System Level Design Using the SystemC Modeling Platforin

Joachim Gerlach, University of Tubingen, Germany
gerlach@informatik.uni-tuebingen.de

Wolfgang Rosenstiel, University of Tubingen, Germany
rosenstiel@informatik.uni-tuebingen.de

Abstract

This paper gives an overview of the SystemC modeling platform and outlines the features supported by the
SystemC class library. The use of the modeling platform is shown in terms of an example.

1. Introduction provides the ability to extend a language through
classes, without adding new syntactic constructs. A
As system complexity increases and design timeglass-based approach to providing modeling constructs
shrinks, it becomes extremely important that systems superior to a proprietary new language because it
specification be captured in a form that leads toallows designers to continue to use the language and
unambiguous interpretation by the systemtools they are familiar with.
implementers. The most common form of specification
capture, a written document, has several drawbacks) The SystemC Approach
natural language is ambiguous and open to
interpretation; the specification may be incomplete andOn September 1999, leading EDA, 1P, semiconductor,
inconsistent; and, finally, there is no way to verify the systems and embedded software companies
correctness of such a specification. These drawbackannounced the "Open SystemC Initiative” (OSCI) and
have driven many system, hardware, and softwarémmediate availability of a C++ modeling platform
designers to createxecutable specificatiorfer their ~ called SystemC for free web download at the
systems. For the most part, these are functional modelembedded Systems Conference, San Jose, California.
written in a language like C or C++. These languagesAchieving a break-through in industry cooperation,
are chosen for three reasons: they provide the contrdbystemC is the first result of the initiative, which
and data abstractions necessary to develop compaenables, promotes and accelerates system-level
and efficient system descriptions; most systemdntellectual property (IP) model exchange and co-
contain both hardware and software and for thedesign using a common C++ modeling platform.
software, one of these languages is the natural choicéihrough an Open Community Licensing model,
designers are familiar with these languages and theesigners can create, validate and share models with
large number of development tools associated withother companies using SystemC and a standard ANSI
them. A functional model in C or C++ is essentially a C++ compiler. In addition, electronic design
program that when executed exhibits the sameautomation (EDA) vendors have complete access to
behavior as the system. However, creating a functionalhe SystemC modeling platform required to build
model in a programming language like C or C++ is interoperable tools. There are no licensing fees
problematic because these languages are intended fassociated with the use of SystemC, and any company
programming software and do not have the constructss free to join and participate. Backed by a growing
necessary to model timing, concurrency, and reactiveommunity of well over 45 charter member
behavior, all of which are needed to create accurat€ompanies, the Open SystemC Initiative includes
models of systems containing both hardware andepresentation from the systems, semiconductor, IP,
software. To model concurrency, timing, and embedded software and EDA industries. The steering
reactivity, new constructs need to be added to C++. Argroup includes ARM, CoWare, Inc., Cygnus Solutions,
object-oriented programming language like C++ Ericsson, Fujitsu, Infineon, Lucent Technologies, Sony
Corporation STMicroelectronics, Synopsys, Inc. and
Texas Instruments. The goal of the Open Community
1. This work was partially supported by Synopsys, Licensing model is to provide a foundation to build a
Inc., Mountain View, CA. market upon, and the role of the steering group is to

provide an environment of structured innovation simulation kernel is used. The resulting executable

ensuring that interoperability is retained.

In regard of the excellent background of the Open
SystemC Initiative, SystemC is on the best way to
become a de-facto-standard for system-leve
specification. This paper gives an overview of the
SystemC modeling platform and outlines the features
supported by the SystemC class library.

3. Overview of the SystemC Design
Flow

The following overview refers to SystemC version 0.9,
which is currently available for free web download at
www.systemc.orgextensions supported by SystemC
version 1.0 are summarized in a later section. SystemC
1.0 is announce on March 2000.

In a SystemC description, the fundamental building
block is aprocess A process is like a C or C++
function that implements behavior. A complete system
description consists of multiple concurrent processes
Processes communicate with one another through
signals and explicitclockscan be used to order events

serves as a simulator for the system described, as
shown in figure 1. Choosing C/C++ as the modeling

language, a host of software development tools like

Idebuggers and integrated development environments
can be leveraged.

source files for system
and testbenches

SystemC
class library

libraries

.make*

i

executable = simulator

Figure 1. SystemC Design Flow.

and synchronize processes. All the building blocks are4- Features of the SyStemC Class
objects (classes) that are part of SystemC. Special data Library

types required to model hardware efficiently are also

provided as a part of the library. SystemC is written In the following, some features of SystemC version 0.9
using the full C++ language. A user just needs toare presented. More details can be found in the
understand how to use the classes and functionSystemC Release 0.9 Reference Manual, which is
provided by the library, but she/he does not need teenclosed in the open source distribution of SystemC.

know how they are implemented. Using the SystemC,
library, a system can be specified at various levels of
abstraction. At the highest level, only the functionality

of the system may be modeled. For hardware
implementation, models can be written either in a
functional style or in a register-transfer level style. The

software part of a system can be naturally described in
C or C++. Interfaces between software and hardwaré

and between hardware blocks can be easily described

either at the transaction-accurate level or at the cycle-
accurate level. Moreover, different parts of the system
can be modeled at different levels of abstraction and
these models can co-exist during system simulation. C/

C++ and the SystemC classes can be used not only for

the development of the system, but also for the
testbench. The functionality of the SystemC classes
together with the object-oriented nature of C++
provides a powerful mechanism for developing

compact, efficient, and reusable testbenches. SystemC
consists of a set of header files describing the classes

and a link library that contains the simulation kernel.
The header file can be used by the designer in her/his
program. Any ANSI C++-compliant compiler can
compile SystemC, together with the program. During
linking, the SystemC library, which contains the

Modules SystemC has a notion of a container class
called a module. This is a hierarchical entity that
can have other modules or processes contained in
it. Modules and processes can have a functional in-
terface, which allows to hide implementation de-
tails and, for this, include blocks of IP.

ProcessesProcesses are used to describe function-

ality. Processes can be stand alone entities or can be
contained inside modules. SystemC provides three

different process abstractions to be used by hard-

ware and software designers: asynchronous blocks,
synchronous and asynchronous processes.

Signals SystemC supports resolved and unresolved
signals. Resolved signals can have more than one
driver (a bus) while unresolved signals can have

only one driver.

Rich set of signal type3o support modeling at dif-
ferent levels of abstraction, from the functional to
the register-transfer level, as well as to support soft-
ware, SystemC supports a rich set of signal types.
This is different than languages like Verilog that
only support bit and bit-vectors as signal types.
SystemC supports both two-valued and four-valued
signal types.

* Rich set of data typesSystemC has a rich set of

data types to support multiple design domains and
abstraction levels. The fixed precision types allow
fast simulation. The arbitrary precision types can b
used for computations with large numbers and t

valued and four-valued data types. There is no siz
limitation for arbitrary precision SystemC data
types. SystemC also includes a rich set of overload-
ed operators and type conversion mechanisms fot
those data types.

Clocks SystemC has the notion of clocks as special
signals. Clocks are the timekeepers of the system
during simulation. Multiple clocks, with arbitrary
phase relationship, are supported.

Reactivity For modeling reactive behavior,
SystemC provides mechanisms for waiting on
clock edges, events, and signal transitions.
SystemC also supports watching for a certain event,
regardless of the execution stage of the process (the
most common example is the watching of a reset
signal). *

Multiple abstraction levels SystemC supports
modeling at different levels of abstraction, ranging
from high level functional models to detailed regis-
ter-transfer level models. It supports iterative re-
finement of high level models into lower levels of
abstraction.

Creating functional modeisFor creating abstract

functional models, SystemC supports a communi-
cation primitive called channel. A channel is a spe-
cial type of signal that synchronous and

to a file (VCD, WIF, and ISDB format), which can
be viewed by typical waveform viewers.

SystemC version 1.0, which is announced on March
©2000, will extend SystemC 0.9 for some important

Ofeatures. More details can be found in the SystemC
model large busses. SystemC supports both twog,,

rsion 1.0 Draft Specification, which is also enclosed

n the open source distribution of SystemC. The most
important extensions of SystemC 1.0 are:

Modules In SystemC 1.0, the fundamental building
block will be a module. A module, as in SystemC
0.9, is a pure container class. Processes will be con-
tained inside modules and modules will support
multiple processes inside them. Modules will have
(single-direction and/or bidirectional) ports which
they connect to other modules.

Fixed-point data typesSystemC 1.0 will provide
arbitrary precision fixed-point data types, together
with a rich set of overloaded operators, quantiza-
tion and overflow modes, and type conversion
mechanisms.

Communication protocol$n SystemC 1.0, channel
functionality and implementation will be signifi-
cantly enhanced to support complex communica-
tion protocols. Multi-level communication
semantics will be provided which enables to de-
scribe SoC and system 1/O protocols with different
levels of communication abstraction. SystemC 1.0
will provide abstract ports that include communica-
tion semantics defined in the form of protocols, and
multi-level communication semantics that allows to
describe communication interfaces at different lev-
els of abstraction (data transaction level, bus-cycle

asynchronous processes may use to communicate level, clock-cycle level).

with each another. The capabilities provided by a

channel are different from those provided by a sig-5, Example

nal. Though writing to and reading from channels

take some number of clock cycles, the intent of us-In the following, the use of the SystemC modeling
ing channels is not to focus on the time required forPlatform is shown in terms of an example. Objective of
communication. Channels are meant to be used ifhis quite small example is to give an overview of how
the initial stages of modeling when the primary in- Systems are modeled using SystemC, so the reader
terest is the system functionality. In such situations Should not concentrate on system functionality or
channels provide mechanisms for guaranteed datgyStem complexity. The example consists of two
delivery. Channels implicitly provide the necessary Synchronous processeqrocess_land process_2

handshaking to ensure correct delivery of data fromCOmmunicating ~ with one another. process_1
the sender to the receiver. increments the value of an integer input port by 5 and

Cycle-based simulatiorsystemC includes a cycle- process_1
based simulation kernel that allows high speed sim- _int T
, : _ e, b
u.Iatlon.. SystemC also proyldes mephamsms_f_or &L»l ready_a ready L
simulation control at any point of the input specifi-
cation. process, 2
Debugging support and waveform tracing b +3" a = int
SystemC classes have run-time error checking that ready_b ready_dJa——209 |

can be turned on during compilation. The SystemC

kernel contains basic routines to dump waveforms Figure 2. Example system.

assigns the result to an integer output pprocess_2 the boolean input signaleady achanges totrue.
increments the value of an integer input port by 3 andThen, input porta is read and the corresponding
assigns the result to an integer output port. Bothinteger value is assigned to a local integer variable
processes are connected in a way that an integer valus incremented by 5, displayed for evaluation purpose,
is alternately incremented Ipyocess_hndprocess_2 and assigned to poti After this, the boolean input
Process synchron-ization is done via boolean signalsignal ready bis set totrue for one clock cycle.
(see figure 2). Figure 3 shows the header androcess_2s specified in a very similar way, figure 4
implementation code file oprocess_1A process is shows the corresponding header and implemen-tation
encapsulated in a C++ class of tygteuct process_1s code file. The next step is to create an instance of each
implemented to be a synchronous process, which is
done by deriving it from the System€&t_syncbase
class. Input and output ports of the process arg _

i struct process_2: sc_sync
described by data elements of the class. Input ports q {
the process are declared @mstqualified references | conet s signal<int8 a
to sc_signal<T>(whereT corresponds to an arbitrary 22?2591‘;752%?353?"“& ready_a;
data type). Output ports are declared in the similar way] sc_signal<bool>& ready_b;

but are notonstqualified. The next major part of the | constructor
process_2(const char *NAME,sc_clock_edge& TIQ
const sc_signal<int>& A,
const sc_signal<bool>& READY_A,

/I header fileprocess_2.h

A

I/l header fileprocess_1.h sc_signal<int>& B,
sC_ S|gnal<bool>& READY_B] // implementation fileprocess_2.cc|
struct process_1: sc_sync sc_sync(NAME,TICK),
{ a(), #include "systemc.h"
/I Ports ready_a(READY_A), #include "process_2.h"
const sc_signal<int>& a; B),
const sc_signal<bool>& ready_a; ready_b(READY_B) void process_2:entry()
sc_signal<int>& b; { {
sc_signal<bool>& ready_b; } intv;
/I Constructor /I Process functionality while (true)
process_1(const char *NAME,sc_clock_edge& TIGK, void entry();
const sc_signal<int>& A, b wait_until(ready_a.delayed()
const sc_signal<bool>& READY_A, == true);
sc_signal<int>& B, - —L v = a.read();
SC_ S|gnal<bool>& READY _B| // implementation fileprocess_1.cq V= 3:
sc_sync(NAME,TICK), cout <<"P2:v="
a #include "systemc.h" <<v<<endl;
ready a(READY_A), | #include "process_1.h" b.write(v);
B),)
ready b(READY_B) void process_1::entry() ready_b.write(true);
{ . wait();
} intv;) ready_b.write(false);
/I Process functionality while (true) }
void entry(); it_until(read delayed()
: wait_until(ready_a.delaye .
! == trie); Figure 4. process_2.tand process_2.cc
v = a.read();
vV +=5;
cout =< "PL v =" process and tie them together with signals in a top-
b.write(v); ' level routine. This routine must have the name
ready_b.write(true); sc_mainfigure 5 shows the corresponding source code
wait(; _ file. In the top-level routine, all process header files and
ready_b.write(false); . .
) } the file systemc.thave to be included, because these
files contain the declaration for all the process classes
Figure 3.process_1.fand process_1.cc and SystemC library functions. Inside tlse_main

routine, signals that the processes use for
process declaration is the declaration of the constructocommunication were declared. After the signals are
function. The first argument of the constructor function instantiated, the clock object, which is a special signal,
is aconstqualified pointer to a string. This will be the is instantiated. In our example, the name of the clock
name of the process when the constructor is calledbjectisClock it has a period of 20 time units, and has
during process instantiation. The second argument is a 50% duty cycle. Recall that in a SystemC description,
reference to the clock edge that the process is sensitiverocesses are classes, and all classes have constructor
to. The subsequent arguments are the input and outpdinctions. Therefore, instantiating a process involves
ports of the process. Initializers are used to connecproviding the constructor of the corresponding class
process ports to signals (for example, partgets with the right set of arguments. This is equivalent to
connected to signah in the constructor function of connecting the ports of the process to signals. The
process_). The process functionality is specified in a following parts insc_maininclude the declaration of
member functionvoid entry() process_lwaits untii an output file for waveform tracing and the

specification of a set of signals to be traced duringgnu gcg. Executing the resulting binary is equivalent
simulation. Furthermore, aninitialization of the signals to run a simulation of the system description for the
specified number of time units. In our example, system
behavior can be checked by observing the process
outputs. Figure 6 shows the first view output lines

/I implementation filemain.cc

finclude II;}’géﬁrgg-Th" produced when executing the binary. Figure 7 shows
#include “process_2.h" parts of the waveform file produced during simulation.
int sc_main(int ac,char *av[]) The execution of the binary (which means, the
sc_signal<int> s1 (Signal-1"); sm_1ulat|on of the system description for 100000 time
sc_signal<int> s2 ("Signal-2"); . units) takes 0.31 seconds on a Sun Ultra Sparc 5 with
sc_signal<bool> ready_s1 ("Ready-1"); . .
sc_signal<bool> ready_s2 ("Ready-2"); 384 MByte of main memory (for runtime
sc_clock clock("Clock”,20,0.5,0.0); measurement, the writing of a waveform file was
process_1 pl ("P1",clock.pos(),s1,ready_s1,s2,ready_$2); Sklpped)'
process_2 p2 ("P2",clock.pos(),s2,ready_s2,s1,ready_$1);
sc_trace_file *tf = sc_create_wif_trace_file("trace_file") SystemC (TM) VerSiORI_OL-gR G |_|31?£ I%BE é%%%/]é%:sz%z
sc_trace(tf,s1,"Signal-1"); .
sc:tracegtf,sz,"Signal-z'g;) Copyright (c) 1988-1999 by Synopsys, Inc.
sc_trace(tf,ready_s1,"Ready-1"); Pl: vz =
sc_trace(tf,ready_s2,"Ready-2"); gi z = 515 3
sl.write(0); sz v=16
s2.write(0); Pl: v=21
ready_s1.write(true); PZ; v= 24
ready_s2.write(false); g% z = gg
sc_start(100000); E%g z = 3(7)
return 0; g% vz ﬁg
! P1:v =53

Figure 5. Top-level routinemain.cc i
Figure 6. Process outputs.
is done. Once all processes are instantiated and)
connected with signals, the clock has to be generate®. Conclusion

in order to simulate the system. This is done by the_ . .)
SystemC functiorsc_start(n) wheren is the number This paper gives a brief overview of the new SystemC

of time units for which the simulation is intended to M°deling platform. SystemC provides innovative
last. In our example, the entire system consists of thred'€chanisms for C++-based system-level description
implementation files frocess_1.Gc process_2.6c and is fr_eely gvallable for everybody through an open
main.c) and two header files pfocess_L.h source licensing m_odel. Because of tho_se facts and the
process_2J The implementation files need to be COntinuously growing number of leading EDA, IP,
compiled individually and finally linked together with sem|con_duct_or_, _systems and embedded _s_oft_vvare
SystemC. In addition, compilation of each file requiresCOmpPanies joining the Open SystemC Initiative,
header files from SystemC. Compilation can be done>YStemC is on the best way of becoming a de-facto-
using any standard ANSI C++ compiler (for example, Standard for system-level specification.

Synopyys Wavelorm Wiewer — truce_ e ow:D - [Lingitled]
File Ed® Marker Gole Yiew Options Sndow Help
D il L] o)) ss|r] mfs]es]q] s o= 81
1 =0 100 150 EL T
P B T S S TR (U WO U AT Sl T [T SO MR I....I.....I......E
b SgnE- 10031 0018 [K | RG] | [T k]l i A | OO |-||'—'!
& Signal-Z(Xa1) oooonoiDl| cooooooo | DDDO000S ! oooeonn | D000 S ! ogooooD | O0000025
Faddy-1 a) | I | |_J In—.
Fzaiy=7 1 | I | | | _ I I I
1|
_'l'l 1 HIE | = 1=] 1 = : | T
FRaady Time = QHO60 Wiq Wig=q Se=)

Figure 7. Waveform view of a SystemC simulation.

	System Level Design Using the SystemC Modeling Platform 1
	1. Introduction
	2. The SystemC Approach
	3. Overview of the SystemC Design ����Flow
	Figure 1. SystemC Design Flow.

	4. Features of the SystemC Class ����Library
	5. Example
	Figure 2. Example system.
	Figure 3. process_1.h and process_1.cc.
	Figure 4. process_2.h and process_2.cc.
	Figure 5. Top-level routine main.cc.
	Figure 6. Process outputs.

	6. Conclusion
	Figure 7. Waveform view of a SystemC simulation.

