Z;\l |:| —E D)/A Simulating Nios Il Embedded

o Processor Designs

May 2004, ver.1.0

Introduction

Altera Corporation
AN 351-1.0

Application Note 351

The increasing pressure to deliver robust products to market in a timely
manner has amplified the importance of comprehensively verifying
embedded processor designs. Therefore, when choosing an embedded
processor a key consideration is the verification solution supplied with
the processor. Nios® Il embedded processor designs support a broad
range of verification solutions including:

Board Level Verification — Altera offers a number of development
boards that provide a versatile platform for verifying both the
hardware and software of a Nios Il embedded processor system. The
Nios II integrated development environment (IDE) can be used to
verify designs running on development or custom boards using it’s
built in debugger. You can find more information on the Nios II IDE
debugger in the Nios II IDE online help. Hardware components that
interact with the processor can further be debugged with the Signal
Tap II embedded logic analyzer. For more information on Signal
Tap II, see AN 323: Using Signal Tap 1I Embedded Logic Analyzer in
SOPC Builder Systems.

Instruction Set Simulator (ISS) — An instruction set simulator is used
to model the Nios II processors instruction set in a software based
simulation model. This allows designers to run the executable image
from their software project on the ISS and to debug the software
using the Nios II IDE debugger. The ISS is particularly useful if a
development board is not available. The ISS is principally used for
software debugging purposes; however, it is also capable of
modeling a subset of the components available in the SOPC Builder.
For more information on the Nios II ISS see the online help in the
Nios II IDE.

Register Transfer Level (RTL) Simulation — RTL simulation is a
powerful means of debugging the interaction between a processor
and it’s peripheral set. When debugging a target board it can often be
difficult to view signals buried deep within the system. RTL
simulation alleviates this problem as it enables designers to
functionally probe every register and signal within the design.
Nios II-based systems are easily simulated in ModelSim® using an
automatically generated simulation environment created by SOPC
Builder and the Nios II IDE.

Simulating Nios Il Embedded Processor Designs

Before You
Begin

This application note describes the process of generating an RTL
simulation environment using Nios II example designs, SOPC Builder,
and the Nios II IDE. It also describes the process of running the Nios II
RTL simulation within ModelSim.

This document assumes that you have prior experience working with
SOPC Builder as well as a familiarity with the ModelSim simulator. In

addition

if you wish to simulate a Nios II based system you should have

the following software installed:

B Quartus®II version 4.0 Service Pack 1 or higher

B ModelSim Altera 5.7e or higher, or ModelSim PE, SE, EE

L&

If you are using ModelSim Altera 5.7e with Quartus II
version 4.0 SP1, you must install the ModelSim Altera pre-
compiled libraries for SP1 available at:
www.altera.com/support/software/download/service_pac
ks/quartus/dnl-qii40sp1.jsp

B Nios II embedded processor version 1.0. If you wish to simulate a
first-generation Nios processor please refer to AN 189: Simulating

Nios

Embedded Processor Designs

Setting Up Your Simulation Environment in SOPC Builder

To open the example design, perform the following steps:

1. Depending on which HDL you use, do one of the following

a.

2. Run

If VHDL is your primary HDL, locate the <Nios II install
directory>/examples/vhdl/ niosII_stratix_1s10/standard
directory and copy this folder into a location where you plan to
test the Nios II simulation flow. The location where you copy
the folder will be referred to as <your project directory>
throughout the remainder of this document.

If Verilog is your HDL then locate the <Nios II install
directory>/examples/verilog/ nioslII_stratix_1s10/standard
directory and copy this folder into a location where you wish to
test the Nios II simulation flow. The location where you copy
the folder will be referred to as <your project directory>
throughout the remainder of this document.

the Quartus II software

Altera Corporation

Before You Begin

3. Choose Open Project (File menu)

4. Browse to < your project directory >\standard
5. Select standard.qpf

6. Click Open.

7. Choose SOPC Builder (Tools menu) in the Quartus II software.
SOPC Builder software will open and resemble Figure 1.

Figure 1. Example Nios Il Design

1M altera SOPC Builder - std_1510 =]

Fle System Module View Tools Help

i System Cuntentsil More "cpu” Setlmgsl System Generatinnl

F3 Altera SOPC Buider -
" @ Intertaceto User Logic Target: |N|us Development Board, Stratix (EP1310) ;l Target Device Family: IStratlx 'I System Clock Frequency:
- Avalon Modules
g N?OS I Pracessar - At Lse Module Name Description Base End \RQl
_N'OS Processor - Alte v opu Nios || Processor - Altera Confidential 0200920000 0x005207FF
E-Bridges o ext_ram_bus Avalon Tri-state Dridge
- @ valon To AHE B v Flash Memary (ommon Flash Interface) & 0x000000...[OxOO7FFFFF
[Avvalon Tri-State { o IDT771 4 & SRAM 0x00800000| Ox0USFFFFT
< = Gn-Chip Memory (R or ROM) 0%00900000| 0xO000FFFF
“Cryptography v ARG G111 Interface (Ehemet) 0x00810000| 0xO0G1FFFF| 6
splay v | sys_cik_tmer Trterval Tmer 0x00920800| 0x0002081F| 0
EP1C20 Hios v |G jlag_uart TTAG UBRT 0x00920820| 0x000206527| 1
EP1S10 Hios v |& button_pio FIo (Parallel 0] 0x00920830| 0x0002085 | 2
EP1540 Hios | v |@led_pio FIo (Parallel 110) 0x00020840 | Ox0092084F
‘EP20K200E Hios Develc v Tcd_display Character LD (1652, Optrex 16.207) Dx00920650| Ox0002085F
B-Ethernet v |@ high_tes_timer Inkereal timer 0x00020860| 0x0092087F | 3
i ;@ CSB900 Interface v even_seg_pio IS (Paraliel 0] Dn00920860| Ox0092085F ||
;@ LANS1C1 11 ntert v etonfig_request_pio FI5 (Faraliel 0] DR00920690| Ox00920857
oo 1000 Bherneth. = artd AR (M5-232 serial port) TX009Z06A0| x0052000T | 4
o 2 jE’:EE’:EEE Eﬂﬂa ~|I T sysid System ID Peripheral 0x00920628| 0x00520521
] I 5 I—I v |@ sdram SDRAM Cortraller Ox01000000| OxOTFTFFFF
All Available Components
o e o
Add. . A Maove Up w tdove Down

|[*) epu was generated with full capabilities and must be campiled in Quartus || with the same license
(71 Done checking for updates.

Exit < Frev MNext = Re-Generate

Memory Initialization

8. Inorder to run a simulation of a Nios II design, it is necessary that
any memories containing software code are initialized prior to
simulation. Previous generations of the Nios processor generated
initialization files for memories using SOPC Builder. However,
Nios II based-systems require a different technique for memory
initialization. With Nios II-based systems, memory initialization

Altera Corporation 3

Simulating Nios Il Embedded Processor Designs

files are created in the Nios II IDE rather than SOPC Builder. This is
because the Nios II IDE is used to create and compile software
projects and the resulting memory initialization files. Later sections
of this document explain how to use the Nios II IDE to create
memory initialization files for your simulation.

UART Settings

SOPC Builder can be used to customize a JTAG UART for generating a
data stream to send to the host processor during simulation. There are
two possible ways for the UART to send data to the Nios II processor:

1.

2.

Using the Simulated input character stream dialog box.

Creating an Interactive stimulus/response window. For more
information on setting up a UART for simulation, See the “UART
Core with Avalon Interface” chapter in the Nios II Processor
Handbook.

To set up the JTAG UART for our simulation, perform the following steps
in the System Contents tab of SOPC Builder:

1.

4.

Double click the jtag_uart peripheral. The JTAG UART dialog box
opens.

Select the Simulation tab.

Turn on the Create ModelSim alias to open an interactive
stimulus/response window.

Click Finish.

Figure 2 on page 5 shows the example JTAG UART settings.

Altera Corporation

Before You Begin

Figure 2. UART Simulation Settings

™ JTAG UART - jtag_uart

Configuration Simu\aﬁon]
Simulated input character stream

This text will be seen by the UART
as if you had typed it.

Prepare Interactive Windows
" Do not generate ModelSim aliases for interactive windows

" Create ModelSim alias to open a window showing output as ASCI text

(+ Create ModelSim alias to open an interactive stimulusiresponse window!

Cancel = Prev | Finizh |

PIO Settings

SOPC Builder can also be used to initialize the inputs of any PIO
peripherals in your design which have an input port. For example, PIOs
with the direction set to bidirectional (tri-state) ports, input ports only, or
both input and output ports can be initialized for simulation in SOPC
Builder. For more information, see the “PIO Cores with Avalon Interface”
in the Nios II Processor Handbook. To initialized the PIO in the example
design, perform the following steps:

’

1. Double-click button_pio.
2. Select the Simulation tab. See Figure 3 on page 6.
3. Enter the initial value that you wish to drive on the input ports.

4. Click Finish.

Altera Corporation 5

Simulating Nios Il Embedded Processor Designs

Figure 3. PIO Simulation Settings

IS Avalon PIQ - button_pio @

Basic Settings I Input Options (=
Test Bernch wWiring

[+ Hardwire PO inputs in test bench

Drive inputs o |0=000F

Cancel = Prew Finizh

SOPC Builder Simulation Settings

After you have made simulation settings to any UARTs and PIOs in your
design, it is important to enable simulation file generation by performing
the following steps in SOPC Builder:

1.

2.

Set up the path to the ModelSim software

Choose SOPC Builder Setup > ModelSim Directory (File menu).
Browse to the directory where the ModelSim executables are
located. For example, for ModelSim-Altera, the directory is
<ModelSim installation directory>/win32aloem.

Click OK.

Click the System Generation tab.

Enable the Simulation option. See Figure 4 on page 7.

Click Re-Generate.

Altera Corporation

Before You Begin

Figure 4.
=IE

File System Module View Tools Help

SOPC Builder Simulation File Generation

System Cumemsl Maore "cpu’ Settings ; System GEI’]E[E‘IUHE'

Options

B Run Nios || IDE

¥ HDL. Generate bus and system logic in Verilog

¥ Simulation. Create ModelSim(tm) project files.

Info:

4

2004.04.28 10:07:55 (%) Setting up Quartus with std_ls10_setup_guartus_native_symthesis.tcl d
c:/quartus/bin/quartus_cmd -f std 1210 setup quartus native synthesis.tcl

2004.04.25 10:07:55 (*) Completed generation for system: std 1s10.
2004.04.26 10:07:56 (*) THE FOLLOWING SVSTEM ITEMS HAVE BEEN GENERATED:
cpu include files such as memory maps : C:/altera/kits/nios2/exemples/verilog/niosII_stratix_lsl0/standard/cpu_sdk/inc/
cpu library files : C:falteras/kitssmios2Z/examples/verilog/niosII_stratix_lsl0/standard/cpu_sdi/libJs
cpu example programs : C:/altera/kits/nios?/examples/verilog/ninsIT_stratix_lsl0/standard/cpu_sdk/src/
S0PC Builder database : C:/falteraskits/niosZ/exauples/verilog/niosII_stratix_lsl0/standard/std_lsl0.ptf
Systen HDL Model : C:/alterasKits/nicosdd/examples/verilog/niosII_stratix_lsl0/standardsstd lsl0.v
Systew Generation Script : C:/faltera/kits/niosz/exawples/verilog/niosII_stratix_lsl0/standard/std_1s10_generation_script
Modeldim Simulation Directory @ Cifalteras/kits/niosZ/examples/wverilog/niosII_stratix_lsl0/standard/std 1s10_sim

2004.04.25 10:07:56 (%) SUCCESS: SYSTEM GENERATION COMPLETED.

Presz 'Exit' to exit. i

Processing of Quartus II Version 4.0 Build 214 3/25/2004 Service Pack 1 5J Full Version started at time 0472872004 10:07:37

(+) cpu was generated with full capabilities and must be compiled in Quartus | with the same license
(+) Done checking for updates.

Exit < Prey [est = Re-Generate

SOPC Builder Generated System Simulation Files

At this point, SOPC Builder has generated your system and created all of
the files necessary for simulation as shown in Table 1 apart from the
memory initialization files. These simulation files are located in the <your
project directory>std1S10_sim simulation directory.

Table 1. SOPC Files Generated for Nios Il Simulation

File Extension Description
.mpf ModelSim project file. This file is created if SOPC Builder finds the ModelSim path.
.do ModelSim macro execution scripts. The setup_sim.do script initializes the macros

listed in Table 2 on page 15. The wave_presets.do script generates a list of default
signals that are displayed in the waveform window.

.dat Memory initialization files in hexadecimal format. These files are used for simulation
only. The .dat files are created to initialize components in your system such as
UARTS. Additional .dat files need to be generated using the Nios Il IDE to load the
memories used in your design.

Altera Corporation 7

Simulating Nios Il Embedded Processor Designs

Using the Nios I
IDE to Generate
Memory
Initialization
Files

This section describes how to finish setting up your simulation by using
the Nios IT IDE to create a software test project and to generate the
necessary files to initialize the memories used in your simulation. For
further details on the operation of the Nios Il IDE refer to the Nios II IDE
on-line tutorials.

Creating a Nios Il IDE Project

Perform the following steps to generate and compile an example software
project using the Nios II IDE.

1.

2.

Run the Nios II IDE software.

Select New > Project (File menu) to create a new project.

Select Altera Nios II > C/C++ Application > Next.

Enter hello_world_project as your software project name and
browse to the location of your system’s PTF file to specify SOPC
Builder System. Your system PTF file is located in the <your project

directory>/standard directory.

Select Hello World from the Select Project Template field as shown
in Figure 5 on page 9.

Altera Corporation

Using the Nios Il IDE to Generate Memory Initialization Files

Altera Corporation

Figure 5. Nios Il IDE New Project Wizard

x|
C/C+ + Application
Click Finish to create this project with a default system lbrary @

Marme: Ihe\lo_world _project

[Use DefaLlt Location
Pafh: | Chalteraikits\nios2\examplesiveriloginiosll_stratix_1s10\standardisoftw Browse.,,
—Select Target Hardware

SOPC Builder System: g 5 10.pt Browse.‘.l
CcPU: [epu d|
i Select Project Template

Custom Instructon TUto & "Descr\pﬁon ‘

Court Binary Simple program that prints ‘Helo from Nios IT*

Chrystone -

Flash Tests Detals

Hello Freestanding This excample prints 'Hello from Mios I' to the STDOUT =
Hello LED stream.

Hello MicroCA0s-11

This example runs on the Mios I 'standard’,
'full_featured', fast’, and low_cost' example designs.

MTP Client

Telnet Server
Wicror /0G-1T Messade RnLI

-

= Back Mext > | Finish I Cancel

6. Click Next.

7. On the next page of the New Project wizard, turn on Creating a new
library.

8. Select Finish.

Modify the System Library for Simulation

The next stage in preparing for simulation is to modify the system library
parameters for your project. To specify which memory you want your
code compiled and to increase simulation speed by reducing code
overhead, perform the following steps:

1. Right click on your system library
hello_world_project_syslib[std_1s10] located in the C/C++ Project
panel of the Nios II IDE and select Properties.

Simulating Nios Il Embedded Processor Designs

4.

Select System Library from the Properties for

hello_world_project_syslib dialog box.

The System Library page is used to select which communication
devices in your design will be used for standard out and standard
input. See Figure 6. The System Library page is also used to specify
which memory will be used at run time by the CPU.

a. Scroll to sdram for the Program, Read-only, and Read/write

memory fields.

b. Scroll to jtag_uart for the stdout, stderr and stdin System

Library Contents fields.

¢. Turn on ModelSim only, no hardware support.

Click OK.

Figure 6. System Library Properties

+External Tools Buiders
Project References
+-System Library

,' Properties for hello_world_project_syslib

—|ol x|
System Library
—Target Hardware
SOPC Builder Systerm: | Cihaltera‘kitsinios 2examplesiverloginiosll_stratx_1s 10standardistd_1s10 ptf Brawse,,,
P [epu
i~ System Library Contents i~ Linker Seript
RTGS: nore (single-threaded) VI " Custom linker script

stdout:
stderr:

stin:

Timestamp dmer:
Max flle descriptors: 32

[v Clean exit (flush buffers) [~ Reduced davice drivers
[~ Small C ibrary [~ Link with profiing library
[v ModelSim anly, no hardware support

Software Components...

TS Optoms ... [rore

jtag_Lart VI (® Use auto-generated linker scriot
itag_Uart 'I Program memory (. text):
tag_Uart 'l Read-only data memory (.rodata):

Periodic system timer: SYS_CLK_TIMER 'I Read/write data memory {rudata):

none & I

Browse |

sdram A
sdram
sdram

Help | Restore Defau\tsl Apply |

oK | Cancel |

10

Altera Corporation

Using the Nios Il IDE to Generate Memory Initialization Files

Altera Corporation

The system library has now been modified to create an executable image
that can be downloaded to your program memory (in our case, SDRAM)
and simulated in ModelSim. Turning on ModelSim only, no hardware
support indicates to the compiler that the current project is being run on
a simulator. In turn, the compiler will remove sections of the startup code
in order to improve simulation speed. Specifically, the instruction and
data caches will not be initialized during simulation and the BSS section
of the Read /write data memory will not be cleared. These enhancements
will greatly improve the speed at which your design will simulate in
ModelSim; however, the resulting software image will not run on a target
board.

Before downloading your software image to your target board;
it is vital to disable the ModelSim only, no hardware support
option inside the System Library Contents field and recompile
your software project.

CAUTION

C Code for the Hello World Project

The example design that you will simulate is based on the hello_word.c
file located in the <your project directory>\standard \software\
hello_world_project directory. This file simply prints a message to the
JTAG UART on the target board. You can view the source code for the
project by opening the hello_world_project folder in the Nios I IDE
C/C++ projects panel and double-clicking on the hello_world.c file. The
source code for this file is shown below.

Hello_world.c Source Code
#include <stdio.h>

int main ()

{

printf ("Hello from Nios II!\n");

return 0;

}

To demonstrate how to access hardware peripherals we will modify the
hello_world.c source file to write to the PIO LEDs on the development
board. Modify the hello_world.c to use the
IOWR_ALTERA AVALON_ PIO_ DATA macro to write values to the LEDs
as shown below.

11

Simulating Nios Il Embedded Processor Designs

12

Modified hello_world.c Source Code

#include <stdio.h>
#include "system.h"
#include "altera_avalon pio_regs.h"

int main ()

{

int 1i;
printf ("Hello from Nios II!\n");

for(i=0;1<256;i++)
IOWR_ALTERA_AVALON_PIO_DATA(LED PIO BASE, 1) ;

}

return O;

I'=~ If you copy and paste the modified hello_world.c source code
from an Adobe pdf file to the hello_world.c file, you may need
to delete the quotation marks and re-type them in Nios II IDE.
Quotation marks from a pdf file may cause build errors in
Nios II IDE.

The modifications made in “Modified hello_world.c Source Code” write
values to the LED using the TOWR_ALTERA AVALON_PIO_DATA macro
which is defined in the altera_avalon_pio_regs.h file. The
IOWR_ALTERA AVALON PIO_DATA routine accepts two arguments, the
first is the base address of the PIO and the second is the value that will be
written to the PIO. In our case the PIO base address is LED_PIO_BASE
and is defined in the system.h file.

s When accessing a PIO peripheral you should use the
IOWR_ALTERA AVALON PIO DATA and
IORD ALTERA AVALON_ PIO_DATA macros defined in the
altera_avalon_pio_regs.h header file.

Compile the Software Project

After modifying the hello_world.c source code and the system library to
generate an executable image that will run faster in ModelSim you are
ready to compile the project to generate the .dat files which will be used
to initialize the memories in your system for simulation purposes.

To compile your software project in the Nios II IDE, perform the
following steps:

1. Highlight hello_world_project in the C/C++ Projects panel of the
Nios II IDE.

Altera Corporation

Launch ModelSim Using the Nios Il IDE

Launch
ModelSim Using
the Nios Il IDE

Altera Corporation

2. Right click on hello_world_project and select Build Project.

Once compilation is completed the .dat files in <your project directory>/
standard/std_1s10_sim project will be initialized. In this case sdram.dat
will contain the executable image for the hello_world.c file that was
compiled by the Nios II IDE.

The Nios ITIDE can be used to launch the ModelSim simulator and to set
up the simulator to run our simulation. After launching the simulator the
Nios II IDE has no further role in the simulation process and all
subsequent simulation commands are performed in the ModelSim
simulation tool.

Launch the ModelSim simulator and set it up to run our project by
performing the following steps:

1. Highlight hello_world_project in the C/C++ Projects panel of the
Nios II IDE.

2. Select Run... (Run menu).

3. Highlight the Nios II ModelSim icon in the Configurations
window of the Run dialog box.

4. Click New.

5. Ensure that the ModelSim path points to the executable directory
for ModelSim. If this path is incorrect you can specify the ModelSim
path location using SOPC Builder as described on page 6.

6. Select Run.

Pressing the Run button launches Modelsim and causes ModelSim to
compile the setup_sim.do script and wait for you to run the simulation.

Running the Simulation Using ModelSim

After you have launched ModelSim from the Nios II IDE the
setup_sim.do scriptis executed and the available macros are shown in
the ModelSim console window. See Figure 7 on page 14. These macros
make it easy for you to load your design files and to view the default
signals for your design. The individual macros are defined in Table 2 on
page 15.

13

Simulating Nios Il Embedded Processor Designs

14

Figure 7. ModelSim After Pressing Run in the Nios Il IDE

ModelSim SE 5. 7e

File Edit View Compille Simulste Tools Window Help

EECYETTE
kspace —— x|
Name # Reading D:/EDA_tools/ModelSim_SE_5, ?eibcl!\-'slm.-"pref bl =
H# Reading D: Mtest /standard/std_1210_sm/modetzim icl
work (emply | |4 D:/EDA_Tools/Quantusl]_4.0/sope_buider
=]l witatz000 1 d./eda_tools/quartusii_4.0//bin/ped561
. # Sopc_Builder Directory: D:/EDA_T acke/Quartusll_4.0/z0pc_builder
El—mueee) ™
- [0} modetsim it | {4 @
=l std # 2 sebup_sim.da
4
B[] std_develop # @@ Defined aliases:
8] TR O -3
&[] veriloa % @@ 5 - Load all design (HOL) files.

@ re-voom and re-vsim the design.
Lic el

@@ ¢ - Re-compile mematy conlents.

1 @@ Buids C- and assembly-language programs
@E! [and associated smulation data-files

8 @3 such as UART simudation stings] for

@43 refreshing memory contents.

@@ Does MOT re-generate hardware [HOL] fles
*If % ONLY WORKS WITH LEGACY SDE Mot the Nioz IDE)
@4 w - Setsup wavetorms for this design

(@@ Each SOPC-Bulder component may have
@@ signak: ‘marked' for display dunng

@ swlation. This command opens a veave-

@3 window contairing all such signals.

4 @@

@31 | - Sets-up kst waveborms for this design

@@ Each SOPC-Bulder comporent may have
@@ sgnak: ‘marked’ for ksting duing

@@ smwllation. This command opens a list-

22 window conkairing all such signals.

L3cec

i @3 jtag_uat_log - display interactive output window for jtag_uart
L1c el

H @@ h - privt this message

t @@

@@ *Spacial VHDL settings™
@@ SrddithMao'w/arnings=1 in s command
i

ea
OperFile "std_1210 _sirmmpf"
8 Loading project std_1510_sim

ModelSim>

|Praject : std_1s10ES_sim |Loading...

<Mo Context>

Altera Corporation

Launch ModelSim Using the Nios Il IDE

Table 2. Nios Simulation Macros

Macros Description

s Recompiles the Nios processor and peripheral source code and then reloads the design
into the ModelSim work library for simulation. This macro resets the entire simulation.

[¢ This is a legacy command that is not supported for designs generated using the Nios Il
IDE. It’s purpose was to recompile source code and reinitialize the system memories.
For Nios Il the recommended approach to reinitializing memories is to recompile your
design in Nios Il IDE and then restart your design in ModelSim after the Nios Il IDE
compilation is complete.

w Loads the wave_presets.do file, which contains predefined ModelSim waveform window

information. The wave_presets.do file loads the common signals from all of the
processors and peripherals that reside on-chip and displays the ModelSim waveform
window.

Loads the wave_presets.do file, which contains predefined ModelSim waveform window
information. The wave_presets.do file loads the common signals from all of the
processors and peripherals that reside on-chip and displays the ModelSim waveform
window.

<UART name>_log

Optional. For each UART in the system, this macro is created if you turned on the display
interactive output window inside SOPC Builder before system generation. When you run
this macro it opens a window, similar to a terminal screen, showing TXD data from the
UART.

<UART name>_drive

Optional. For each UART in the system, this macro is created if you turned on the
interactive/stimulus response window inside SOPC Builder before system generation.
When you run this macro it opens a window, similar to a terminal screen, where you can
send virtual data to the UART RXD signal during simulation.

Help. Displays the available macros and their functions.

Altera Corporation

Run the simulation within ModelSim by performing the following steps:

1. Type s in the ModelSim console window to execute the s macro to
load the design.

2. Execute the jtag_uart_drive macro to launch the interactive terminal
window that displays the output of the printf statement in the
hello_world.c source code.

3. Execute the w macro to display the ModelSim waveform window
with example signals that were automatically generated for your
system. These signals are separated by function and include signals
useful for debugging. Table 3 on page 16 lists signals included in the
default waveform.

15

Simulating Nios Il Embedded Processor Designs

You could now run the design in ModelSim using the standard
ModelSim commands. However, we will add a few additional
signals to the wave window so that the operation of the PIO
peripheral can be observed. In order to view the operation of the
PIO peripheral open the Structures and Signals windows in
ModelSim (these windows are accessed via ModelSim’s View
menu).

Table 3. Signals Shown in Simulation Waveform

Signal Group

Description

cpu

Signals related to instruction fetching and read and writing data. Signals in this
group beginning with a d_ prefix are associated with the CPU data master.
These signals provide information on when the CPU data master is performing
read or write access to memory or memory mapped peripherals. Signals
beginning with a i prefix are associated with the CPU instruction master.
These signals indicate when the CPU instruction master is accessing
instructions from memory,

sdram

Signals showing the interface between the Avalon bus module and the SDRAM
controller, SDRAM controller and SDRAM device(s), and signals internal to the
SDRAM controller logic.

Signals from the Avalon bus module to the SDRAM controller have the prefix

az_,e.g.az_addr for the address bus input.

Signals from the SDRAM controller to the Avalon bus module have the prefix

za_, e.g., za_data for the data from the controller to the Avalon bus module.
Signals between the SDRAM controller and external SDRAM device(s) have

the prefix zs_, e.g., zs_ras_n for the row address strobe signal.

Signals internal to the SDRAM controller logic include the system clock (c1k)
and the current operation that the SDRAM controller if performing (code).

onchip ram 64 kbytes

Address, data and control signals for the onchip ram_64 kbytes memory.

jtag_uart

Displays the Avalon interface signals to the JTAG UART.

uartl Bus Interface

Signals displaying the UART bus interface. Display the Avalon address and
data signals for the UART.

uartl Internals

Internal UART signals showing the UART transmit (TX) and receive (RX) data
registers. The signals decode the 8-bit TX and RX registers to ASCII text so
that you can view the characters in the simulation waveform. The TX ready and
RX character ready signals are also shown.

16

In the Structure window open the test_bench folder followed by
the dut folder and select the led pio.

In the Signals window, select chipselect and out_port. See
Figure 8.

Altera Corporation

Launch ModelSim Using the Nios Il IDE

Altera Corporation

Figure 8. ModelSim Structure and Signals Windows

E® structure 9 =13X

File Edit Wiew ‘Window

test_bench
= dut
|- the_button_pio_s1
|- the_button_pio
8 the_cpu_jtag_debug_module
-8 the_cou_data_master
- the_cou_instruction_mastes
-l the_cou
- the_est_ram_bus avalon_slave
-8 the_high_res_timer_s1
|l the_high_res_timer
-8 the_jtag_uart_avalon_jtag_slave
-l the_jtag_uart
il the_lcd display_control_slave
8 the_lcd display
- the_le

4

sim:ftest_benchfdutithe_led_pio

add

chipselect
clk

B

Then drag the highlighted signals into the waveform window.

Run the simulation for 800 microseconds by typing run 800 us in

the ModelSim console.

After the simulation has completed the terminal window should
display the printf statement from the hello_world.c file. Also, zoom
in on the PIO signals that you added to the waveform window and
observe the CPU making write access to the PIO as shown in

Figure 9 on page 18.

17

Conclusion

Figure 9. Simulation Results

=

— odram

Moy

Flo Edt Wew [seit Formal Tools hrebows
FEES Y REA| L

Kl | [| @ 6 @ B F | ELED

I L1l
1]

(1]
LI, 11

0 1]
l____I_HAn || [) N I 11 1l
1 (-

TTT Tl [N

4 |

T2E042 ns to 730934 n=

Conclusion

Simulation and verification are vital parts of the design process. Nios II
processors can be verified comprehensively using board-level
debugging, software emulation using the Nios II ISS and RTL simulation
using ModelSim. RTL simulation is an important part of the design
process particularly for configurable systems as it allows you to probe
deeply embedded signals within the processor and your peripheral set.

ALTERAW

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
lit_req@altera.com

Altera Corporation

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described

herein except as expressly agreed to in writing by Altera Corporation. Altera customers "su

are advised to obtain the latest version of device specifications before relying on any pub- —
lished information and before placing orders for products or services.

4
Printed led
%y Printed onrecycled paper LS. EN ISO 9001

18

	AN 351: Simulating Nios II Embedded Processor Designs
	Introduction
	Before You Begin
	Setting Up Your Simulation Environment in SOPC Builder
	Memory Initialization
	UART Settings
	PIO Settings
	SOPC Builder Simulation Settings
	SOPC Builder Generated System Simulation Files

	Using the Nios II IDE to Generate Memory Initialization Files
	Creating a Nios II IDE Project
	Modify the System Library for Simulation
	C Code for the Hello World Project
	Hello_world.c Source Code
	Modified hello_world.c Source Code
	Compile the Software Project

	Launch ModelSim Using the Nios II IDE
	Running the Simulation Using ModelSim

	Conclusion

