver (a bus) while unresolved signals can hav
only one driver.

• Rich set of signal types: To support modeling at dif-
ferent levels of abstraction, from the functional t
the register-transfer level, as well as to support so
ware, SystemC supports a rich set of signal type
This is different than languages like Verilog tha
only support bit and bit-vectors as signal type
SystemC supports both two-valued and four-value
signal types.

Figure 1. SystemC Design Flow.

executable = simulator

„make“

source files for system
and testbenches

header files

libraries

C/C++

compiler

linker

development
environment

SystemC
class library

S Y S T E M C

ch
t
C
d
st

n-
rt
e

er
a-
n

a-

-
t

.0
-
d
o
v-
le

g
f

der
r
o

d

• Rich set of data types: SystemC has a rich set of
data types to support multiple design domains and
abstraction levels. The fixed precision types allow
fast simulation. The arbitrary precision types can be
used for computations with large numbers and to
model large busses. SystemC supports both two-
valued and four-valued data types. There is no size
limitation for arbitrary precision SystemC data
types. SystemC also includes a rich set of overload-
ed operators and type conversion mechanisms for
those data types.

• Clocks: SystemC has the notion of clocks as special
signals. Clocks are the timekeepers of the system
during simulation. Multiple clocks, with arbitrary
phase relationship, are supported.

• Reactivity: For modeling reactive behavior,
SystemC provides mechanisms for waiting on
clock edges, events, and signal transitions.
SystemC also supports watching for a certain event,
regardless of the execution stage of the process (the
most common example is the watching of a reset
signal).

• Multiple abstraction levels: SystemC supports
modeling at different levels of abstraction, ranging
from high level functional models to detailed regis-
ter-transfer level models. It supports iterative re-
finement of high level models into lower levels of
abstraction.

• Creating functional models: For creating abstract
functional models, SystemC supports a communi-
cation primitive called channel. A channel is a spe-
cial type of signal that synchronous and
asynchronous processes may use to communicate
with each another. The capabilities provided by a
channel are different from those provided by a sig-
nal. Though writing to and reading from channels
take some number of clock cycles, the intent of us-
ing channels is not to focus on the time required for
communication. Channels are meant to be used in
the initial stages of modeling when the primary in-
terest is the system functionality. In such situations,
channels provide mechanisms for guaranteed data
delivery. Channels implicitly provide the necessary
handshaking to ensure correct delivery of data from
the sender to the receiver.

• Cycle-based simulation: SystemC includes a cycle-
based simulation kernel that allows high speed sim-
ulation. SystemC also provides mechanisms for
simulation control at any point of the input specifi-
cation.

• Debugging support and waveform tracing:
SystemC classes have run-time error checking that
can be turned on during compilation. The SystemC
kernel contains basic routines to dump waveforms

to a file (VCD, WIF, and ISDB format), which can
be viewed by typical waveform viewers.

SystemC version 1.0, which is announced on Mar
2000, will extend SystemC 0.9 for some importan
features. More details can be found in the System
Version 1.0 Draft Specification, which is also enclose
in the open source distribution of SystemC. The mo
important extensions of SystemC 1.0 are:

• Modules: In SystemC 1.0, the fundamental building
block will be a module. A module, as in SystemC
0.9, is a pure container class. Processes will be co
tained inside modules and modules will suppo
multiple processes inside them. Modules will hav
(single-direction and/or bidirectional) ports which
they connect to other modules.

• Fixed-point data types: SystemC 1.0 will provide
arbitrary precision fixed-point data types, togeth
with a rich set of overloaded operators, quantiz
tion and overflow modes, and type conversio
mechanisms.

• Communication protocols: In SystemC 1.0, channel
functionality and implementation will be signifi-
cantly enhanced to support complex communic
tion protocols. Multi-level communication
semantics will be provided which enables to de
scribe SoC and system I/O protocols with differen
levels of communication abstraction. SystemC 1
will provide abstract ports that include communica
tion semantics defined in the form of protocols, an
multi-level communication semantics that allows t
describe communication interfaces at different le
els of abstraction (data transaction level, bus-cyc
level, clock-cycle level).

5. Example
In the following, the use of the SystemC modelin
platform is shown in terms of an example. Objective o
this quite small example is to give an overview of how
systems are modeled using SystemC, so the rea
should not concentrate on system functionality o
system complexity. The example consists of tw
synchronous processes,process_1 and process_2,
communicating with one another.process_1
increments the value of an integer input port by 5 an

Figure 2. Example system.

a

ready_a

b

ready_b
„+5“

b

ready_b

a

ready_a
„+3“

int

bool

int

bool

process_1

process_2

e,

ion
ch

p-
e
de
d
e
es

or
re
al,
ck
s
n,
ctor

es
ss
o
he
assigns the result to an integer output port,process_2
increments the value of an integer input port by 3 and
assigns the result to an integer output port. Both
processes are connected in a way that an integer value
is alternately incremented byprocess_1andprocess_2.
Process synchron-ization is done via boolean signals
(see figure 2). Figure 3 shows the header and
implementation code file ofprocess_1. A process is
encapsulated in a C++ class of typestruct. process_1is
implemented to be a synchronous process, which is
done by deriving it from the SystemCsc_syncbase
class. Input and output ports of the process are
described by data elements of the class. Input ports of
the process are declared asconst-qualified references
to sc_signal<T>(whereT corresponds to an arbitrary
data type). Output ports are declared in the similar way,
but are notconst-qualified. The next major part of the

process declaration is the declaration of the constructor
function. The first argument of the constructor function
is aconst-qualified pointer to a string. This will be the
name of the process when the constructor is called
during process instantiation. The second argument is a
reference to the clock edge that the process is sensitive
to. The subsequent arguments are the input and output
ports of the process. Initializers are used to connect
process ports to signals (for example, porta gets
connected to signalA in the constructor function of
process_1). The process functionality is specified in a
member functionvoid entry(). process_1waits until

the boolean input signalready_a changes totrue.
Then, input porta is read and the corresponding
integer value is assigned to a local integer variablev. v
is incremented by 5, displayed for evaluation purpos
and assigned to portb. After this, the boolean input
signal ready_b is set to true for one clock cycle.
process_2is specified in a very similar way, figure 4
shows the corresponding header and implemen-tat
code file. The next step is to create an instance of ea

process and tie them together with signals in a to
level routine. This routine must have the nam
sc_main, figure 5 shows the corresponding source co
file. In the top-level routine, all process header files an
the file systemc.hhave to be included, because thes
files contain the declaration for all the process class
and SystemC library functions. Inside thesc_main
routine, signals that the processes use f
communication were declared. After the signals a
instantiated, the clock object, which is a special sign
is instantiated. In our example, the name of the clo
object isClock, it has a period of 20 time units, and ha
a 50% duty cycle. Recall that in a SystemC descriptio
processes are classes, and all classes have constru
functions. Therefore, instantiating a process involv
providing the constructor of the corresponding cla
with the right set of arguments. This is equivalent t
connecting the ports of the process to signals. T
following parts insc_maininclude the declaration of
an output file for waveform tracing and the

Figure 3.process_1.h and process_1.cc.

// header file:process_1.h

struct process_1: sc_sync
{

// Ports
const sc_signal<int>& a;
const sc_signal<bool>& ready_a;
sc_signal<int>& b;
sc_signal<bool>& ready_b;

// Constructor
process_1(const char *NAME,sc_clock_edge& TICK,

const sc_signal<int>& A,
const sc_signal<bool>& READY_A,
sc_signal<int>& B,
sc_signal<bool>& READY_B)

: sc_sync(NAME,TICK),
a(A),
ready_a(READY_A),
b(B),
ready_b(READY_B)

{
}

// Process functionality
void entry();

};

// implementation file:process_1.cc

#include "systemc.h"
#include "process_1.h"

void process_1::entry()
{

int v;

while (true)
{

wait_until(ready_a.delayed()
== true);

v = a.read();
v += 5;
cout << "P1: v = "

<< v << endl;
b.write(v);

ready_b.write(true);
wait();
ready_b.write(false);

}
}

// header file:process_2.h

struct process_2: sc_sync
{

// Ports
const sc_signal<int>& a;
const sc_signal<bool>& ready_a;
sc_signal<int>& b;
sc_signal<bool>& ready_b;

// Constructor
process_2(const char *NAME,sc_clock_edge& TICK,

const sc_signal<int>& A,
const sc_signal<bool>& READY_A,
sc_signal<int>& B,
sc_signal<bool>& READY_B)

: sc_sync(NAME,TICK),
a(A),
ready_a(READY_A),
b(B),
ready_b(READY_B)

{
}

// Process functionality
void entry();

};

// implementation file:process_2.cc

#include "systemc.h"
#include "process_2.h"

void process_2::entry()
{

int v;

while (true)
{

wait_until(ready_a.delayed()
== true);

v = a.read();
v += 3;
cout << "P2: v = "

<< v << endl;
b.write(v);

ready_b.write(true);
wait();
ready_b.write(false);

}
}

Figure 4.process_2.h and process_2.cc.

t
e
m
ss
s
s
.

e
e
ith

s

C
e
on
n
the
,
are
,
o-
specification of a set of signals to be traced during
simulation. Furthermore, an initialization of the signals

is done. Once all processes are instantiated and
connected with signals, the clock has to be generated
in order to simulate the system. This is done by the
SystemC functionsc_start(n), wheren is the number
of time units for which the simulation is intended to
last. In our example, the entire system consists of three
implementation files (process_1.cc, process_2.cc,
main.cc) and two header files (process_1.h,
process_2.h). The implementation files need to be
compiled individually and finally linked together with
SystemC. In addition, compilation of each file requires
header files from SystemC. Compilation can be done
using any standard ANSI C++ compiler (for example,

gnu gcc). Executing the resulting binary is equivalen
to run a simulation of the system description for th
specified number of time units. In our example, syste
behavior can be checked by observing the proce
outputs. Figure 6 shows the first view output line
produced when executing the binary. Figure 7 show
parts of the waveform file produced during simulation
The execution of the binary (which means, th
simulation of the system description for 100000 tim
units) takes 0.31 seconds on a Sun Ultra Sparc 5 w
384 MByte of main memory (for runtime
measurement, the writing of a waveform file wa
skipped).

6. Conclusion
This paper gives a brief overview of the new System
modeling platform. SystemC provides innovativ
mechanisms for C++-based system-level descripti
and is freely available for everybody through an ope
source licensing model. Because of those facts and
continuously growing number of leading EDA, IP
semiconductor, systems and embedded softw
companies joining the Open SystemC Initiative
SystemC is on the best way of becoming a de-fact
standard for system-level specification.

// implementation file:main.cc

#include "systemc.h"
#include "process_1.h"
#include "process_2.h"

int sc_main(int ac,char *av[])
{

sc_signal<int> s1 ("Signal-1");
sc_signal<int> s2 ("Signal-2");
sc_signal<bool> ready_s1 ("Ready-1");
sc_signal<bool> ready_s2 ("Ready-2");

sc_clock clock("Clock",20,0.5,0.0);

process_1 p1 ("P1",clock.pos(),s1,ready_s1,s2,ready_s2);
process_2 p2 ("P2",clock.pos(),s2,ready_s2,s1,ready_s1);

sc_trace_file *tf = sc_create_wif_trace_file("trace_file");
sc_trace(tf,s1,"Signal-1");
sc_trace(tf,s2,"Signal-2");
sc_trace(tf,ready_s1,"Ready-1");
sc_trace(tf,ready_s2,"Ready-2");

s1.write(0);
s2.write(0);
ready_s1.write(true);
ready_s2.write(false);

sc_start(100000);

return 0;
}

Figure 5. Top-level routinemain.cc.

SystemC (TM) Version 0.9 --- Sep 28 1999 14:32:42
 ALL RIGHTS RESERVED
 Copyright (c) 1988-1999 by Synopsys, Inc.
P1: v = 5
P2: v = 8
P1: v = 13
P2: v = 16
P1: v = 21
P2: v = 24
P1: v = 29
P2: v = 32
P1: v = 37
P2: v = 40
P1: v = 45
P2: v = 48
P1: v = 53
.....

Figure 6. Process outputs.

Figure 7. Waveform view of a SystemC simulation.

	System Level Design Using the SystemC Modeling Platform 1
	1. Introduction
	2. The SystemC Approach
	3. Overview of the SystemC Design ����Flow
	Figure 1. SystemC Design Flow.

	4. Features of the SystemC Class ����Library
	5. Example
	Figure 2. Example system.
	Figure 3. process_1.h and process_1.cc.
	Figure 4. process_2.h and process_2.cc.
	Figure 5. Top-level routine main.cc.
	Figure 6. Process outputs.

	6. Conclusion
	Figure 7. Waveform view of a SystemC simulation.

