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3. Avalon Switch Fabric

Introduction Avalon® switch fabric is a high-bandwidth interconnect structure that 
consumes minimal logic resources and provides greater flexibility than a 
typical shared system bus. This chapter describes the functions of Avalon 
switch fabric and the implementation of those functions. 

High-Level Description

Avalon switch fabric is the glue that binds together components in a 
system based on the Avalon interface. 

Avalon switch fabric is the collection of interconnect and logic resources 
that connects Avalon master and slave ports on components in a system. 
Avalon switch fabric encapsulates the connection details of a system. 
Avalon switch fabric guarantees that signals travel correctly between 
master and slave ports, as long as the ports adhere to the rules of the 
Avalon interface specification. As a result, system designers can think at 
a higher level and focus on the parts of a system that add value, rather 
than worry about the interconnect. 

f For details on the Avalon interface, refer to the Avalon Interface 
Specification available at www.altera.com. For details on how to use 
SOPC Builder to create Avalon switch fabric, refer to the Tour of the 
SOPC Builder User Interface chapter in volume 4 of the Quartus II 
Handbook. 

Avalon switch fabric supports:

■ Any number of master and slave components. The master-to-slave 
relationship can be one-to-one, one-to-many, many-to-one, or 
many-to-many.

■ On-chip components 
■ Interfaces to off-chip peripherals
■ Components of differing data widths
■ Big-endian or little-endian components
■ Components operating in different clock domains
■ Components using multiple Avalon ports

QII54003-6.0.0
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Figure 3–1 shows a simplified diagram of the Avalon switch fabric in an 
example system with multiple masters.

Figure 3–1. Avalon Switch Fabric Block Diagram – Example System

Some components in Figure 3–1 use multiple Avalon ports. Because an 
Avalon component can have multiple Avalon ports, you can use Avalon 
switch fabric to create super interfaces that provide more functionality 
than a single Avalon port. For example, an Avalon slave port can have 
only one interrupt-request (IRQ) signal. However, by using three Avalon 
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slave ports together, you can create a component that generates three 
separate IRQs. In this case, SOPC Builder generates the Avalon switch 
fabric to connect all ports.

Generating Avalon switch fabric is SOPC Builder's primary purpose. 
Because SOPC Builder generates Avalon switch fabric automatically, 
most users do not interact directly with it or the HDL that describes it. 
You do not need to know anything about the internal workings of Avalon 
switch fabric to take advantage of the services it provides. On the other 
hand, a basic understanding of how it works can help you optimize your 
components and systems. For example, knowledge of the arbitration 
mechanism can help designers of multi-master systems minimize the 
impact of arbitration on the system throughput. 

Fundamentals of Avalon Switch Fabric Implementation

Avalon switch fabric uses active logic to implement a switched 
interconnect structure that provides a dedicated path between master 
and slave ports. Avalon switch fabric consists of synchronous logic and 
routing resources inside an FPGA.

At each port interface, Avalon switch fabric manages Avalon transfers, 
responding to signals from the connected component. The signals that 
appear on the master port and corresponding slave port during a transfer 
can be very different, depending on how the Avalon switch fabric 
transports signals between the master-slave pair. In the path between 
master and slave ports, the Avalon switch fabric can introduce registers 
for timing synchronization, finite state machines for event sequencing, or 
nothing at all, depending on the services required by those ports.

Functions of Avalon Switch Fabric

Avalon switch fabric logic provides the following functions:

■ Address Decoding (page 3–4)
■ Data-Path Multiplexing (page 3–5)
■ Wait-State Insertion (page 3–6)
■ Pipelining for High Performance (page 3–7) 
■ Pipeline Management (page 3–8)
■ Endian Conversion (page 3–9) 
■ Native Address Alignment & Dynamic Bus Sizing (page 3–10)
■ Arbitration for Multi-Master Systems (page 3–13)
■ Burst Management (page 3–20)
■ Clock Domain Crossing (page 3–21)
■ Interrupt Controller (page 3–25)
■ Reset Distribution (page 3–27)
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The behavior of these functions in a specific SOPC Builder system 
depends on the design of the components in the system and the settings 
made in the SOPC Builder GUI. The remaining sections of this chapter 
describe how SOPC Builder implements each function. 

Address 
Decoding

Address decoding logic in the Avalon switch fabric distributes an 
appropriate address and produces a chipselect signal for each slave port. 
Address decoding logic simplifies component design in the following 
ways:

■ The Avalon switch fabric selects a slave port whenever it is being 
addressed by a master. Slave components do not need to decode the 
address to determine when they are selected.

■ Slave port addresses are always properly aligned for the data width 
of the slave port.

■ SOPC Builder automatically generates address decoding logic to 
implement the memory map specified in the GUI. Therefore, 
changing the system memory map does not involve manually 
editing HDL. 

Figure 3–2 shows a block diagram of the address-decoding logic for one 
master and two slave ports. Separate address-decoding logic is generated 
for every master port in a system. 

As shown in Figure 3–2, the address decoding logic handles the 
difference between the master address width (M) and the individual 
slave address widths (S & T). It also maps only the necessary master 
address bits to access words in each slave port's address space.

Figure 3–2. Block Diagram of Address Decoding Logic

1 All figures in this chapter are simplified to show only the 
particular function being discussed. In a complete system, the 
Avalon switch fabric might alter the address, data, and control 
paths beyond what is shown in any one particular figure.
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Data-Path Multiplexing

In the SOPC Builder GUI, the user-configurable aspects of address 
decoding logic are controlled by the Base setting in the list of active 
components on the System Contents page, as shown in Figure 3–3.

Figure 3–3. Base Settings in SOPC Builder Control Address Decoding

Data-Path 
Multiplexing

Data-path multiplexing logic in the Avalon switch fabric aggregates read- 
data signals from multiple slave ports during a read transfer, and 
presents the signals from only the selected slave back to the master port. 

Figure 3–4 shows a block diagram of the data-path multiplexing logic for 
one master and two slave ports. SOPC Builder generates separate 
data-path multiplexing logic for every master port in the system. 

Figure 3–4. Block Diagram of Data-Path Multiplexing Logic
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Data-path multiplexing is not necessary in the write-data direction for 
write transfers. The writedata signals are distributed equally to all 
slave ports, and each slave port ignores writedata except for when the 
address-decoding logic selects that port. 

In the SOPC Builder GUI, the generation of data-path multiplexing logic 
is specified using the connections panel on the System Contents page, as 
shown in Figure 3–5.

Figure 3–5. Connection Panel Settings in SOPC Builder Control Data-Path 
Multiplexing

Wait-State 
Insertion

Wait states extend the duration of a transfer by one or more cycles for the 
benefit of components with special synchronization needs. Wait-state 
insertion logic accommodates the timing needs of each slave port, and 
coordinates the master port to wait until the slave can proceed. Avalon 
switch fabric inserts wait states into a transfer when the target slave port 
cannot respond in a single clock cycle. Avalon switch fabric also inserts 
wait states in cases when slave read-enable and write-enable signals have 
setup or hold time requirements. 

Wait-state insertion logic is a small finite-state machine that translates 
control signal sequencing between the slave side and the master side. 
Figure 3–6 shows a block diagram of the wait-state insertion logic 
between one master and one slave.

Connection Panel
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Figure 3–6. Block Diagram of Wait-State Insertion Logic 

Avalon switch fabric can force a master port to wait for several reasons in 
addition to the wait state needs of a slave port. For example, arbitration 
logic in a multi-master system can force a master port to wait until it is 
granted access to a slave port.

SOPC Builder generates wait-state insertion logic based on the properties 
of all slave ports in the system. 

Pipelining for 
High 
Performance

SOPC Builder can pipeline the Avalon switch fabric by inserting stages of 
registers between master-slave pairs. Adding pipeline registers can 
increase the fMAX performance of the system and ensure that the critical 
timing path does not occur inside the Avalon switch fabric. 

The pipeline registers introduce one or more clock cycles of latency 
between master-slave pairs, which creates a trade-off between transfer 
latency and fMAX performance. The pipeline registers can also increase 
logic utilization considerably, depending on the complexity of the 
system. Components that support pipelined Avalon transfers minimize 
the effects of the pipeline latency. For details on how pipelining for high 
performance affects pipelined Avalon ports, see section “Pipeline 
Management” on page 3–8. 

1 Pipeline registers are most likely to improve performance for the 
case of many master ports sharing a common slave port. For N 
masters accessing a slave port, the increased latency is on the 
order of (log2N + 1).

You specify whether or not to add pipelining for high performance with 
the clock settings table on the System Contents tab in SOPC Builder, 
shown in Figure 3–7. You can pipeline each clock domain separately by 
turning on its Pipeline check box. 
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Figure 3–7. Turning On Pipelining for High Performance

Pipeline 
Management

The Avalon interface supports pipelined read transfers. A pipelined 
Avalon port can start multiple read transfers in succession without 
waiting for the prior transfers to complete. Pipelined transfers allow 
master-slave pairs to achieve maximum throughput, even though the 
slave port may require one or more cycles of latency to return data for 
each transfer.

SOPC Builder generates Avalon switch fabric with pipeline management 
logic to take advantage of pipelined components wherever possible, 
based on the pipeline properties of each master-slave pair in the system. 
Regardless of the pipeline latency of a target slave port, SOPC Builder 
guarantees that read data arrives at each master port in the order 
requested. Because master and slave ports often have mismatched 
pipeline latency, Avalon switch fabric often contains logic to reconcile the 
differences. Many cases are possible, as shown in Table 3–1. 

Table 3–1. Various Cases of Pipeline Latency in a Master-Slave Pair  (Part 1 of 2)

Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The Avalon switch fabric does not instantiate logic to handle pipeline 
latency. 

No Pipeline Pipelined with 
Fixed or 
Variable 
Latency

The Avalon switch fabric forces the master port to wait through any 
slave-side latency cycles. This master-slave pair gains no benefits of 
pipelining, because the master port is not pipelined and therefore waits for 
each transfer to complete before beginning a new transfer. However, 
while the master port is waiting, the slave port can accept transfers from 
a different master port.

Pipelined No Pipeline The Avalon switch fabric carries out the transfer as if neither port were 
pipelined, forcing the master port to wait until the slave port returns data. 
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SOPC Builder generates logic to handle pipeline latency based on the 
properties of the master and slave ports in the system. When configuring 
a system in SOPC Builder, there are no GUI settings that directly control 
the pipeline management logic in the Avalon switch fabric. 

Endian 
Conversion

Starting with version 5.1 of the Quartus II software, SOPC Builder 
supports big endian master ports. Prior to version 5.1, SOPC Builder 
treated all components as little endian. With version 5.1 and later, an 
Avalon-based system can contain both big and little endian components. 

The endianness of an Avalon port depends on the component design. 
Endianness affects the order a master port expects individual bytes to be 
arranged within a larger word. If all master ports in the system use the 
same endianness, then all master ports’ perception of byte addresses is 
consistent within the system. In this case there is no further 
endian-related design consideration required. 

Avalon switch fabric provides endian-conversion functionality to allow 
master ports of differing endianness to share memory. The Avalon 
endian-conversion logic hides the endian difference of master ports when 
the following conditions are met:

1. The master ports access a common memory slave port.

2. The data width of the master ports are equal.

3. The master ports read and write the memory using only 
native-width units of data. For example, a 32-bit master port can 
read and write only 32-bit units of data.

4. The master ports use a common interpretation of the data type.

Pipelined Pipelined with 
Fixed Latency

The Avalon switch fabric coordinates the master port to capture data at 
the exact clock cycle when data is valid on the slave port. This case 
enables this master-slave pair to achieve maximum throughput 
performance. 

Pipelined Pipelined with 
Variable 
Latency

This is the simplest pipelined case, in which the slave port asserts a signal 
when its data is valid, and the master port captures the data. This case 
enables this master-slave pair to achieve maximum throughput 
performance.

Table 3–1. Various Cases of Pipeline Latency in a Master-Slave Pair  (Part 2 of 2)

Master Port Slave Port Pipeline Management Logic Structure
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As an example, consider a three-chip system comprised of a discrete 
32-bit CPU chip, an FPGA containing 32-bit coprocessor logic (an SOPC 
Builder system), and a shared DDR SDRAM chip. Furthermore, suppose 
that the CPU is big endian, while the FPGA coprocessor system is little 
endian. In this case, the CPU and the coprocessor can share data in the 
SDRAM seamlessly without manually accounting for the endianness of 
data.

1 The Avalon switch fabric does not guarantee proper byte 
arrangement for big-endian master ports when accessing 
peripheral registers via an Avalon slave port. 

Native Address 
Alignment & 
Dynamic Bus 
Sizing

SOPC Builder generates Avalon switch fabric to accommodate master 
and slave ports with unmatched data widths. Address alignment affects 
how slave data is aligned in a master port's address space, in the case that 
the master and slave data widths are different. Address alignment is a 
property of each slave port, and it may be different for each slave port in 
a system. A slave port can declare itself to use one of the following: 

■ Native address alignment
■ Dynamic bus sizing 

Table 3–2 demonstrates native address alignment and dynamic bus sizing 
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this 
example, the slave port is mapped to base address 0x0000000 in the 
master port. In Table 3–2, OFFSET refers to the offset into the 16-bit slave 
port address space. 

SOPC Builder generates appropriate address-alignment logic based on 
the properties of the master and slave ports in the system. When 
configuring a system in SOPC Builder, there are no GUI settings that 
directly control the address alignment in the Avalon switch fabric. 

Table 3–2. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

0x00000000 (word 0) 0x0000:OFFSET[0] 0xOFFSET[1]:OFFSET[0]

0x00000004 (word 1) 0x0000:OFFSET[1] 0xOFFSET[3]:OFFSET[2]

0x00000008 (word 2) 0x0000:OFFSET[2] 0xOFFSET[5]:OFFSET[4]

0x0000000C (word 3) 0x0000:OFFSET[3] 0xOFFSET[7]:OFFSET[6]

...

 (word N) 0x0000:OFFSET[N] 0xOFFSET[2N+1]:OFFSET[2N]
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Native Address Alignment

Slave ports that access address-mapped registers inside the component 
generally use native address alignment. The defining properties of native 
address alignment are:

■ Each slave offset (that is, word) maps to exactly one master word, 
regardless of the data width of the ports.

■ One transfer on the master port generates exactly one transfer on the 
slave port.

In the case of native address alignment, Avalon switch fabric maps all 
slave data bits to the lower bits of the master data, and fills any remaining 
upper bits with zero. Avalon switch fabric performs simple 
wire-mapping in the data path, but nothing else. 

Native address alignment is only valid if the master data width is equal 
to or wider than the slave data width. If an N-bit master port is connected 
to a wider slave with native alignment, then the master port can access 
only the lower N data bits at each offset in the slave.

Dynamic Bus Sizing

Slave ports that access memory devices generally use dynamic bus sizing. 
Dynamic bus sizing hides the details of interfacing a narrow memory 
device to a wider master port, and vice versa. When an N-bit master port 
accesses a slave port with dynamic bus sizing, the master port operates 
exclusively on full N-bit words of data, without awareness of the slave 
data width. 

1 When using dynamic bus sizing, the slave data width must be a 
power of two.

Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware 
manually.

■ Reduces design complexity of the master component.
■ Enables any master port to access any memory device seamlessly, 

regardless of the data width.

In the case of dynamic bus sizing, the Avalon switch fabric includes a 
small finite state machine that reconciles the difference between master 
and slave data widths. The behavior is different depending on whether 
the master data width is wider or narrower than the slave.
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Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a 
single, wide transfer on the master side, and then performs multiple 
narrow transfers on the slave side. For a data-width ratio of N:1, the 
dynamic bus-sizing logic generates N slave transfers. The master port 
pays a performance penalty, because it must wait while multiple 
slave-side transfers complete.

In the case of a read transfer, the Avalon switch fabric merges slave data 
from multiple read transfers before presenting them to the master port. A 
read transfer from a wide master port always causes multiple slave-read 
transfers to sequential addresses in the slave's address space. For 
example, even if a 32-bit master port needs only one byte from a 
dynamically-aligned 8-bit memory, a master read transfer generates four 
slave transfers, and the master port waits until all four transfers complete.

During write transfers, dynamic bus-sizing logic uses the master-side 
byte-enable signals to generate appropriate slave write transfers. The 
dynamic bus-sizing logic performs as many slave-side transfers as 
necessary to write the specified byte lanes to the slave memory. 

Narrower Master

In the case of a narrower master, one transfer on the master side generates 
one transfer on the slave side. In this case, multiple master word 
addresses map to a single offset in the slave memory space. The dynamic 
bus-sizing logic maps each master address to a subset of byte lanes in the 
appropriate slave offset. All bytes of the slave memory are accessible in 
the master address space. There is no performance penalty when 
accessing a wider slave port using dynamic bus sizing.

Table 3–3 demonstrates the case of a 32-bit master port accessing a 64-bit 
slave port with dynamic bus sizing. In the table, offset refers to the offset 
into the slave port memory space.

Table 3–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing

32-bit Address Data

0x00000000 (word 0) OFFSET[0]31..0

0x00000004 (word 1) OFFSET[0]63..32

0x00000008 (word 2) OFFSET[1]31..0

0x0000000C (word 3) OFFSET[1]63..32
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In the case of a read transfer, the dynamic bus-sizing logic multiplexes the 
appropriate byte lanes of the slave data to the narrow master port. In the 
case of a write transfer, the dynamic bus-sizing logic uses the slave-side 
byte-enable signals to write only to the appropriate byte lanes. 

Arbitration for 
Multi-Master 
Systems

Avalon switch fabric supports systems with multiple master 
components. In a system with multiple master ports, such as the system 
pictured in Figure 3–1 on page 3–2, the Avalon switch fabric provides 
shared access to slave ports using a technique called slave-side 
arbitration. Slave-side arbitration determines which master port gains 
access to a specific slave port in the event that multiple master ports 
attempt to access the same slave port at the same time.

The multi-master architecture used by Avalon switch fabric offers the 
following benefits: 

■ Eliminates the need to create arbitration hardware manually.
■ Allows multiple master ports to transfer data simultaneously. Unlike 

traditional host-side arbitration architectures in which each master 
must wait until it is granted access to the shared bus, multiple 
Avalon masters can simultaneously perform transfers with 
independent slaves. Arbitration logic stalls a master port only when 
multiple master ports attempt to access the same slave port during 
the same cycle. 

■ Eliminates unnecessary master-slave connections. The connection 
between a master port and a slave port exists only if it is specified in 
the SOPC Builder GUI. If a master port never initiates transfers to a 
specific slave port, no connection is necessary, and therefore SOPC 
Builder does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each 
slave port is specified independently. For example, you can grant 
one master port the most access to a particular slave port, while other 
master ports have more access to other slave ports.

■ Simplifies master component design. The details of arbitration are 
encapsulated inside the switch fabric. Each Avalon master port 
connects to the Avalon switch fabric like it is the only master port in 
the system. As a result, you can reuse a component in single-master 
and multi-master systems without requiring design changes to the 
component. 

This section discusses the architecture of the Avalon switch fabric 
generated by SOPC Builder for multi-master systems.
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Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and 
arbitration, this section describes traditional bus architectures. 

In traditional bus architectures, one or more bus masters and bus slaves 
connect to a shared bus, consisting of wires on a printed circuit board. A 
single arbitrator controls the bus (that is, the path between bus masters 
and bus slaves), so that multiple bus masters do not simultaneously drive 
the bus and cause electrical contention. Each bus master requests control 
of the bus from the arbitrator, and the arbitrator grants access to a single 
master at a time. Once a master has control of the bus, the master 
performs transfers with a bus slave. If multiple masters attempt to access 
the bus at the same time, the arbitrator allocates the bus resources to a 
single master based on fixed arbitration rules, forcing all other masters to 
wait. For example, the priority arbitration scheme—in which the 
arbitrator always grants control to the master with the highest priority—
is used in many existing bus architectures. 

Figure 3–8 illustrates the bus architecture for a traditional processor 
system. Access to the shared system bus becomes the bottleneck for 
throughput and utilization performance. Only one master has access to 
the bus at a time, which means that other masters are forced to wait 
(diminishing throughput), and only one slave can transfer data at a time 
(diminishing utilization). 

Figure 3–8. Bus Architecture in a Traditional Microprocessor System 
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Slave-Side Arbitration

The multi-master architecture used by Avalon switch fabric eliminates 
the bottleneck for access to a shared bus, because the system does not 
have shared bus lines. Avalon master-slave pairs are connected by 
dedicated paths. A master port never waits to access a slave port, unless 
a different master port attempts to access the same slave port at the same 
time. As a result, multiple master ports can be active at the same time, 
simultaneously transferring data with independent slave ports. 

A multi-master Avalon system requires arbitration, but only when two 
masters contend for the same slave port. This arbitration is called 
slave-side arbitration, because it is implemented at the point where two 
(or more) master ports connect to a single slave. Master ports contend for 
individual slave ports, not for a shared bus resource.

For example, Figure 3–1 on page 3–2 demonstrates a system with two 
master ports (a CPU and a DMA controller) sharing a slave port (an 
SDRAM controller). Arbitration is performed on the SDRAM slave port; 
the arbitrator dictates which master port gains access to the slave port if 
both master ports initiate a transfer with the slave port at the same time. 

Figure 3–9 focuses on the two master ports and the shared slave port, and 
shows additional detail of the data, address, and control paths. The 
arbitrator logic multiplexes all address, data, and control signals from a 
master port to a shared slave port. 

Figure 3–9. Detailed View of Multi-Master Connections
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Arbitrator Details

SOPC Builder generates an arbitrator for every slave port connected to 
multiple master ports, based on arbitration parameters specified in the 
SOPC Builder GUI. The arbitrator logic performs the following functions 
for its associated slave port:

■ Evaluates the address and control signals from each master port at 
every clock cycle when a new transfer can begin, and determines 
which master port, if any, is requesting access to the slave.

■ Chooses which master port gains access to the slave next. 
■ Grants access to the chosen master port (that is, allows it to proceed 

with the transfer), and forces all other requesting master ports to 
wait.

■ Uses multiplexers to connect address, control, and data paths 
between the multiple master ports and the slave port. The arbitrator 
logic guarantees that an appropriate master port (if any) is connected 
to the slave port.
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Figure 3–10 shows the arbitrator logic in an example multi-master system 
with two master ports, each connected to two slave ports.

Figure 3–10. Block Diagram of Arbitrator Logic
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This section describes the rules by which the arbitrator grants access to 
master ports when they contend.

Fairness-Based Shares

Avalon arbitrator logic uses a fairness-based arbitration scheme. In a 
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For example, assume that two master ports continuously attempt to 
perform back-to-back transfers to a slave port. Master 1 is assigned three 
shares and Master 2 is assigned four shares. In this case, the arbitrator 
grants Master 1 access for three transfers, then Master 2 for four transfers. 
This cycle repeats indefinitely. Figure 3–11 demonstrates this case, 
showing each master port's transfer request output, wait request input 
(which is driven by the arbitrator logic), and the current master with 
control of the slave.

Figure 3–11. Arbitration of Continuous Transfer Requests from Two Master Ports

If a master stops requesting transfers before it exhausts its shares, it 
forfeits all its remaining shares, and the arbitrator grants access to another 
requesting master. See Figure 3–12. After completing one transfer, Master 
2 stops requesting for one clock cycle. As a result, the arbitrator grants 
access back to Master 1, which gets a replenished supply of shares.

Figure 3–12. Arbitration of Two Masters with a Gap in Transfer Requests

Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the 
arbitrator grants shares in round-robin order. At every slave transfer, 
only requesting master ports are included in the round-robin arbitration.
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Burst Transfers

Avalon burst transfers grant a master port uninterrupted access to a slave 
port for a specified number of transfers. The master port specifies the 
number of transfers when it initiates the burst. Once a burst begins 
between a master-slave pair, arbitrator logic does not allow any other 
master port to access the slave port until the burst completes. For further 
information, see “Burst Management” on page 3–20.

Minimum Share Value

A component design can declare the minimum number of shares in each 
round-robin cycle, which affects how the arbitrator grants access. For 
example, if a slave port has a minimum share value of ten, then the 
arbitrator will grant at least ten shares to any master port when it begins 
a sequence of transfer requests. The arbitrator might grant more shares, if 
the master port is assigned more shares in the SOPC Builder GUI.

By declaring a minimum share value of N, a slave port declares that it is 
more efficient at handling continuous sequential transfers of length N. 
Accessing the slave port in sequences less than N incurs performance 
penalties that might prevent the slave port from achieving higher 
performance. By nature, continuous back-to-back master transfers tend to 
access sequential addresses. However, there is no requirement that the 
master port perform transfers to sequential addresses.

1 Burst transfers provide even higher performance for continuous 
transfers when they are guaranteed to access sequential 
addresses. The minimum share value does not apply to slave 
ports that support bursts; the burst length takes precedence over 
minimum share value. See “Burst Management” on page 3–20 
for information.
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Setting Arbitration Parameters in the SOPC Builder GUI

You specify the arbitration shares for each master using the connection 
panel on the System Contents tab of the SOPC Builder GUI, as shown in 
Figure 3–13.

Figure 3–13. Arbitration Settings on the System Contents Tab 

1 The arbitration settings are hidden by default. To view them, on 
the View menu, click Show Arbitration.

Burst 
Management

Avalon switch fabric provides burst management logic to accommodate 
the burst capabilities of each port in the system, including ports that do 
not support burst transfers. Burst management logic is a finite state 
machine that translates the sequencing of address and control signals 
between the slave side and the master side.

The maximum burst length for each port is determined by the component 
design and is independent of other ports in the system. Therefore, a 
particular master port might be capable of initiating a burst longer than a 
slave port’s maximum supported burst length. In this case, the burst 
management logic translates the master burst into smaller slave bursts, or 
into individual slave transfers if the slave port does not support bursts. 
Until the master port completes the burst, the Avalon arbitrator logic 
prevents other master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port 
with maximum burst length of 8, the burst management logic initiates 
two bursts of length 8 to the slave port. If a master port initiates a burst of 
16 transfers to a slave port that does not support bursts, the burst 
management logic initiates 16 separate transfers to the slave port. 
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Clock Domain 
Crossing

SOPC Builder generates clock-domain crossing (CDC) logic that hides the 
details of interfacing components operating in asynchronous clock 
domains. The Avalon switch fabric upholds the Avalon protocol with 
each port independently, and therefore each Avalon port need only be 
aware of its own clock domain. The Avalon switch fabric logic propagates 
transfers across clock domain boundaries transparently to the user. 

The CDC logic in Avalon switch fabric provides the following benefits 
that simplify system design efforts:

■ Allows component interfaces to operate at a different clock 
frequency than system logic.

■ Eliminates the need to design CDC hardware manually.
■ Each Avalon port operates in only one clock domain, which reduces 

design complexity of components.
■ Enables master ports to access any slave port without awareness of 

the slave clock domain.
■ Allows you to focus performance optimization efforts only on 

components that require fast clock speed. 

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each 
clock domain, which use a simple hand-shaking protocol to propagate 
transfer control signals (read request, write request, and the master 
wait-request signals) across the clock boundary. Figure 3–14 shows a 
block diagram of the clock domain crossing logic between one master and 
one slave port. 
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Figure 3–14. Block Diagram of Clock Domain-Crossing Logic 

The Synchronizer blocks in Figure 3–14 use multiple stages of flip-flops 
to eliminate the propagation of metastable events on the control signals 
that enter the hand-shake FSMs. 

The CDC logic works with any clock ratio. Altera® tests the CDC logic 
extensively on a variety of system architectures, both in simulation and in 
hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is 
described below: 

1. Master port asserts address, data, and control signals. 

2. The master handshake FSM captures the control signals, and 
immediately forces the master port to wait. 

1 The FSM uses only the control signals, not address and data. For 
example, the master port simply holds the address signal 
constant until the slave side has safely captured it. 

3. Master handshake FSM initiates a transfer request to the slave 
handshake FSM.
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4. The transfer request is synchronized to the slave clock domain. 

5. The slave handshake FSM processes the request, performing the 
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends 
an acknowledge back to the master handshake FSM. 

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing 
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a 
special protocol to handle crossing clock domains. From the perspective 
of a slave port, there is nothing different about a transfer initiated by a 
master port in a different clock domain. From the perspective of a master 
port, a transfer across clock domains simply takes extra clock cycles. 
Similar to other transfer delay cases (for example, arbitration delay 
and/or wait states on the slave side), the Avalon switch fabric simply 
forces the master port to wait until the transfer terminates. As a result, 
latency-aware master ports do not benefit from pipelining when 
performing transfers to a different clock domain. 

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic, 
based on the system contents and the connections between components. 
SOPC Builder places CDC logic to maintain the highest transfer rate for 
all components. SOPC Builder evaluates the need for CDC logic on each 
slave port independently, and generates CDC logic wherever necessary.

Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain 
boundaries. In the worst case, each transfer is extended by five master 
clock cycles and five slave clock cycles. The components of this delay are 
the following:

■ Four additional master clock cycles, due to the master-side clock 
synchronizer

■ Four additional slave clock cycles, due to the slave-side clock 
synchronizer

■ One additional clock in each direction, due to potential metastable 
events as the control signals cross clock domains 
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Implementing Multiple Clock Domains in the SOPC Builder GUI

You specify the clock domains used by your system on the System 
Contents tab of the SOPC Builder GUI. You define the input clocks to the 
system using the clock settings table, shown in Figure 3–15. Clock sources 
can be driven by external input signals to the system module, or by PLLs 
inside the system module. Clock domains are differentiated based on the 
name of the clock. It is possible to create multiple asynchronous clocks 
with the same frequency. 

Figure 3–15. Clock Settings on the System Contents Tab

After you define the system clocks, you specify which clock drives which 
components using the table of active components, as shown in 
Figure 3–16.

Figure 3–16. Assigning Clocks to Components 

f For further details, refer to the Building Systems with Multiple Clock 
Domains chapter in volume 4 of the Quartus II Handbook.
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Interrupt 
Controller

In systems with one or more slave ports that generate IRQs, the Avalon 
switch fabric includes interrupt controller logic. A separate interrupt 
controller is generated for each master port that accepts interrupts. The 
interrupt controller aggregates IRQ signals from all slave ports, and maps 
slave IRQ outputs to user-specified values on the master IRQ inputs. 

Each slave port optionally produces an IRQ output signal. There are two 
master signals related to interrupts: irq and irqnumber. SOPC Builder 
generates the interrupt controller in one of two configurations, software 
priority or hardware priority, depending on the interrupt signals present 
on the master port. 

Software Priority

In the software priority configuration, the Avalon switch fabric passes 
IRQs directly from slave to master port, without making any assumptions 
about IRQ priority. In the event that multiple slave ports assert their IRQs 
simultaneously, the master logic (presumably under software control) 
determines which IRQ has highest priority, then responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave 
IRQ inputs. The interrupt controller generates a 32-bit signal 
irq[31..0] to the master port, and simply maps slave IRQ signals to 
the bits of irq[31..0]. Any unassigned bits of irq[31..0] are 
permanently disabled. Figure 3–17 shows an example of the interrupt 
controller mapping the IRQs on four slave ports to irq[31..0] on a 
master port.

Figure 3–17. IRQ Mapping Using Software Priority
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Hardware Priority

In the hardware priority configuration, in the event that multiple slaves 
assert their IRQs simultaneously, the Avalon switch fabric (i.e. hardware 
logic) identifies the IRQ of highest priority and passes only that IRQ 
number to the master port. An IRQ of lesser priority is undetectable until 
a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64 
slave IRQ signals. The interrupt controller generates a 1-bit irq signal to 
the master port, signifying that one or more slave ports have generated 
an IRQ. The controller also generates a 6-bit irqnumber signal, which 
outputs the encoded value of the highest pending IRQ. See Figure 3–18.

Figure 3–18. IRQ Mapping Using Hardware Priority

Assigning IRQs in the SOPC Builder GUI

You specify IRQ settings on the System Contents tab of the SOPC Builder 
GUI. After adding all components to the system, you make IRQ settings 
for all slave ports that can generate IRQs, with respect to each master 
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port. For each slave port, you can either specify an IRQ number, or specify 
not to connect the IRQ. Figure 3–19 shows the IRQ settings for multiple 
slave IRQs that drive the master component named cpu. 

Figure 3–19. Assigning IRQs in the SOPC Builder GUI 

Reset 
Distribution

The Avalon switch fabric generates and distributes a system-wide reset 
pulse to all logic in the system module. The switch fabric distributes the 
reset signal conditioned for each clock domain. The duration of the reset 
signal is at least one clock period.

The Avalon switch fabric asserts the system-wide reset in the following 
conditions: 

■ The global reset input to the system module is asserted. 
■ A slave port asserts its resetrequest signal.
■ The FPGA is reconfigured. 

All components must enter a well-defined reset state whenever the 
Avalon switch fabric asserts the system-wide reset. The timing of the 
reset signal is asynchronous to the operation of transfers.
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