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1 Introduction

An realtime operating system may be defined as one that has the ability to
provide a required level of service along with a bounded response time. They can
be categorized into hard and soft real time systems. Soft real time systems are
one in which timing requirements are statistically defined. Video conferencing is
a classic example: it is desirable that frames be not missed but it is acceptable
if a frame or two is occasionally skipped. However in a hard real time system
deadlines must be guaranteed. For example a rocket fuel injection procedure
must be completed in time.

In order to achieve a bounded response time, careful planning has to go into the
design of the scheduling policy. Real time scheduling is consequently the most
widely studied aspect of real time operating systems. Here we shall touch upon
a few results on real time scheduling for uniprocessors as well as multiprocessors
for independent tasks. The uniprocessor scheduling problem has been thoroughly
studied and a number of results derived, but for multiprocessors most of the
interesting problems have been proved to be NP complete.

However it is not uncommon to have interacting real time tasks, for example a
periodic data acquisition task which sets off a robot motion task on a particular
data pattern. In such cases resource sharing has to be done between the real
time tasks in a mutually exclusive manner. Here we shall also look at a few
approaches to real time synchronization including the simple priority inheritance
protocol and the priority ceiling protocol. These approaches mainly differ in the
way in which they curb the problem of priority inversion which arises under any
lock-based protocol. We also look upon a lock free protocol whichdoes not suffer
from priority inversion but at the cost of possibly extra computation.

Earlier real time systems tended to be extremely simple machines dedicated to
executing real time tasks. But over the years real time systems have become
more sophisticated, requiring services such as Graphical User Interface and net-
working (for example to display the results of a data acquisition task using bar
charts). Such services are conventionally provided by time sharing systems and
hence several attempts have been made to club the two together. Here we shall
look at the approach taken by RT Linux (A Hard Real Time variant of Linux).
The intention is to make use of the sophisticated services and highly optimized
average case behavior of a standard time-shared operating system (Linux) while
still permitting real-time functions to operate in a predictable and low-latency
environment.In RT Linux a simple real-time executive runs a non-real-time kernel
as its lowest priority task, using a virtual machine layer to make the standard ker-
nel fully pre-emptable. Lastly we look at the implementation of the basic priority
inheritance protocol that we carried out in the RT Linux mutex implementation.



2 Real Time Scheduling on Uniprocessor Systems

2.1 Scheduling paradigms

A variety of strategies have been adopted by researchers for scheduling real time
tasks. Most classical scheduling theory deals with static scheduling. In static
scheduling, we have complete knowledge of the task set and its constraints, such
as deadlines, computation times and release times. We can either resort to build-
ing a complete schedule beforehand or we can assign static priorities to all tasks
and always choose the highest priority task to be run on the processor. The
former technique is referred to as Static Table Driven Approach. The latter may
be termed as Static Priority Based Approach. In contrast to the above two ap-
proaches, we may have a dynamic scheduling algorithm. Although there is no
agreement on the use of the term dynamic as applied to scheduling algorithms, a
dynamic approach is one where the decision of choosing the task to run, is made
at run time. This may either involve assigning dynamic priorities to tasks or doing
a schedulability analysis when a new task arrives. Also, we call a scheduling algo-
rithm online, if it has the ability to schedule tasks which are added dynamically.
We will not discuss this issue of terminology any further. For us, unless specified
otherwise, dynamic would mean something which does not involve preparing a
schedule offline or assigning static priorities to tasks. Throughout our discussion
it will be assumed, unless specified otherwise, that preemptions of tasks take place
at integral time boundaries. This is often referred to as the Integer Boundary
Constraint(IBC).

2.2 The Rate Monotonic Algorithm

The rate monotonic(RM) algorithm is a famous one, and is applied to schedule
a set of periodic tasks, where task ¢ has a time period of 7; and a computation
requirement of C; in every time period. This algorithm was first discussed by
Liu and Layland [LIU73]| in their classic paper on real time scheduling. The RM
algorithm assigns priorities to tasks according to their rates, i.e. inverse of period.
So the task with the shortest period is assigned the highest (static) priority. It
may be noted that we are here assuming the deadlines of tasks to be equal to
their respective periods. Now, it is easy to see that a necessary condition for
scheduling the tasks on a single processor is that the computation requirements
of the entire task set should not exceed that amount of processor time available.
So we have
Y(C/T) < 1 (1.2.1)

The left hand side of this inequality is referred to as the wtilization factor(U)
of the task set. This is, however, not a sufficient condition for a task set to be
schedulable under static priority assignment. Liu and Layland proved that if the
task set is schedulable under any static priority assignment then they must be



so under RM. Thus, RM is optimal among all static priority algorithms. As a
consequence of this strong result, we only need to establish a sufficient condition
for schedulability under RM. In the same paper it was established that RM always
succeeds in scheduling a task set, if the following condition holds
Y(Ci/T) < n@2Y"r—1)  (1.2.2)

where 7 is the number of tasks in the task set. The quantity on the right side of
the inequality above decreases monotonically from .83 when n = 2 to In2 = .69
as n — 0o. The result shows that any periodic task set of any size will be able
to meet all deadlines if the RM algorithm is used and the total utilization is less
than 70%. It may also be noted that RM is not optimal if deadlines are not equal
to periods. In that case, the deadline monotonic(DM) algorithm is optimal. Tt
assigns highest priority to the task having shortest deadline period.

2.3 Exact Analysis using Response Time

It has been observed that RM succeeds in scheduling task sets with over 90% uti-
lization [LHCB89]|. It has also been demonstrated that the average case behaviour
of the RM algorithm is much better than the worst case. Here, we briefly describe
a simple procedure to determine feasibility of a given task set under some static
priority assignment. This can be used to find out whether RM will succeed in
scheduling the task set, when the sufficient condition (1.2.2) does not hold. The
idea is to calculate the response time(R;) of each task. The response time is the
time which the given task will take to execute in the worst case, in the presence
of higher priority tasks. So, for feasibility we have the condition
R, < T (1.3.1)
Let us now see, how can we calculate R;. Observe that R; has to satisfy the
recurrence
where hp(i) is the set of tasks having higher priority than task i.This is because
|R;/T;] is the maximum number of invocations of task j during the response
time and each invocation requires C; units of processor time. The response time
should be equal to the sum of computation time of task 2 and the time spent in
serving the higher priority tasks. We can solve the recurrence (1.3.2) iteratively
as follows
RY = C; (1.3.3)
R =Ci 4 Cjen) [RE/T)] % C; (1.3.4)
In (1.3.3), we set our initial approximation of R; to be C;. Subsequent approx-
imations are calculated using (1.3.4). In this way we can compute the response
time to the desired degree of accuracy.



2.4 The Earliest Deadline First Algorithm

We saw in a previous section (1.2) that no static priority algorithm can guarantee
to schedule task sets which have full (100%) processor utilization. It is a natural
question then, to ask whether condition (1.2.1) is sufficient for schedulability or
not. In the above mentioned paper of Liu and Layland, they not only answered
this question in the affirmative but also proved that a simple algorithm, called
the Earliest Deadline First(EDF) algorithm ,can schedule any (periodic) task set
satisfying (1.2.1). The EDF scheduler simply chooses that task which has the
nearest deadline. Later, it was shown by Dertouzos [DRT74| that the scheduler
is optimal for arbitrary task sets, not just periodic ones. The optimality proof
depends on the fact that it is always possible to transform a feasible schedule
into one which follows the EDF algorithm. This so because if at any time the
processor executes some task other than the one which has closest deadline, then
it is possible to interchange the order of execution of these two tasks. Since, the
sacrificed task has a more distant deadline, making up for its one unit of lost
processor time before closest deadline certainly does not violate its own deadline.
It is worthwhile to mention here that the Least Lazity First(LLF) algorithm is
also optimal in the same way as EDF is. The LLF scheduler schedules the task
with the least laxity where laxity is the difference between time before a deadline
arrives and the remaining computation time. A task with zero laxity must be
scheduled or it will miss its deadline.

3 Real Time Scheduling on Multiprocessor Sys-
tems

3.1 Problems in the Multiprocessor case

We have seen that the uniprocessor case is well understood and we have a neces-
sary and sufficient condition for schedulability of periodic tasks on a uniprocessor.
A natural extension of the scheduling problem is to introduce more processors.
Clearly, the modified version of condition (1.2.1) is
Y(C/T) < m (2.1.1)

where m is the number of processors. (2.1.1) is clearly necessary for feasibility
but we should pause before we claim that it is sufficient too. Any multiprocessor
schedule must satisfy two constraints. First, a processor must not be allocated to
more than one task at a time. Second, a task must not be scheduled on more than
one processor at the same time. These constraints introduce subtle differences
between the uniprocessor case and the multiprocessor case and it so turns out
that the optimal scheduling algorithms (like EDF and LLF) of the uniprocessor
case cease to be so when there are more than one processors.



3.2 The Insufficient Knowledge Problem

The proofs of optimality of EDF and LLF break down because of the additional
second constraints mentioned in the previous section (2.1). Since EDF is so simple
both conceptually and implementation wise, it is natural to ask for an equally
simple and efficient algorithm for scheduling tasks on m processors. We also
desire to have an optimal algorithm, so that we can find a schedule if one exists.
Dertouzos and Mok [DRT89| however answered the question in the negative for a
wide class of schedulers. In particular, they proved that if we do not have a priori
knowledge of any of the following parameters: 1) deadlines, 2) computation time,
or 3) the start times, then for any algorithm one might propose, one can always
find a set of tasks which cannot be scheduled by the proposed algorithm but
which can be scheduled by another algorithm. They established their claim by
“adversary” arguments. The interested reader is requested to refer to their paper
for detailed proofs. The RM algorithm does not care about computation times
at all, so we cannot expect it to be optimal, and it is indeed the case that RM is
not an optimal priority assignment algorithm for the multiprocessor case.

Dertouzos and Mok mention two conditions under which task sets may be sched-
uled optimally at run time. One is the simple case when each task has unit
computation time. In this case the optimality proof of EDF does not break down
and so the task set is schedulable optimally by an EDF scheduler. Second is the
case when the set of tasks can be scheduled if they all start at the same time. If
this property is satisfied by a task set then it can be scheduled even when the
tasks do not start at the same time. The optimal scheduler in this case is the
LLF scheduler.

3.3 Pfair schedules

We have, so far, not addressed the question whether U < m ( U is the utiliza-
tion) is a sufficient condition for schedulability of periodic real time tasks on m
multiprocessors, in the presence of IBC!. The question remained open for many
years though a partial answer was provided in [DRT89]. They proved that if
T =GCD(T\,Ts,...T,), and T = C;/T; is an integer for all i , then it is possible
to schedule these n tasks on m processors provided U < m. The idea was to allo-
cate T+ C;/T; time units to task i in each slot of 7" time units. A task has to wait
for T; /T slots before it is allotted C; time units, and the total duration of these
slots is exactly equal to the period of the task, so no deadlines are missed. This
condition was improved slightly by Khemka and Shyamsundar [KHM92| but they
came nowhere close to the complete answer. Baruah et al. [BRH96| proved that
U < m is indeed sufficient for scheduling n task on m identical multiprocessors.

recall that IBC is the integer boundary constraint



In fact, they construct a schedule that is not only feasible but also pfair. The
notion of Pfairness is defined and discussed in the next section.

3.3.1 The notion of Pfairness

Define the weight W; of task i to be C;/T; . Instead of viewing task ¢ as a task
with period 7; and computation time C}, pfair schedulers view it as a task with
period T;/C; = 1/W; and computation time unity. Now, because of IBC, we
cannot demand that task ¢ be allotted W, % ¢ time units till time ¢, for all ¢ > 0.
So, we require in our schedule that (for all ), task i has been alloted either
[Wixt] or [W; xt] time units at time t. Thus pfairness is a stricter requirement
than feasibility. This is because any pfair schedule is a feasible schedule but the
converse is not true. Now, it is remarkable that the condition (2.1.1) actually is
sufficient for the existence of a pfair schedule, not just a feasible schedule.

3.3.2 A Pfair scheduling algorithm

Before, we present the algorithm of Baruah et. al., some notations have to be
defined. S denotes a schedule.

S(z,t) = 0 if task x is scheduled at time ¢ otherwise it is 1.

lag(S,z,t) = Wy xt — X128 S(x,14)

S is pfair if and only if the following inequality holds for all tasks at all times.
—1 <lag(S,z,t) < +1

A task is ahead if lag is less than zero, is behind if lag is more than zero, and is
punctual otherwise.

The characteristic string of task z is defined as follows

a(x) = sign(Wy x (t+1) — |[Wyxt] — 1)

Here a;(x) represents the tth character of a(z). Hence a(z) is a string over the
alphabet {—,0,+} and — < 0 < + lexicographically.

The characteristic substring of task x at time ¢ is defined to be
a(x,t) = ap () oy () . .y ()
where u=mini: i >t ANa;(z) =0

A task z is tnegru at time t if z is ahead and oy () # +
A task z is urgent at time ¢ if z is behind and ay(z) # —
Otherwise it is contending.

It can be proved that if a task is tnegru then a pfair scheduler will not schedule
it and if it is urgent then it will certainly schedule it at time ¢. So, the



algorithm (hereafter referred to as PF) selects all urgent tasks immediately.
Then it imposes a total order >on the contending task as follows

rr=y < azr,t)>a(y,t), where the comparison is lexicographic.

Then it chooses as many contending tasks as required to make all processors
busy.

AlgorithmPF

1) Select all urgent tasks (ng).

2) Impose total order >on the contending tasks, as defined above
3) Select m — ny highest priority contending tasks.

4) Schedule the selected tasks.

3.3.3 Proof Idea

Baruah et. al. first prove, using a network flow argument, that a pfair schedule
exists, given condition (2.1.1). Then they prove by induction on ¢ that if algorithm
PF’s schedule(Spp) is pfair at time ¢ then it is so at time ¢ + 1 also. It is here
that pfairness come in handy. If your induction hypothesis is strong enough you
will be able to prove strong results. So by assuming pfairness to hold till time ¢
they succeed in proving it at time ¢+ 1, while people working on simple feasibility
were unable to prove the existence of feasible schedules given the same condition
(2.1.1). The interested reader should refer to [BRH96| for the detailed proof and
a sample run of the Algorithm PF.

3.3.4 A Static Priority Pfair Scheduling Algorithm

Baruah’s notion of pfairness inspired researchers to study pfair scheduling in
detail. Baruah [BRH??| has provided results for the case when the m processors
are no longer identical. Ramamurthy and Moir [RMMO0| present a static priority
algorithm for m multiprocessors and derive a sufficient condition under which it
succeeds in scheduling the task set. Their algorithm is a simple weight monotonic
algorithm(WM). It always chooses the m tasks having highest weights. If for every
x € T there exists at €(0, [1/W,]) such that 3°, ., [W,*t] < mxt, then T is
scheduled in a pfair manner by WM. They derive this condition by proving that
if the generated schedule in not pfair then the above condition does not hold.

4 Priority Inheritance Protocols

Real time systems often suffer from the well-known problem of priority inversion.
This problem was first discussed by Lamport and Redell [LMP80] in the context of
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monitors2. This is caused when a high priority task,7}, tries to acquire a resource
currently held by a low priority task,73, and blocks on it. In such a scenario,
if there is a task with intermediate priority, 75, it can preempt 73 and start
running thereby delaying the execution of 7} by an arbitrary amount of time.
Such a situation is clearly not desirable in real time systems. The use of priority
inheritance protocols is one approach that Sha et. al. [SHA90| suggested to
rectify the priority inversion problem.

4.1 The Basic Priority Inheritance Protocol
4.1.1 The protocol

1. Highest priority task 7', is assigned the processor. It will be blocked if it
attempts to lock an already locked semaphore S. When T exits its critical
section, in case it did acquire S, the highest priority task, if any, blocked
by task T" will be awakened.

2. A task T uses assigned priority unless it is in a critical section and blocks
higher priority tasks. It inherits the priority of the highest priority task
blocked by it. On leaving the critical section, it resumes its original priority.

3. Priority Inheritance is transitive - if T3 blocks T, and 75 blocks T then T3
inherits P, the priority of T;.

4. Task T can preempt 77, a lower priority task, if 7" is not blocked and 77’s
current, priority is less than 7"s current priority.

This protocol ensures the following property:

If there are n lower priority tasks that could block 7" and m is the number of
semaphores that can be used to block T', then T" can be blocked for at most the
duration of min(n,m) critical sections.

It is important to note that under the basic priority inheritance protocol, a high
priority task can be blocked by a low priority task in one of two situations . First
there is the direct blocking: a situation in which a higher priority task attempts to
lock a locked semaphore. Direct blocking is necessary to ensure the consistency of
shared data. Second, a medium priority task 75 can be blocked by a low priority
task T3, which inherits the priority of a high priority task 77. We call this form of
blocking push-through blocking. This is necessary to avoid having a high priority
task being indirectly preempted by the execution of a medium priority task.

2Monitors are a mechanism to achieve mutual exclusion
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4.1.2 Problems with the protocol

The basic priority inheritance protocol has the following two problems. First, the
basic protocol, by itself, does not prevent deadlocks. For example, suppose that
at time t1, task T, locks semaphore Sy and enters its critical section. At time %5,
task T, attempts to make a nested access to lock semaphore S;. However, task
Ti, a higher priority task, is ready at this time. Task T} preempts task 75 and
locks semaphore S;. Next, if task 7} tries to lock semaphore Sy, a deadlock is
formed. Second, the blocking duration for a task, though bounded, can still be
substantial.

4.2 The Priority Ceiling Protocol
4.2.1 Goals of the protocol

The protocol is designed to ensure that when a task 7" preempts the critical
section of another task and executes its own critical section Z, the priority at
which this new critical section Z will execute is guaranteed to be higher than the
inherited priorities of all the preempted critical sections.

4.2.2 Priority Ceiling of a Semaphore

The priority ceiling of a semaphore is defined to be the priority of the highest
priority task that may attempt to acquire this semaphore.

4.2.3 The protocol

1. Task T, which has the highest priority among the tasks ready to run, is
assigned the processor and let S*be the semaphore with highest priority
ceiling of all semaphores locked by other tasks. Task 7" will block if it tries
to lock a semaphore and its priority is not higher than the ceiling of S*. In
this case, T is said to be blocked by the task holding S*.

2. If task T blocks higher priority tasks, T inherits Py, the highest of the
priorities of tasks blocked by 7. Inheritance is transitive.

3. A task T, when it does not attempt to enter a critical section, can pre-
empt another task 77, if its priority is higher than the priority, inherited or
assigned, at which task 77, is running.

This protocol ensures the following properties:
A task T can be blocked by a lower priority task 77, only if priority of task 7T is

no higher than the highest priority ceiling of all the semaphores that are locked
by all lower priority tasks when T is initiated. Suppose critical section Z of Tj

12



is preempted by task T; which enters its critical section Z’. Under this protocol,
task 7 cannot inherit a priority level which is higher than or equal to that of
task T;, until task 7; completes. Also, transitive blocking is not possible under
this protocol. The protocol ensures that the period, during which a high priority
task is blocked by a low priority task, is bounded. A task T can be blocked for
at most the duration of one critical section, among all those critical sections of
lower priority tasks which can cause blocking of T'.

4.3 Immediate Ceiling Priority Inheritance Protocol

This protocol is a simple variation of the Priority Ceiling Protocol mentioned
above. Under this protocol, as soon as a task acquires a semaphore, its priority is
raised to the ceiling priority of the semaphore. The protocol ensures that a task
is blocked by only a single lower priority task, and that too when it is released.
This implies that once a task starts executing, no further low priority tasks can
cause blocking of this task.

5 Lock Free Shared Objects

5.1 Motivation

Priority Inheritance Protocols do away with the problem of priority inversion but
they lead to additional overheads inside the operating system. This is because
the OS has to keep track of ceiling priorities and inherited priorities. Moreover,
calculating ceiling priorities requires one to know exactly which tasks access which
objects. Therefore, tasks cannot be dynamically added easily. This led Anderson
et. al. [AND97| to consider “lock free” ways of accessing shared objects.

5.2 Features of Lock Free Objects

As the name suggests, these objects are accessed without locking. They do not
lead to priority inversion, because no locking is involved, but individual tasks
may interfere with each other. The number of interferences can be bounded by
appropriate scheduling. This mechanism of implementing shared objects pertains
to periodic hard real-time tasks that share lock-free objects on a uniprocessor.

5.3 Implementation

Lock free objects are implemented using retry loops:

typedef struct {
valtype data;

13



Qtype *next;
} Qtype;

Qtype *head, *tail;

Enqueue (valtype input) {

Qtype *o0ld, *new;
Qtype **addr;
*new = (input, NULL);
repeat {

old = tail;

if (old !'= NULL)

addr = &(old->next);

else
addr = &head;
} until (CAS2(&tail,addr,old,NULL,new,new));

¥

Two word Compare and Swap (CAS2) instruction is used to atomically carry out
the update. The “repeat-until” loop is executed repeatedly until CAS2 succeeds.
Note that the queue is not actually locked by any process.

Interference is said to occur when a task is preempted in the middle of the loop
and CAS2 fails. The retry loop is potentially unbounded. If it is somehow ensured
that the retry loop is bounded then the implementation is termed as wait-free.

5.4 Intuition behind lock free objects

If it is indeed the case that retry loops are unbounded, then how can we guarantee
that deadlines will be met. The primary intuition behind using lock free objects
is that if a task 7; causes task T} to experience a failed update, then T cannot
cause T; to experience a failed update. This is because only one of them can have
higher priority.

A set of tasks using shared lock free objects is schedulable only if there is enough
free processor time to accommodate the failed updates. Although lock free objects
hog more CPU time (since computation is repeated), still it can win over lock
based schemes since it gives little hindrance to high priority tasks - which are
more likely to miss deadlines under lock based schemes.

5.5 Universal Construction

Any kind of shared object can be dealt with by the following Universal Construc-
tion:

14



e Numerous copies of the implemented object are kept.
e Current copy is indicated by a shared object pointer.

e Retry loop consists of

- shared object pointer is read.

- local copy of the object is made.

- desired operation is done on the local copy.

- Attempt is made(using CAS) to make the shared pointer point
to the local copy

We can modify the above universal construction slightly to obtain a wait free
implementation. Each task can be required to announce that it has a pending
shared-object access operation. Using this information, higher priority tasks can
help lower priority tasks to complete those pending operations. This again leads
to the problem of priority inversion since a medium priority task will have to
wait for a high priority task helping a lower priority task. But when using lock
free objects, time to complete an object access decreases with increasing priority.
Thus certain task sets are schedulable under lock free scheme but not under wait
free.

6 RT Linux

6.1 Incompatibility of time sharing and real time systems

Conventional real time systems have several problems preventing them from being
used as hard real time operating systems. The root of these problems is that time
sharing operating systems try to optimize the average case but real time systems
have to consider the worst case in order to guarantee deadlines. Conventional
time sharing operating systems and real time systems have contradictory design
goals e.g virtual memory is highly desirable in the former but undesirable in the
latter (unless some provision is made for locking of pages in memory for real time
tasks).

Linux can’t be used as a real time system for a variety of reasons, most notably the
presence of a non-preemptible kernel and the disabling of interrupts as a means
for coarse grained synchronization. Promiscuous use of disabling and enabling
interrupts inflicts unpredictable interrupt dispatch latency. It is difficult to bound
the time spent with interrupts disabled and even if such a bound is obtained it
may be too large to be useful.

15



6.2 The RT Linux solution

RT Linux slips a small, simple real time operating system underneath Linux.
Linux becomes the idle task for this kernel and we preempt Linux whenever a
real time task needs the processor. The disabling of interrupts for long periods
of time is prevented by putting a layer of emulation software between the Linux
kernel and the interrupt controller hardware, a technique similar to that described
in [STO93|. Any attempt by the Linux kernel to disable interrupts is caught by
the emulator. Also all hardware interrupts are directly caught by the emulator
and immediately serviced. Using this approach the interrupt dispatch latency
has been brought down close to the hardware limit of well under 30usec. The
emulation is achieved by replacing all occurrences of cli (instruction for disabling
interrupts) and sti (instruction for enabling interrupts) in the linux kernel, by
their corresponding emulated versions S_CLI and S_STI. The idea of emulating
cli and sti to achieve real time performance is due to Victor Yodaiken [BARI6].

S_CLI merely marks a bit to signify that Linux has disabled interrupts. When
an interrupt occurs, the emulator first sees if there is a real time handler for
this interrupt. If yes, it is immediately invoked. Next, if the real time handler
is willing to share the interrupt with Linux,the emulator checks to see whether
linux has interrupts enabled. If yes, the interrupt is passed on to Linux else
it is just marked as pending. Later when Linux enables its interrupts (using
S_STI) all the pending and unmasked interrupts are serviced. Thus, the amount
of time spent with interrupts actually disabled is very less which accounts for the
extremely low interrupt latency.

6.3 Real time tasks in RT Linux

In the initial design, each real time task used to run in its own address space. But
this leads to the associated overhead of system calls and frequent TLB (Transla-
tion Lookaside Buffer) invalidations. This leads to greater security but is clearly
a luxury when processor time is at a premium. Hence this design has been dis-
carded and now all real time tasks run in the same address space as that of the
kernel and at the maximum privilege level. This is highly error prone and a bug
in a single real time application can wipe out the entire system. But it is expected
that real time systems are deployed after much testing and debugging and hence
this should not be much of a concern. Further optimization is done by not using
the hardware context switch mechanism provided by x86 but by switching con-
text through software. This mechanism saves a minimum of state information as
opposed to the hardware mechanism which saves too much state information, for
example real time tasks by default have only integer context, hence the floating
point context is switched only if the process to be switched in requires it.
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RT Linux is module based. The tasks are loaded as kernel modules and hence
can be dynamically added. The scheduler itself is a loadable kernel module.
Hence it is possible to change the scheduler without having to recompile the
kernel. The default RT Linux scheduler is a simple preemptive static priority
scheduler. Alternate policies such as the Earliest Deadline First (EDF) or the
Rate Monotonic (RM) have also been implemented.

6.4 Timer Resolution

One of the problems with Linux is that its timer resolution is coarse (10 ms).
Hence a task can’t be scheduled at a precision of more than 10ms. Scheduling
precision is measured in terms of task release jitter which is defined as the dif-
ference between the exact time when the task was to be scheduled and the time
when it was actually scheduled. Jitter can be lowered by increasing the clock
frequency but then more time is spent in handling clock interrupts.

In RT Linux this tradeoff is avoided by providing timer operation in two distinct
modes. The normal periodic mode is used when a high degree of scheduling pre-
cision is not required. When the jitter has to be minimized, the timer can be
operated in oneshot mode. Here, on every interrupt, the clock is reprogrammed
to interrupt the CPU at exactly the time when the next task has to be scheduled.
Global time is kept track of by summing up all intervals between interrupts or
(on Pentium onwards) by using the on-chip timestamp counter. Periodic inter-
rupts are simulated for Linux. But this mode has the associated overhead of
reprogramming the clock everytime which is costly in terms of time.

6.5 Inter-process Communication

An upshot of the RT Linux interrupt emulation is that a linux task can be
preempted by a real time task even while the former is inside a system call and
the linux kernel data structures are in an inconsistent state. Hence no linux
kernel function can be safely called from a real time task. This seems to defeat
the original purpose of providing sophisticated services to a real time application.
But RT Linux assumes that a real time application can be split into two distinct
parts: one with hard real time constraints but which is very simple and does
not require any sophisticated services and one which does more sophisticated
processing such as GUI, disk I/O etc. but which has no real time constraints. A
typical example is a data acquisition application which consists of a real time part
which collects data, and a non real time part which takes care of data logging
and display.

The real time component of the application is loaded as a kernel module while
the non real time component runs as a normal Linux task. RT Linux provides
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two means of communication between the real time tasks and the linux processes
: RT fifos and shared memory. An RT fifo is a first in first out byte stream
which does not preserve message boundaries and can be used for unidirectional
transfer. On the RT side, RT fifos export non blocking lock free functions to
read and write while on the linux side they export a standard character device
interface. Real time tasks may also set up a handler corresponding to an RT fifo
which is invoked whenever a Linux task writes to it. Thus real time tasks need
not poll the fifo for arrival of data. For communication using shared memory, a
shared memory pool is set aside. A real time process may directly read/write to
this pool. The linux process may map this portion of memory to its own address
apace and then access it in the usual way.

7 Implementation of Simple Priority Inheritance
protocol in RT Linux

We have modified the standard RT Linux mutex package to implement the simple
priority inheritance protocol as defined in section 3.1.

7.1 Design

The basic data structure associated with each task is a doubly linked list of
mutexes that it owns. Every task 7j has a base priority P; and each mutex M
has a priority field Py;. Let us denote the list of task T; by L;. The dispatch
priority D; of Tj is defined as D; = max({P;} U{Py : M € L;}) . We seek to
maintain the following invariants:

1. T; owns M =Py = max({P;} U {Dy, : T} is directly or indirectly blocked
on M}).

2. MeL; & Tjowns M

3. The list L; is sorted on the priority field of the mutexes.

It is clear that if the above invariants are maintained and the scheduler chooses the
task with the highest dispatch priority, the conditions of the priority inheritance
protocol shall be satisfied. To maintain these the mutex operations are carried
out as follows:

1. Mutex Locking: When a task 7; acquires a mutex M, we set Py = P; and
insert M at the head of L;. Since no task is currently blocked on M, (1) is
satisfied. (2) is trivially satisfied. Since all mutexes in L, have priority at
least P;, (3) is also satisfied.
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2. Blocking on a mutex: When a task T; blocks on a mutex My owned by T;
, do the following:

(a) Set Py, = max(Py,, D;).
(b) Move My, in L; so as to keep L; sorted.

(c) If T; is itself blocked on M; owned by T,, repeat the above step with
j=1, k=1 and i=n.

When T; blocks on My, we first update Py, so as to satisfy (1). We
traverse the entire blocking chain (by step 3) and hence all Py, such that
T; is directly or indirectly blocked on M get updated. Thus (1) is satisfied.
We are not changing the list of any task, hence (2) is satisfied. Step 2
ensures that each list remains sorted.

3. Mutex Unlocking: When a task T; releases a mutex M, we simply remove
M from L;. Now M is not owned by any task hence (1) is trivially satisfied.
Clearly (2) and (3) are also satisfied.

7.2 Implementation and Running Time

A few implementation details need to be pointed out. The field that holds base
priority in the normal implementation, has been modified to hold the dispatch
priority and a new field has been added to hold the base priority, so that the
scheduler does not have to be modified. Since the mutex operations involve list
operations, they have to be synchronized. For this, a spinlock is associated with
the list of each task. This spinlock has to be acquired before doing any operation
on that list.

Locking and unlocking a mutex are still O(1). Since the mutex can be added /removed
from the list and the dispatch priority updated in O(1) time. For this, it is im-
portant that the list be sorted. Blocking on a mutex has a worst case bound of
O(m-+n) where m is the number of tasks and n is the number of mutexes.

This is because all the tasks may be blocked in a chain and the list of each task
may have to be traversed in order to keep the list sorted.

8 Conclusions and Future Work

In this course we have looked at various aspects of real time systems ranging
from the theoretical foundations of real time scheduling to the implementation of
a real time kernel in a freely available operating system. The scheduling problem
has been deeply studied and a wealth of literature is available. For uniproces-
sors efficient optimal solutions are available both under the static priority (rate
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monotonic) and the dynamic priority (Earliest Deadline First, Least Laxity First)
category. For multiprocessors however, no optimal static priority algorithm is
known. However as long as the utilization factor is less than or equal to the
number of processors, the tasks can still be scheduled in a p-fair manner by fol-
lowing the dynamic priority algorithm due to Baruah et al. P-fair scheduling is
a relatively new concept and a natural direction of future work is to investigate
p-fair schedulability under precedence constraints and resource sharing.

But static priority algorithms are significantly simpler to implement and imply
less run time scheduling overhead, hence the existence of better static priority al-
gorithms is worth investigating. Another approach has been to partition the jobs
among processors so as to avoid the overhead of task migration. The well known
uniprocessor algorithms can then be applied on the individual processors. To find
an optimal assignment of jobs to processors has been proven to be NP complete.
Heuristic algorithms similar to those for bin-packing have been proposed for the
same [DVRS86].

We also looked at the simple priority inheritance protocol to curb the problem of
priority inversion. The Priority Ceiling Protocol, a better but significantly more
complex protocol was also studied. A lock free protocol was also studied which
does away with the problem of priority inversion. It would be an interesting
exercise to make a quantitative comparison of the two approaches.

Lastly we looked at the implementation of a real time system in a widely available
non-real time operating system (Linux). RT Linux has been designed to require
minimal changes to the Linux kernel, essentially the changes are limited to the
low level interrupt wrappers and the routines to disable and enable interrupts. So
here we have an off the shelf general purpose as well as hard real time operating
system that can ride the wave of the main Linux development effort. In all,
RT Linux provides a viable platform for hard real time applications which also
require sophisticated services such as Xwindows, networking etc. It would be

indeed interesting to implement the various scheduling schemes studied above in
the RT Linux kernel.
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