
Altera Corporation 3–1
May 2006

3. Avalon Switch Fabric

Introduction Avalon® switch fabric is a high-bandwidth interconnect structure that
consumes minimal logic resources and provides greater flexibility than a
typical shared system bus. This chapter describes the functions of Avalon
switch fabric and the implementation of those functions.

High-Level Description

Avalon switch fabric is the glue that binds together components in a
system based on the Avalon interface.

Avalon switch fabric is the collection of interconnect and logic resources
that connects Avalon master and slave ports on components in a system.
Avalon switch fabric encapsulates the connection details of a system.
Avalon switch fabric guarantees that signals travel correctly between
master and slave ports, as long as the ports adhere to the rules of the
Avalon interface specification. As a result, system designers can think at
a higher level and focus on the parts of a system that add value, rather
than worry about the interconnect.

f For details on the Avalon interface, refer to the Avalon Interface
Specification available at www.altera.com. For details on how to use
SOPC Builder to create Avalon switch fabric, refer to the Tour of the
SOPC Builder User Interface chapter in volume 4 of the Quartus II
Handbook.

Avalon switch fabric supports:

■ Any number of master and slave components. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or
many-to-many.

■ On-chip components
■ Interfaces to off-chip peripherals
■ Components of differing data widths
■ Big-endian or little-endian components
■ Components operating in different clock domains
■ Components using multiple Avalon ports

QII54003-6.0.0

3–2 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Figure 3–1 shows a simplified diagram of the Avalon switch fabric in an
example system with multiple masters.

Figure 3–1. Avalon Switch Fabric Block Diagram – Example System

Some components in Figure 3–1 use multiple Avalon ports. Because an
Avalon component can have multiple Avalon ports, you can use Avalon
switch fabric to create super interfaces that provide more functionality
than a single Avalon port. For example, an Avalon slave port can have
only one interrupt-request (IRQ) signal. However, by using three Avalon

Processor

M

DMA Controller

SDRAM
Controller

SDRAM Chip

S

Arbitrator

Data
Memory

SS

Tri-State Bridge

S

Instruction

M

Data

MM

Control

Read Write

Arbitrator

Instruction
Memory

Avalon
Switch
Fabric

Write Data & Control Signals

Read Data

Interface to Off-Chip Device

M

S

Avalon Master Port

Avalon Slave Port

MUX

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

Altera Corporation 3–3
May 2006

Introduction

slave ports together, you can create a component that generates three
separate IRQs. In this case, SOPC Builder generates the Avalon switch
fabric to connect all ports.

Generating Avalon switch fabric is SOPC Builder's primary purpose.
Because SOPC Builder generates Avalon switch fabric automatically,
most users do not interact directly with it or the HDL that describes it.
You do not need to know anything about the internal workings of Avalon
switch fabric to take advantage of the services it provides. On the other
hand, a basic understanding of how it works can help you optimize your
components and systems. For example, knowledge of the arbitration
mechanism can help designers of multi-master systems minimize the
impact of arbitration on the system throughput.

Fundamentals of Avalon Switch Fabric Implementation

Avalon switch fabric uses active logic to implement a switched
interconnect structure that provides a dedicated path between master
and slave ports. Avalon switch fabric consists of synchronous logic and
routing resources inside an FPGA.

At each port interface, Avalon switch fabric manages Avalon transfers,
responding to signals from the connected component. The signals that
appear on the master port and corresponding slave port during a transfer
can be very different, depending on how the Avalon switch fabric
transports signals between the master-slave pair. In the path between
master and slave ports, the Avalon switch fabric can introduce registers
for timing synchronization, finite state machines for event sequencing, or
nothing at all, depending on the services required by those ports.

Functions of Avalon Switch Fabric

Avalon switch fabric logic provides the following functions:

■ Address Decoding (page 3–4)
■ Data-Path Multiplexing (page 3–5)
■ Wait-State Insertion (page 3–6)
■ Pipelining for High Performance (page 3–7)
■ Pipeline Management (page 3–8)
■ Endian Conversion (page 3–9)
■ Native Address Alignment & Dynamic Bus Sizing (page 3–10)
■ Arbitration for Multi-Master Systems (page 3–13)
■ Burst Management (page 3–20)
■ Clock Domain Crossing (page 3–21)
■ Interrupt Controller (page 3–25)
■ Reset Distribution (page 3–27)

3–4 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

The behavior of these functions in a specific SOPC Builder system
depends on the design of the components in the system and the settings
made in the SOPC Builder GUI. The remaining sections of this chapter
describe how SOPC Builder implements each function.

Address
Decoding

Address decoding logic in the Avalon switch fabric distributes an
appropriate address and produces a chipselect signal for each slave port.
Address decoding logic simplifies component design in the following
ways:

■ The Avalon switch fabric selects a slave port whenever it is being
addressed by a master. Slave components do not need to decode the
address to determine when they are selected.

■ Slave port addresses are always properly aligned for the data width
of the slave port.

■ SOPC Builder automatically generates address decoding logic to
implement the memory map specified in the GUI. Therefore,
changing the system memory map does not involve manually
editing HDL.

Figure 3–2 shows a block diagram of the address-decoding logic for one
master and two slave ports. Separate address-decoding logic is generated
for every master port in a system.

As shown in Figure 3–2, the address decoding logic handles the
difference between the master address width (M) and the individual
slave address widths (S & T). It also maps only the necessary master
address bits to access words in each slave port's address space.

Figure 3–2. Block Diagram of Address Decoding Logic

1 All figures in this chapter are simplified to show only the
particular function being discussed. In a complete system, the
Avalon switch fabric might alter the address, data, and control
paths beyond what is shown in any one particular figure.

Slave
Port 1
(8-bit)

Slave
Port 2
(32-bit)

chipselect1
address [S..0]

chipselect2

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

Altera Corporation 3–5
May 2006

Data-Path Multiplexing

In the SOPC Builder GUI, the user-configurable aspects of address
decoding logic are controlled by the Base setting in the list of active
components on the System Contents page, as shown in Figure 3–3.

Figure 3–3. Base Settings in SOPC Builder Control Address Decoding

Data-Path
Multiplexing

Data-path multiplexing logic in the Avalon switch fabric aggregates read-
data signals from multiple slave ports during a read transfer, and
presents the signals from only the selected slave back to the master port.

Figure 3–4 shows a block diagram of the data-path multiplexing logic for
one master and two slave ports. SOPC Builder generates separate
data-path multiplexing logic for every master port in the system.

Figure 3–4. Block Diagram of Data-Path Multiplexing Logic

Data
Path
MUX

Master
Port

readdata

address

writedata

control

Slave
Port 2

Slave
Port 1

readdata2

readdata1

3–6 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Data-path multiplexing is not necessary in the write-data direction for
write transfers. The writedata signals are distributed equally to all
slave ports, and each slave port ignores writedata except for when the
address-decoding logic selects that port.

In the SOPC Builder GUI, the generation of data-path multiplexing logic
is specified using the connections panel on the System Contents page, as
shown in Figure 3–5.

Figure 3–5. Connection Panel Settings in SOPC Builder Control Data-Path
Multiplexing

Wait-State
Insertion

Wait states extend the duration of a transfer by one or more cycles for the
benefit of components with special synchronization needs. Wait-state
insertion logic accommodates the timing needs of each slave port, and
coordinates the master port to wait until the slave can proceed. Avalon
switch fabric inserts wait states into a transfer when the target slave port
cannot respond in a single clock cycle. Avalon switch fabric also inserts
wait states in cases when slave read-enable and write-enable signals have
setup or hold time requirements.

Wait-state insertion logic is a small finite-state machine that translates
control signal sequencing between the slave side and the master side.
Figure 3–6 shows a block diagram of the wait-state insertion logic
between one master and one slave.

Connection Panel
Settings

Altera Corporation 3–7
May 2006

Pipelining for High Performance

Figure 3–6. Block Diagram of Wait-State Insertion Logic

Avalon switch fabric can force a master port to wait for several reasons in
addition to the wait state needs of a slave port. For example, arbitration
logic in a multi-master system can force a master port to wait until it is
granted access to a slave port.

SOPC Builder generates wait-state insertion logic based on the properties
of all slave ports in the system.

Pipelining for
High
Performance

SOPC Builder can pipeline the Avalon switch fabric by inserting stages of
registers between master-slave pairs. Adding pipeline registers can
increase the fMAX performance of the system and ensure that the critical
timing path does not occur inside the Avalon switch fabric.

The pipeline registers introduce one or more clock cycles of latency
between master-slave pairs, which creates a trade-off between transfer
latency and fMAX performance. The pipeline registers can also increase
logic utilization considerably, depending on the complexity of the
system. Components that support pipelined Avalon transfers minimize
the effects of the pipeline latency. For details on how pipelining for high
performance affects pipelined Avalon ports, see section “Pipeline
Management” on page 3–8.

1 Pipeline registers are most likely to improve performance for the
case of many master ports sharing a common slave port. For N
masters accessing a slave port, the increased latency is on the
order of (log2N + 1).

You specify whether or not to add pipelining for high performance with
the clock settings table on the System Contents tab in SOPC Builder,
shown in Figure 3–7. You can pipeline each clock domain separately by
turning on its Pipeline check box.

Master
Port

Slave
Port

Wait-State
Insertion

Logic control

wait request

address

data

control

3–8 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Figure 3–7. Turning On Pipelining for High Performance

Pipeline
Management

The Avalon interface supports pipelined read transfers. A pipelined
Avalon port can start multiple read transfers in succession without
waiting for the prior transfers to complete. Pipelined transfers allow
master-slave pairs to achieve maximum throughput, even though the
slave port may require one or more cycles of latency to return data for
each transfer.

SOPC Builder generates Avalon switch fabric with pipeline management
logic to take advantage of pipelined components wherever possible,
based on the pipeline properties of each master-slave pair in the system.
Regardless of the pipeline latency of a target slave port, SOPC Builder
guarantees that read data arrives at each master port in the order
requested. Because master and slave ports often have mismatched
pipeline latency, Avalon switch fabric often contains logic to reconcile the
differences. Many cases are possible, as shown in Table 3–1.

Table 3–1. Various Cases of Pipeline Latency in a Master-Slave Pair (Part 1 of 2)

Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The Avalon switch fabric does not instantiate logic to handle pipeline
latency.

No Pipeline Pipelined with
Fixed or
Variable
Latency

The Avalon switch fabric forces the master port to wait through any
slave-side latency cycles. This master-slave pair gains no benefits of
pipelining, because the master port is not pipelined and therefore waits for
each transfer to complete before beginning a new transfer. However,
while the master port is waiting, the slave port can accept transfers from
a different master port.

Pipelined No Pipeline The Avalon switch fabric carries out the transfer as if neither port were
pipelined, forcing the master port to wait until the slave port returns data.

Altera Corporation 3–9
May 2006

Endian Conversion

SOPC Builder generates logic to handle pipeline latency based on the
properties of the master and slave ports in the system. When configuring
a system in SOPC Builder, there are no GUI settings that directly control
the pipeline management logic in the Avalon switch fabric.

Endian
Conversion

Starting with version 5.1 of the Quartus II software, SOPC Builder
supports big endian master ports. Prior to version 5.1, SOPC Builder
treated all components as little endian. With version 5.1 and later, an
Avalon-based system can contain both big and little endian components.

The endianness of an Avalon port depends on the component design.
Endianness affects the order a master port expects individual bytes to be
arranged within a larger word. If all master ports in the system use the
same endianness, then all master ports’ perception of byte addresses is
consistent within the system. In this case there is no further
endian-related design consideration required.

Avalon switch fabric provides endian-conversion functionality to allow
master ports of differing endianness to share memory. The Avalon
endian-conversion logic hides the endian difference of master ports when
the following conditions are met:

1. The master ports access a common memory slave port.

2. The data width of the master ports are equal.

3. The master ports read and write the memory using only
native-width units of data. For example, a 32-bit master port can
read and write only 32-bit units of data.

4. The master ports use a common interpretation of the data type.

Pipelined Pipelined with
Fixed Latency

The Avalon switch fabric coordinates the master port to capture data at
the exact clock cycle when data is valid on the slave port. This case
enables this master-slave pair to achieve maximum throughput
performance.

Pipelined Pipelined with
Variable
Latency

This is the simplest pipelined case, in which the slave port asserts a signal
when its data is valid, and the master port captures the data. This case
enables this master-slave pair to achieve maximum throughput
performance.

Table 3–1. Various Cases of Pipeline Latency in a Master-Slave Pair (Part 2 of 2)

Master Port Slave Port Pipeline Management Logic Structure

3–10 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

As an example, consider a three-chip system comprised of a discrete
32-bit CPU chip, an FPGA containing 32-bit coprocessor logic (an SOPC
Builder system), and a shared DDR SDRAM chip. Furthermore, suppose
that the CPU is big endian, while the FPGA coprocessor system is little
endian. In this case, the CPU and the coprocessor can share data in the
SDRAM seamlessly without manually accounting for the endianness of
data.

1 The Avalon switch fabric does not guarantee proper byte
arrangement for big-endian master ports when accessing
peripheral registers via an Avalon slave port.

Native Address
Alignment &
Dynamic Bus
Sizing

SOPC Builder generates Avalon switch fabric to accommodate master
and slave ports with unmatched data widths. Address alignment affects
how slave data is aligned in a master port's address space, in the case that
the master and slave data widths are different. Address alignment is a
property of each slave port, and it may be different for each slave port in
a system. A slave port can declare itself to use one of the following:

■ Native address alignment
■ Dynamic bus sizing

Table 3–2 demonstrates native address alignment and dynamic bus sizing
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this
example, the slave port is mapped to base address 0x0000000 in the
master port. In Table 3–2, OFFSET refers to the offset into the 16-bit slave
port address space.

SOPC Builder generates appropriate address-alignment logic based on
the properties of the master and slave ports in the system. When
configuring a system in SOPC Builder, there are no GUI settings that
directly control the address alignment in the Avalon switch fabric.

Table 3–2. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

0x00000000 (word 0) 0x0000:OFFSET[0] 0xOFFSET[1]:OFFSET[0]

0x00000004 (word 1) 0x0000:OFFSET[1] 0xOFFSET[3]:OFFSET[2]

0x00000008 (word 2) 0x0000:OFFSET[2] 0xOFFSET[5]:OFFSET[4]

0x0000000C (word 3) 0x0000:OFFSET[3] 0xOFFSET[7]:OFFSET[6]

...

 (word N) 0x0000:OFFSET[N] 0xOFFSET[2N+1]:OFFSET[2N]

Altera Corporation 3–11
May 2006

Native Address Alignment & Dynamic Bus Sizing

Native Address Alignment

Slave ports that access address-mapped registers inside the component
generally use native address alignment. The defining properties of native
address alignment are:

■ Each slave offset (that is, word) maps to exactly one master word,
regardless of the data width of the ports.

■ One transfer on the master port generates exactly one transfer on the
slave port.

In the case of native address alignment, Avalon switch fabric maps all
slave data bits to the lower bits of the master data, and fills any remaining
upper bits with zero. Avalon switch fabric performs simple
wire-mapping in the data path, but nothing else.

Native address alignment is only valid if the master data width is equal
to or wider than the slave data width. If an N-bit master port is connected
to a wider slave with native alignment, then the master port can access
only the lower N data bits at each offset in the slave.

Dynamic Bus Sizing

Slave ports that access memory devices generally use dynamic bus sizing.
Dynamic bus sizing hides the details of interfacing a narrow memory
device to a wider master port, and vice versa. When an N-bit master port
accesses a slave port with dynamic bus sizing, the master port operates
exclusively on full N-bit words of data, without awareness of the slave
data width.

1 When using dynamic bus sizing, the slave data width must be a
power of two.

Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware
manually.

■ Reduces design complexity of the master component.
■ Enables any master port to access any memory device seamlessly,

regardless of the data width.

In the case of dynamic bus sizing, the Avalon switch fabric includes a
small finite state machine that reconciles the difference between master
and slave data widths. The behavior is different depending on whether
the master data width is wider or narrower than the slave.

3–12 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a
single, wide transfer on the master side, and then performs multiple
narrow transfers on the slave side. For a data-width ratio of N:1, the
dynamic bus-sizing logic generates N slave transfers. The master port
pays a performance penalty, because it must wait while multiple
slave-side transfers complete.

In the case of a read transfer, the Avalon switch fabric merges slave data
from multiple read transfers before presenting them to the master port. A
read transfer from a wide master port always causes multiple slave-read
transfers to sequential addresses in the slave's address space. For
example, even if a 32-bit master port needs only one byte from a
dynamically-aligned 8-bit memory, a master read transfer generates four
slave transfers, and the master port waits until all four transfers complete.

During write transfers, dynamic bus-sizing logic uses the master-side
byte-enable signals to generate appropriate slave write transfers. The
dynamic bus-sizing logic performs as many slave-side transfers as
necessary to write the specified byte lanes to the slave memory.

Narrower Master

In the case of a narrower master, one transfer on the master side generates
one transfer on the slave side. In this case, multiple master word
addresses map to a single offset in the slave memory space. The dynamic
bus-sizing logic maps each master address to a subset of byte lanes in the
appropriate slave offset. All bytes of the slave memory are accessible in
the master address space. There is no performance penalty when
accessing a wider slave port using dynamic bus sizing.

Table 3–3 demonstrates the case of a 32-bit master port accessing a 64-bit
slave port with dynamic bus sizing. In the table, offset refers to the offset
into the slave port memory space.

Table 3–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing

32-bit Address Data

0x00000000 (word 0) OFFSET[0]31..0

0x00000004 (word 1) OFFSET[0]63..32

0x00000008 (word 2) OFFSET[1]31..0

0x0000000C (word 3) OFFSET[1]63..32

Altera Corporation 3–13
May 2006

Arbitration for Multi-Master Systems

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the
appropriate byte lanes of the slave data to the narrow master port. In the
case of a write transfer, the dynamic bus-sizing logic uses the slave-side
byte-enable signals to write only to the appropriate byte lanes.

Arbitration for
Multi-Master
Systems

Avalon switch fabric supports systems with multiple master
components. In a system with multiple master ports, such as the system
pictured in Figure 3–1 on page 3–2, the Avalon switch fabric provides
shared access to slave ports using a technique called slave-side
arbitration. Slave-side arbitration determines which master port gains
access to a specific slave port in the event that multiple master ports
attempt to access the same slave port at the same time.

The multi-master architecture used by Avalon switch fabric offers the
following benefits:

■ Eliminates the need to create arbitration hardware manually.
■ Allows multiple master ports to transfer data simultaneously. Unlike

traditional host-side arbitration architectures in which each master
must wait until it is granted access to the shared bus, multiple
Avalon masters can simultaneously perform transfers with
independent slaves. Arbitration logic stalls a master port only when
multiple master ports attempt to access the same slave port during
the same cycle.

■ Eliminates unnecessary master-slave connections. The connection
between a master port and a slave port exists only if it is specified in
the SOPC Builder GUI. If a master port never initiates transfers to a
specific slave port, no connection is necessary, and therefore SOPC
Builder does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each
slave port is specified independently. For example, you can grant
one master port the most access to a particular slave port, while other
master ports have more access to other slave ports.

■ Simplifies master component design. The details of arbitration are
encapsulated inside the switch fabric. Each Avalon master port
connects to the Avalon switch fabric like it is the only master port in
the system. As a result, you can reuse a component in single-master
and multi-master systems without requiring design changes to the
component.

This section discusses the architecture of the Avalon switch fabric
generated by SOPC Builder for multi-master systems.

3–14 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and
arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves
connect to a shared bus, consisting of wires on a printed circuit board. A
single arbitrator controls the bus (that is, the path between bus masters
and bus slaves), so that multiple bus masters do not simultaneously drive
the bus and cause electrical contention. Each bus master requests control
of the bus from the arbitrator, and the arbitrator grants access to a single
master at a time. Once a master has control of the bus, the master
performs transfers with a bus slave. If multiple masters attempt to access
the bus at the same time, the arbitrator allocates the bus resources to a
single master based on fixed arbitration rules, forcing all other masters to
wait. For example, the priority arbitration scheme—in which the
arbitrator always grants control to the master with the highest priority—
is used in many existing bus architectures.

Figure 3–8 illustrates the bus architecture for a traditional processor
system. Access to the shared system bus becomes the bottleneck for
throughput and utilization performance. Only one master has access to
the bus at a time, which means that other masters are forced to wait
(diminishing throughput), and only one slave can transfer data at a time
(diminishing utilization).

Figure 3–8. Bus Architecture in a Traditional Microprocessor System

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbitrator

System Bus

Masters

Slaves

Bottleneck

Altera Corporation 3–15
May 2006

Arbitration for Multi-Master Systems

Slave-Side Arbitration

The multi-master architecture used by Avalon switch fabric eliminates
the bottleneck for access to a shared bus, because the system does not
have shared bus lines. Avalon master-slave pairs are connected by
dedicated paths. A master port never waits to access a slave port, unless
a different master port attempts to access the same slave port at the same
time. As a result, multiple master ports can be active at the same time,
simultaneously transferring data with independent slave ports.

A multi-master Avalon system requires arbitration, but only when two
masters contend for the same slave port. This arbitration is called
slave-side arbitration, because it is implemented at the point where two
(or more) master ports connect to a single slave. Master ports contend for
individual slave ports, not for a shared bus resource.

For example, Figure 3–1 on page 3–2 demonstrates a system with two
master ports (a CPU and a DMA controller) sharing a slave port (an
SDRAM controller). Arbitration is performed on the SDRAM slave port;
the arbitrator dictates which master port gains access to the slave port if
both master ports initiate a transfer with the slave port at the same time.

Figure 3–9 focuses on the two master ports and the shared slave port, and
shows additional detail of the data, address, and control paths. The
arbitrator logic multiplexes all address, data, and control signals from a
master port to a shared slave port.

Figure 3–9. Detailed View of Multi-Master Connections

Master 1

Master 2

Slave

A
rb

itr
at

or

Write Data
Control

Request Control
M1 Write Data

M2 Write Data
Request Control

Slave Read Data

Address

M2 Address

M1 Address

3–16 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Arbitrator Details

SOPC Builder generates an arbitrator for every slave port connected to
multiple master ports, based on arbitration parameters specified in the
SOPC Builder GUI. The arbitrator logic performs the following functions
for its associated slave port:

■ Evaluates the address and control signals from each master port at
every clock cycle when a new transfer can begin, and determines
which master port, if any, is requesting access to the slave.

■ Chooses which master port gains access to the slave next.
■ Grants access to the chosen master port (that is, allows it to proceed

with the transfer), and forces all other requesting master ports to
wait.

■ Uses multiplexers to connect address, control, and data paths
between the multiple master ports and the slave port. The arbitrator
logic guarantees that an appropriate master port (if any) is connected
to the slave port.

Altera Corporation 3–17
May 2006

Arbitration for Multi-Master Systems

Figure 3–10 shows the arbitrator logic in an example multi-master system
with two master ports, each connected to two slave ports.

Figure 3–10. Block Diagram of Arbitrator Logic

Arbitration Rules

This section describes the rules by which the arbitrator grants access to
master ports when they contend.

Fairness-Based Shares

Avalon arbitrator logic uses a fairness-based arbitration scheme. In a
fairness-based arbitration scheme, each master port pair has an integer
value of transfer shares with respect to a slave port. One share represents
permission to perform one transfer.

Master 1
(M1)

Data-Path
Multiplexing

Logic

Slave 1
(S1)

Slave 2
(S2)

Master 2
(M2)

M1 Address, Write
Data & Control

M2 Address, Write
Data & Control

S1 Read Data & Control

S2 Read Data & Control

Data-Path
Multiplexing

Logic

Slave 1
Arbitrator masterselect

 M1 wait
 M2 wait

Slave 2
Arbitrator masterselect

 M1 wait

 M2 wait

3–18 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

For example, assume that two master ports continuously attempt to
perform back-to-back transfers to a slave port. Master 1 is assigned three
shares and Master 2 is assigned four shares. In this case, the arbitrator
grants Master 1 access for three transfers, then Master 2 for four transfers.
This cycle repeats indefinitely. Figure 3–11 demonstrates this case,
showing each master port's transfer request output, wait request input
(which is driven by the arbitrator logic), and the current master with
control of the slave.

Figure 3–11. Arbitration of Continuous Transfer Requests from Two Master Ports

If a master stops requesting transfers before it exhausts its shares, it
forfeits all its remaining shares, and the arbitrator grants access to another
requesting master. See Figure 3–12. After completing one transfer, Master
2 stops requesting for one clock cycle. As a result, the arbitrator grants
access back to Master 1, which gets a replenished supply of shares.

Figure 3–12. Arbitration of Two Masters with a Gap in Transfer Requests

Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the
arbitrator grants shares in round-robin order. At every slave transfer,
only requesting master ports are included in the round-robin arbitration.

Altera Corporation 3–19
May 2006

Arbitration for Multi-Master Systems

Burst Transfers

Avalon burst transfers grant a master port uninterrupted access to a slave
port for a specified number of transfers. The master port specifies the
number of transfers when it initiates the burst. Once a burst begins
between a master-slave pair, arbitrator logic does not allow any other
master port to access the slave port until the burst completes. For further
information, see “Burst Management” on page 3–20.

Minimum Share Value

A component design can declare the minimum number of shares in each
round-robin cycle, which affects how the arbitrator grants access. For
example, if a slave port has a minimum share value of ten, then the
arbitrator will grant at least ten shares to any master port when it begins
a sequence of transfer requests. The arbitrator might grant more shares, if
the master port is assigned more shares in the SOPC Builder GUI.

By declaring a minimum share value of N, a slave port declares that it is
more efficient at handling continuous sequential transfers of length N.
Accessing the slave port in sequences less than N incurs performance
penalties that might prevent the slave port from achieving higher
performance. By nature, continuous back-to-back master transfers tend to
access sequential addresses. However, there is no requirement that the
master port perform transfers to sequential addresses.

1 Burst transfers provide even higher performance for continuous
transfers when they are guaranteed to access sequential
addresses. The minimum share value does not apply to slave
ports that support bursts; the burst length takes precedence over
minimum share value. See “Burst Management” on page 3–20
for information.

3–20 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Setting Arbitration Parameters in the SOPC Builder GUI

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of the SOPC Builder GUI, as shown in
Figure 3–13.

Figure 3–13. Arbitration Settings on the System Contents Tab

1 The arbitration settings are hidden by default. To view them, on
the View menu, click Show Arbitration.

Burst
Management

Avalon switch fabric provides burst management logic to accommodate
the burst capabilities of each port in the system, including ports that do
not support burst transfers. Burst management logic is a finite state
machine that translates the sequencing of address and control signals
between the slave side and the master side.

The maximum burst length for each port is determined by the component
design and is independent of other ports in the system. Therefore, a
particular master port might be capable of initiating a burst longer than a
slave port’s maximum supported burst length. In this case, the burst
management logic translates the master burst into smaller slave bursts, or
into individual slave transfers if the slave port does not support bursts.
Until the master port completes the burst, the Avalon arbitrator logic
prevents other master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port
with maximum burst length of 8, the burst management logic initiates
two bursts of length 8 to the slave port. If a master port initiates a burst of
16 transfers to a slave port that does not support bursts, the burst
management logic initiates 16 separate transfers to the slave port.

Altera Corporation 3–21
May 2006

Clock Domain Crossing

Clock Domain
Crossing

SOPC Builder generates clock-domain crossing (CDC) logic that hides the
details of interfacing components operating in asynchronous clock
domains. The Avalon switch fabric upholds the Avalon protocol with
each port independently, and therefore each Avalon port need only be
aware of its own clock domain. The Avalon switch fabric logic propagates
transfers across clock domain boundaries transparently to the user.

The CDC logic in Avalon switch fabric provides the following benefits
that simplify system design efforts:

■ Allows component interfaces to operate at a different clock
frequency than system logic.

■ Eliminates the need to design CDC hardware manually.
■ Each Avalon port operates in only one clock domain, which reduces

design complexity of components.
■ Enables master ports to access any slave port without awareness of

the slave clock domain.
■ Allows you to focus performance optimization efforts only on

components that require fast clock speed.

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each
clock domain, which use a simple hand-shaking protocol to propagate
transfer control signals (read request, write request, and the master
wait-request signals) across the clock boundary. Figure 3–14 shows a
block diagram of the clock domain crossing logic between one master and
one slave port.

3–22 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Figure 3–14. Block Diagram of Clock Domain-Crossing Logic

The Synchronizer blocks in Figure 3–14 use multiple stages of flip-flops
to eliminate the propagation of metastable events on the control signals
that enter the hand-shake FSMs.

The CDC logic works with any clock ratio. Altera® tests the CDC logic
extensively on a variety of system architectures, both in simulation and in
hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is
described below:

1. Master port asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and
immediately forces the master port to wait.

1 The FSM uses only the control signals, not address and data. For
example, the master port simply holds the address signal
constant until the slave side has safely captured it.

3. Master handshake FSM initiates a transfer request to the slave
handshake FSM.

waitrequest

control

Master
Handshake

FSM

transfer
request

acknowledge

address

readdata

writedata & byte enable

control

Slave
Handshake

FSM

waitrequest

Synchro-
nizer

Master
Port

Slave
Port

Master clock domain Slave clock domain

Synchro-
nizer

readdata

CDC Logic

Altera Corporation 3–23
May 2006

Clock Domain Crossing

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends
an acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a
special protocol to handle crossing clock domains. From the perspective
of a slave port, there is nothing different about a transfer initiated by a
master port in a different clock domain. From the perspective of a master
port, a transfer across clock domains simply takes extra clock cycles.
Similar to other transfer delay cases (for example, arbitration delay
and/or wait states on the slave side), the Avalon switch fabric simply
forces the master port to wait until the transfer terminates. As a result,
latency-aware master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic,
based on the system contents and the connections between components.
SOPC Builder places CDC logic to maintain the highest transfer rate for
all components. SOPC Builder evaluates the need for CDC logic on each
slave port independently, and generates CDC logic wherever necessary.

Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain
boundaries. In the worst case, each transfer is extended by five master
clock cycles and five slave clock cycles. The components of this delay are
the following:

■ Four additional master clock cycles, due to the master-side clock
synchronizer

■ Four additional slave clock cycles, due to the slave-side clock
synchronizer

■ One additional clock in each direction, due to potential metastable
events as the control signals cross clock domains

3–24 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Implementing Multiple Clock Domains in the SOPC Builder GUI

You specify the clock domains used by your system on the System
Contents tab of the SOPC Builder GUI. You define the input clocks to the
system using the clock settings table, shown in Figure 3–15. Clock sources
can be driven by external input signals to the system module, or by PLLs
inside the system module. Clock domains are differentiated based on the
name of the clock. It is possible to create multiple asynchronous clocks
with the same frequency.

Figure 3–15. Clock Settings on the System Contents Tab

After you define the system clocks, you specify which clock drives which
components using the table of active components, as shown in
Figure 3–16.

Figure 3–16. Assigning Clocks to Components

f For further details, refer to the Building Systems with Multiple Clock
Domains chapter in volume 4 of the Quartus II Handbook.

Altera Corporation 3–25
May 2006

Interrupt Controller

Interrupt
Controller

In systems with one or more slave ports that generate IRQs, the Avalon
switch fabric includes interrupt controller logic. A separate interrupt
controller is generated for each master port that accepts interrupts. The
interrupt controller aggregates IRQ signals from all slave ports, and maps
slave IRQ outputs to user-specified values on the master IRQ inputs.

Each slave port optionally produces an IRQ output signal. There are two
master signals related to interrupts: irq and irqnumber. SOPC Builder
generates the interrupt controller in one of two configurations, software
priority or hardware priority, depending on the interrupt signals present
on the master port.

Software Priority

In the software priority configuration, the Avalon switch fabric passes
IRQs directly from slave to master port, without making any assumptions
about IRQ priority. In the event that multiple slave ports assert their IRQs
simultaneously, the master logic (presumably under software control)
determines which IRQ has highest priority, then responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave
IRQ inputs. The interrupt controller generates a 32-bit signal
irq[31..0] to the master port, and simply maps slave IRQ signals to
the bits of irq[31..0]. Any unassigned bits of irq[31..0] are
permanently disabled. Figure 3–17 shows an example of the interrupt
controller mapping the IRQs on four slave ports to irq[31..0] on a
master port.

Figure 3–17. IRQ Mapping Using Software Priority

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Slave
1

Slave
2

Slave
3

Slave
4

Interrupt
Controller

irq

irq

irq

irq

Master

3–26 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Hardware Priority

In the hardware priority configuration, in the event that multiple slaves
assert their IRQs simultaneously, the Avalon switch fabric (i.e. hardware
logic) identifies the IRQ of highest priority and passes only that IRQ
number to the master port. An IRQ of lesser priority is undetectable until
a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64
slave IRQ signals. The interrupt controller generates a 1-bit irq signal to
the master port, signifying that one or more slave ports have generated
an IRQ. The controller also generates a 6-bit irqnumber signal, which
outputs the encoded value of the highest pending IRQ. See Figure 3–18.

Figure 3–18. IRQ Mapping Using Hardware Priority

Assigning IRQs in the SOPC Builder GUI

You specify IRQ settings on the System Contents tab of the SOPC Builder
GUI. After adding all components to the system, you make IRQ settings
for all slave ports that can generate IRQs, with respect to each master

Slave
2

Slave
3

Slave
4

Interrupt
Controller

Master

irq

irq

irq

irq

irq1
irq2

irq4
irq5
irq6

irq3

irq0

irq63

Priority
Encoder

irqnumber [5..0]

Slave
1

irq

Altera Corporation 3–27
May 2006

Reset Distribution

port. For each slave port, you can either specify an IRQ number, or specify
not to connect the IRQ. Figure 3–19 shows the IRQ settings for multiple
slave IRQs that drive the master component named cpu.

Figure 3–19. Assigning IRQs in the SOPC Builder GUI

Reset
Distribution

The Avalon switch fabric generates and distributes a system-wide reset
pulse to all logic in the system module. The switch fabric distributes the
reset signal conditioned for each clock domain. The duration of the reset
signal is at least one clock period.

The Avalon switch fabric asserts the system-wide reset in the following
conditions:

■ The global reset input to the system module is asserted.
■ A slave port asserts its resetrequest signal.
■ The FPGA is reconfigured.

All components must enter a well-defined reset state whenever the
Avalon switch fabric asserts the system-wide reset. The timing of the
reset signal is asynchronous to the operation of transfers.

3–28 Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

	3. Avalon Switch Fabric
	Introduction
	High-Level Description
	Fundamentals of Avalon Switch Fabric Implementation
	Functions of Avalon Switch Fabric

	Address Decoding
	Data-Path Multiplexing
	Wait-State Insertion
	Pipelining for High Performance
	Pipeline Management
	Endian Conversion
	Native Address Alignment & Dynamic Bus Sizing
	Native Address Alignment
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Arbitration for Multi-Master Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbitrator Details
	Arbitration Rules
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers
	Minimum Share Value
	Setting Arbitration Parameters in the SOPC Builder GUI

	Burst Management
	Clock Domain Crossing
	Description of Clock Domain-Crossing Logic
	Location of Clock Domain Crossing Logic
	Duration of Transfers Crossing Clock Domains
	Implementing Multiple Clock Domains in the SOPC Builder GUI

	Interrupt Controller
	Software Priority
	Hardware Priority
	Assigning IRQs in the SOPC Builder GUI

	Reset Distribution

